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An error analysis of the techniques used in the
measurement of high-speed friction on snow

S. C. COLBECK
U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH 03755-1290, U7.5.A.

ABSTRACT. Controlled tests are needed to find the coefficient of friction of snow
as a function of speed. An error analysis shows how the test must be designed to give
accurate answers, [t seems necessary to use a remotely controlled, aerodynamical sled
in place ol a skier to get accurate results. Otherwise, two sets of tests are necessary, one
to determine air drag versus speed and one to determine the frictional force versus
speed, and even these tests would probably not give satisfactory results. The slope used
for testing should be steep for a quick acceleration and then uniform, but not flat,
where the actual measurements are taken. A continuously reading speed sensor is
needed, not discrete measuring points. Even with the underlying principles
understood, there will still be many practical problems to be solved before accurate

results can be obtained.

INTRODUCTION

The coeflicient of friction on snow is of great interest (eE:
Leino and others, 1983) but is difficult to measure even
for a given set of snow and atmospheric conditions. It
would be valuable to know how snow friction varies with
both of those conditions, slider type and base preparation.
There are many difficulties in getting measurements of
the coeflicient of friction in the range of speeds of most
interest, i.e. greater than 5ms '. First, its value is always
low and thus there is likely to be a large relative error.
Secondly, it is necessary to separate the air and sliding
resistances, which is a major problem at the speeds of

interest. Tests could be done by holding a stationary
slider on moving snow but not without reusing, and
therefore polishing, the snow surface. At high speeds, tests
need to be done outdoors, which will ensure a problem
with air drag as well as some loss of control of the test
conditions.

A compilation of measurements of snow friction versus
speed is shown in Figure 1. With the onset of motion,
friction drops rapidly below the static value because of
lubrication by melting during sliding (Colbeck, in press).
The friction continues to drop with increasing speed on
ice surfaces, but on snow surfaces it increases after passing
through a minimum. This can be explained theoretically
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Fig. 1. Coefficient of friction versus speed as summarized by Colbeck (in press). Curve a is_for dense, wet snow (from Spring,
1988). Curve b is for PTEE (polytetraflucroethylene) on wet snow (from Shimbo, 1961). Curve ¢ is_for dense snow at —7.5°C
(from Spring, 1988). The data points (d) are for waxed (circles) and unwaxed ( triangles) polyethylene on dry (solid symbols)
snow at —2.5° to —1.6°C and on wel (open symbols) snow (from Kuroiwa, 1977).
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by the dynamics of the meltwater films (Colbeck, 1988),
but tests need to be done at the higher speeds and the
results need to be established more definitely. In
particular, the trends for increasing friction for wet and
dry snows shown in Figure 1 are questionable because
they suggest rather high values of friction at speeds that
are common for both ski racing and aircraft operations.

Many attempts have been made to measure snow
friction at higher speeds but there are a number of
theoretical as well as practical barriers to overcome before
satisfactory tests can be achieved. The theoretical
limitations on friction tests are discussed here to provide
a basis from which better tests can be designed. The error
analysis given here is based on the concept of relative
errors which has been described in Gellert and others
(1989) and was used by Colbeck (1978). Relative errors
are used instead of absolute errors because they show how
accurate the measured or calculated quantities must be to
get an accurate answer.

RELATIVE ERRORS

Assuming there is no aerodynamic lift on the slider,
motion down the fall line on snow is described by

ma = mgsin@ — [ —mgpcosf (1)

where m is the mass of the slider, a is its acceleration
down a slope of inclination 6, g is the acceleration due to
gravity, f is the air drag and p is the coefficient of friction.
The first term on the righthand side represents the force
due to gravity and the third term represents the frictional
drag on the snow. This equation is integrated to express
the conservation of energy as

Lin(? —w?) +mg(y — wo) + J§ (f + mgpcos B)dS = 0
(2)

where S is the total path length, v is the speed and y is the
vertical coordinate. This shows that the increase in kinetic
energy plus the decrease in potential energy plus the
energy losses due to snow friction and air resistance must
balance. While Leino and others (1983) used this energy
equation to find air resistance and snow friction, Equation
(1) will be used here because it is much better to measure
speed continuously rather than at discrete points.
Equation (1) shows that

ma + f
mgcosf

(3)

w=tanf —

Since in most cases the first and second terms on the
righthand side of this equation, or the driving and
retarding terms respectively, are large but about equal in
magnitude, the relative error in calculating g from
measured quantities can be quite high. Accordingly, it
is necessary to design carefully a measurement program
that can minimize the total error. First, it is necessary to
understand the sources of error.

Assuming we know m, g and f exactly, the relative error
in computing p from measurements of speed and a
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calculation or measurement of air drag is

_lalB@) | _£E()
~ gucost  mgpcos

E(p) (4)

where the relative error for any variable x is defined as
|dz/z| and a is dv(t)/dt, where v(t) is the time series of
speed. Some important conclusions are immediately
obvious from this equation:

1. u is always small and occurs in both denominators
which tends to increase FE(p). Thus other factors
must be optimized in order to get an acceptably
small error.

2. If E(a) is a constant, the measurements should be
taken on a slope where the slider rapidly approaches
its terminal speed so that |a| is minimized. If E(a) is
not constant, then it is the maximum error in |a
that matters and this may vary with |al.

3. The common practice of calculating the speed and
acceleration from timing measurements at three
points is not going to give an accurate result unless
la| is very small. Otherwise, averaging the speed
between distinct measurement points could lead to
much uncertainty. The error in this method can be
reduced if the measurement points are far apart but
then a is likely to change significantly over the
interval. Use of a rapidly reading radar gun would
be much more likely to reduce E(a) and then
minimizing |a] would not be so important. Other
devices to find the time series of speed should also be
considered, e.g. use of a sonic anemometer mounted
on the ski or Watanabe’s (1979) use of closely spaced
magnetic coils.

4. B(f) is more difficult to reduce because the shape of
a skier is not simple and the usual formulas for
calculating drag may not give satisfactory results.
Nachbauer and others (1992) showed that it is
necessary to improve the accuracy of the measure-
ments and/or of the use of the formula to calculate
drag. Probably the best approach is to use skis
carrying a streamlined dead weight where the
weight is distributed close to the ground. This
could have the minimum air drag, correct weight
and be stable at high speeds. Both f and E(f) could
be minimized by using streamlined sliders rather
than skiers. Since f increases rapidly with increasing
speed, it deserves a lot of attention even though its
determination is not the primary concern. In fact, f
is the major problem. For a skier moving at a steady
30ms ', Equation (4) shows (for 8 = 0, m = 80kg,
p=0.1, Cp=0.7 and a=03m?) that E(u)=
1.5 E(f), thus E(u) cannot be small for skier tests
since E(f) cannot be small.

5. m could be increased to reduce the second term but
weight might affect p. Thus the weight of the test
system should be similar to that of the intended user
of the information, e.g. a skier.

6. The effect of slope itself is minimal since only cos 6
appears in the equation. The primary effect of § is
through its influence on v and a. If @ is not constant,
use of Equations (1) and (3) could be complicated
and, as shown later, errors are introduced unless the
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slope is known and uniform. Leino and others
(1983) and Spring (1988) used level surfaces for
their measurement zones and, while this minimizes
uncertainty in # and maximizes cos @, minimizing |al
may be more important, especially if discrete
measurement points are used to get v and a.

7. The ratio f/m can be minimized by using a heavy,
flat plate mounted horizontally on two skis. The
drag would be all surface drag and would typically
be reduced by a factor of 100 over a streamlined
skier, but use of such a plate may be impractical
because of the lack of control.

Of the two terms in Equation (4), the effect of air drag
is the most uncertain and thus it deserves special

consideration. The slope of the test track is discussed
later because it should be chosen to minimize both terms.

AIR DRAG
The air drag on a three-dimensional object is given by
f=05pm*CpA (5)

where Cp is the coefficient for form drag and A is the
reference area for the body. Reynolds number is given by
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Fig. 2. Drag coefficient versus Reynolds number and speed

Jor various bodies (data from Rouse and Howe, 1953).
The speed is calculated assuming € of 0.5m and v of
128 % W°m'
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-~ vl

Re (6)

v

where ¢ is a characteristic dimension and » is the
kinematic viscosity of air, and it is used to characterize
the mode of flow. For values of Re greater than about 10°,
which are of primary interest here, Figure 2 shows that
there is a sudden drop in Cp for ellipsoids and spheres.
This occurs because the boundary laver changes suddenly
to turbulent flow as the air speed increases in this range.
This is a severe and common problem in tests involving
air drag (Hoerner, 1965). Furthermore, the tests may not
be repeatable since separation often occurs at different
positions along a body in different tests, even at the same
HP(‘(‘({.

A skier has little control over Re although ¢ can be
changed slightly, but it is important to recognize that air
drag increases with Re after Cp goes through a minimum
and that, for a given Cp, f increases as v2. Thus, above a
certain speed, air drag increases rapidly due to increases
in both v and Cp. This is a critical point because f, and
therefore E(u), can be decreased by designing an
experiment that will take advantage of the minimum in
the relationship between Cp and Re. For example, for the
I': 1.8 ellipsoid oriented with the flow, the tests should be
done in the range of 10° < Re < 10 which corresponds
to a sliding speed of about 2.5-25ms '. By coincidence,
this is a range of great interest.

Two approaches for finding air drag on a three-
dimensional object can be taken. The best approach is to
find f as a function of v by passing the object through still
air and measuring f and v very accurately. Then, given a
high accuracy in the resolution of f versus v, E(u) would
be relatively little affected by the second term in Equation
(4). The results would have o be corrected for the values
of air density (p) at cach test site, but this can be done
with simple measurements of barometric pressure, p, and
temperature, 7', using the formula

p Ty

P::O{p—n?-. (7)

where pp, po and Tj are at a standard reference point. p
can also be corrected for humidity, but this correction is
small and can probably be ignored.

The second approach is to use Equation (5) directly
and eliminate the need for the second set of tests. While
this approach would be very convenient, it could
introduce a great deal of error because of uncertainty in
both Cp and A. The relative error in f is given by

E(f) < E(p) +2E(v) + E(Cp) + E(A).  (8)

Since p and T' can be measured precisely and the change
in p due to humidity is small, E(p) can probably be
ignored. If v can be resolved accurately, the second term
should be negligible, but the factor of 2 is important to
consider. The uncertainty in both Cp and A could be
reduced with an aerodynamical dead weight but, because
of the variation of Cp with speed over the range of
interest, it is not clear that E(f) can be kept within
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acceptable bounds without a separate set of measure-
ments. Unfortunately, these tests in themselves will be
difficult, especially if skiers are used. Spring (1988)
showed that air-drag measurements of skiers were subject
to very large uncertainties at speeds of less than 5ms
and there was still a large relative error above that speed.

Of the shapes shown in Figure 2, the one that is least
affected by speed is the disk, probably because separation
occurs at the edge at any speed. Thus, the disk is an
attractive shape because its drag can be readily calculated
with little error and good repeatability. In addition, f
and terminal speed could be varied independently of m
by changing the diameter. However, E(p) increases as
fE(f) and f for a disk is about 50 times greater than for
an airship hull.

Use of a disk would also avoid the effects of surface
roughness. Surface-roughness elements are critical, for
example, in the flight of a golf ball (Mehta, 1985).
However, we assume here that the surfaces are smooth or
that the same object is used for both the air-drag and
snow-slope tests.

SLOPE ANGLE

Expressing acceleration as dv/dt in Equation (1) and
combining with Equation (5),

d
md—i = mgsinf — 0.5p0°CpA — mgucos. (9)

To discuss the effects of slope angle, we will find v versus ¢
by ignoring any dependence of Cp on Re and assuming
that # does not vary along the track of known slope. For a
streamlined dead weight in a properly designed test, the
first assumption would be reasonable if speed increased
quickly into the range where Cp is fairly constant.

Integrating Equation (9) from an initial speed vy
yields

U ¥V Pt zo exp(pCp Avact/m) (10)
0

Vog — VU Voo —

where the terminal speed is given by

5 2myg(sinf — pcosb)
M = oy ! (11)
For a slope of 10°, a slider of 90 kg, p of 0.1, Cp of 0.5 and
A 0f 0.25m?, the terminal speed would be about 28 ms .
This speed seems high for these values of Cp and # which
suggests that g may indeed increase with speed, as
suggested in Figure 1.

For a constant slope, Figure 3 shows that the slider
would change speed very rapidly at first. However,
because f increases as v?, the terminal speed is
approached slowly. There is a slight advantage in
overshooting the terminal speed before entering the test
part of the slope because the slider would approach v
more rapidly while decelerating than while accelerating.

The slope of the test track should be chosen to
minimize the first term in Equation (4), in particular
|a|E(a)/cosf. From Equation (1), this requires a
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Fig. 3. Speed versus time calculated from Equation (10)
and given in dimensionless form with initial over final
speed as a parameter.
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While the first two terms can be minimized by making the
measurements on a level section of track, the entire
expression can be minimized by choosing a sloping section
of track of sufficient length to allow the slider to approach
its terminal speed, thus minimizing |a|. For typical
conditions from a standing start on a track of constant
slope, this would require about 1 min of time, which is
much too great. Thus, the advantage of using a concave
track, as suggested by Leino and others (1983), with a
length of constant slope near the bottom is obvious.
Unfortunately, as shown in Figure 3, even this approach
will not allow a quick attainment of the terminal speed
unless it is achieved before the slider reaches the test
section. Thus, while it is desirable to make the tests at a
constant speed, it may be impractical to do so. Further-
more, the result would only produce one value for vy on
each slope for each set of conditions, but at least this
approach offers the possibility of accurate tests that could
be used to determine the effects of different ski-base
preparations or snow conditions. The inclination of the
steeper part is not critical since only a part of that slope
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Fig. 4. Terminal speed and drag coefficient versus slope of
the run for a I : 1.8 ellipsoid oriented with the flow.
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would need to be used to achieve the desired speed. The
critical part of the slope is the lower part where the
measurements are to be made at minimum |al.

v was calculated as a function of 8 for a 1: 1.8 ellipsoid
oriented with the flow using Equation (11) and Figure 2
as guidance to find Cp. At each value of 8, Cp was
determined by iterating to the solution while correcting
Cp at each step. The result is shown in Figure 4, where it
can be seen that vy, increases with slope at a significant
rate through the range of interest. From Equation (3),
when all other errors are zero, the error in y due to an
error or perturbation in the gradient of the slope is given
by

1+ ptand
= =

E(p) 0E(8) . (12)

Since 1 > ptan@, this can be approximated as
. 6
() =~ E(6) (13)

which, for slopes greater than a few degrees, shows that
E(p) will be greater than E(f). Thus, where the actual
measurements are taken, the slope must be very uniform
to minimize E(pu).

DESIGN OF THE SLIDER

Assuming the slider will consist of two runners loaded
with a weight, it is then necessary both to minimize the
air drag and to know precisely how it varies with speed.
The second term in Equation (4) shows that FE(p)
increases as fE(f), or E(u) increases with the uncer-
tainty in f. This can be minimized by reducing both f
and the uncertainty in determining f from tests. While a
skier provides the best control of the skis, use of a skier
presents two major problems, First, the skier’s frontal area
and drag coeflicient are high. Secondly, there is likely to
be poor reproducibility in either transferring wind-tunnel
results to ski slopes or in repeated tests on a given slope.
This is shown in Spring’s (1988) figure 2, where, even at
the higher speeds, there is much scatter in the measured
results, possibly due to slight changes in the skier's
configuration.

Use of a rigid, streamlined sled would allow reduction of
C'p, increase confidence in transferring results from air-drag
tests to ski slopes and improve repeatability among tests.
Wind-tunnel results show rather little experimental un-
certainty when using streamlined objects (Rouse and Howe,
1953; Hoerner, 1965), and these results could he improved
by passing the object through still air. Use of an object of the
shape of an airship hull would greatly reduce Cp and
provide housing for steering and braking mechanisms and
weights. This shape also offers the advantage that, by
adjusting its aspect ratio, it may be possible to minimize
drag in a range of values of Re where there is little
variation in Cp. Cp decreases as the aspect ratio of
rotationally symmetric bodies increases. Thus, elongation
of the airship hull decreases Cp while increasing the value
of Re at which the minimum Cp occurs (Hoerner, 1963).
For example, using a rotationally symmetric body with
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an aspect ratio of 8 and a length of 2 m would give a value
of Cp of about 0.0025 (Hoerner, 1965), which would be
fairly constant over the range of speeds of interest (0.002-
0.003 for any speed greater than 3ms '), From the
second term in Equation (4), E(u) = 0.00085E(f) at a
constant speed of 30ms ', = 0.1, m = 80 kg and 6 =0.
Thus the error due to air drag would be essentially
eliminated and it seems likely that a test could be done on
a slope of constant angle with little effect of air drag. It
should even be acceptable to bypass the wind-tunnel tests.
However, use of a steering fin would increase the drag
and reduce the repeatability among the tests.

SUMMARY

Various attempts have been made to measure the
coeflicient of friction for skis on snow but the results are
not sufficiently accurate. In fact, use of a skier probably
precludes accurate results since the air drag is too large
and the measurements are not repeatable. It is necessary
to use a sled shaped like an airship hull with an aspect
ratio of about 8. This would minimize the drag, increase
repeatability and, for speeds greater than $ms ',
minimize the change in Cp due to the transition from
laminar to turbulent flow. Unlike for the human form, the
variation in C'p would be small enough and the drag low
enough to calculate the drag and bypass wind-tunnel
tests. For a slope of at least 10°, the uncertainty in the air
drag would be small enough to ignore.

Use of a continuously reading speed sensor is necessary
unless the slider approaches its terminal speed. This can
best be achieved by over-accelerating on a steep slope and
then running at the terminal speed on a constant, but not
level, slope that gives the desired speed.

There are other problems to be solved besides those
discussed here. The design and construction of an
unmanned sled presents engineering challenges and its
use on many slopes will be tricky. Since the surface
conditions of the snow greatly affect the friction, the
surface conditions must be controlled or chosen carefully
to ensure that tests are representative of the desired
conditions. It may be difficult to find ski slopes which
have the ideal shape for quick acceleration followed by a
constant speed. While these practical considerations
remain to be solved by experimentalists, the guiding
principles outlined here must be considered to optimize
the chances of achieving reasonable results.
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