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ABSTRACT

Instability of orbits in dynamical systems leading to
chaos has been reviewed briefly. Stability criteria for some
unimcdal mapping which provide various periodic regimes during
the period doubling bifurcations has been discussed in detail.
Stability conditions are also reviewed for standard map (or
Chirikov=-Taylor map), and results obtained for range of values
of the non-~linear parameter appearing in the map have been
studied. Strange attractor has also been discussed.

1. INTRODUCT ION

Studies on nonlinear dynamics and emergence of chaos are
of growing interest at the present time. Chaotic phermomena
have lrought new mathematical ideas and analytical technique.
The subject is fascinating because of its interplay of scierce,
mathematics and technology. In past tw decades scientists of
various disciplines, (e.g. Ref.[1]-[111],[13]1-[19],[54]), have
come to the common conclusion that "a simple system may give
rise to a complex behaviour and a complex system may give rise
to a simple belaviour ™. Almost all nonlinear systems exhibit
chaotic motion and so, chaotic pheromena are a wide class of
natural events found in the physical world. Chaos happens
more frequently than order. Chaos is a science of computer
age. Modern computational technique and elegant mathematics
made chaos to emerge as one of the most exciting and intrigu-
ing areas of science. Therefore, the investigations on chaos
has brought a great revolution to modern scientists. Chaos
has provided tools to explain evolution of dynamical systems
to a vast range of real phenomena.
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Hadamard (898), [33]1, was first to observe sensitive de~-
pendence of chrotic trajectories on initial conditions which
wvas also realized, later on, by Duhem (1906), [34], amd Poin-
care (1908), [361,[31]. Poincare observed that Ya fully det-
erministic dynamics does not necessarily imply an explicit
prediction on the evolution of a dynamical system™. Poincare's
observation again came to light, after a long gap and with
great excitement, by various researchers, ({11,02],[6]-[9],
(123,0131,0(193-(331,(371-1531,[56], (Ref.[381,[40],[41] toge-
ther krown as a KAM theory)) and a theory of dynamical chaos
was born.

Stability of a nonlinear system is very complicated than
in the linear case. Here one has to go through its local as
well as glokal aspects. The:chaotic motion in a dynamical
system is a resmult of dynamic instability of orbits in the
system. Stability of motion of a nonlinear system which con-
tains some parameters, say A, may change in the vicinity of a
fixed point. The fixed point becomes unstable when X attains
a critical value and a 2-cycle is born. This 2-cycle becomes
unstable when A further clanges and attains an another criti-
cal value amd a 4cycle is born and so on. This we see that
whenever a stable motion becomes unstahle a bifurcation st-
arts and a period doubling phenomenon occurs, ([13,02],0[61],
tii1j,r201,0223,0241-{2813,(371,0(45],[481,(511,[52]). The var-
ious critical values of A obey a general rule

Ao~
n

lim 227 . 5 = 4.6692016 @.1)
n+e n+l n

where A stands for critical value of A\ at the nth bifurca-
tion. 6 is known as Feigenbaum's constant. From the above

procedure one may accurately determine that critical value

for A after which the motion turns to be chaotic.

In the present work a krief review has been presented on
instability leading to chaos. As an illustration, the popula-
tion model, also known as logistic mapping, has been used as
a model for the descrete dynamical system.

2. DYNAMICAL SYSTEMS, CHAOS AND UNPREDICTABIL ITY
2.1 Dynamical System:

A dynamical system is that whose evolution from some in-~
itial state, (prescribed), can be described by some rule(s)
in the form of mathematical equations. The evolution of such
a system is best described by the so-called phase space. The
dynamical systems mostly we encounter are nonlinear in nature
whose evolution is controlled by certain parameter which we
have already stated.
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2,2 What is Chaos?

Until now, there is no generally accepted definition of
chaos. lbwever, as it appears through recent literatures, (eg.
Ref.[(1],[2],[6]1-L9],013],(16],[19]-[32] etc.), chaos can be
well under stood from the following ideas:

i) Chaos is an effect of instability of orbits in a dynami-
cal system.

ii) The phernomenon related to the occurance of randomness
and unpredictability in a completely deterministic sys-
tem is called chaos.

iii) Irregular behaviour in koth conservative and dissipat-
ive systems is termed as chaos.

iv) Chaotic behaviour simply looks markedly more irregular
than regular behaviour.

v) Chaotic trajectories slow sensitive dependence on ini-
tial conditions i.e., chaotic trajectories show an ave-
rage exponential divergence of initially nearby trajec-
tories.

vi) Chaos describes a situation where typical solutions br
orbits) of a differential equation (or typical evolution
of some other model determining deterministic evolution)
do not converge to a stationary or periodic function bf
time) but contime to exhibit a seemingly unpredictable
behaviour.

vii) Chaos can be thought as a new regime of nonlinear oscil~
lations, as overlap of resonances, as accumulations of
many instabilities, etc.

viii) Chaos implies that the kmowledge of initial data is in-
sufficient for long time prediction.

2.3 Unpredictability

The instability, non-deterministic behaviour and chaotic

motion are consequences of the results of non-accurate predi-
ctability of the evolution of a dynamical system. Accurate
prediction of the evolution of a dynamical system is extreme-
ly difficult as it depends on the facts, [65], that how accu-
rately (@) the principles of dynamics describing such evolu-
tion be formulate i.e. the laws governing such evolution,
(b) the mathematical model be established ?i.e., the differ-
ential equations established how accurately representing the
system? (c) the approximation of the solution be made ? (d)the
initial conditions and other numerical parameters be used?

The alove conditions are very important because a mimi~

te error may cause a perfectly deterministic periodic motion
to a chaotic one and vice—=wersa, Szebehely ([611-[631]).
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2.4 Sensitive Dependence on Initial Conditions

Accuracy in initial conditions is a very important fac-
tor because the chaotic trajectories show sensitive depende-
nce on the initial conditions,[66]. This means that for a
small change 6x (0) in the initial condition x ) xb) »x )

+ 6x (o), the point x (t) at time t may change asx(t) + xTt)

+ ch (t), such that dx t) ~ &x ©)eh ,where A iscalled the
Lyapunov characteristic exponent (L.C.E.). Lyapunov expone-
nts are tools to determine whether or not the system is cha-
otic. The exponential convergence or divergence of initially
nearby trajectories provide a conclusive way to distinguish
between torus and chaos by estimating Lyapunov exponents A.,:
A < 0 means stability whereas A > 0 stands for unstable

behaviour and if Amax > 0 the system is defined to ke chao-

tic, [52], and in this case a deterministic motion turns to
be a chaotic one (Fig. 1).

|
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Fig. |

3. BIFURCATIONS: STABILITY OF FIXED POINTS

The study of bifurcations has developed into a major
area of mathematical and applied research, Jacobi ([ 56]) has
used the term "branching off" for bifurcaticn which is due to
Poincaré,[ 57]. The term bifurcation mostly now applied to
situations involving (i) the study of the change in the mimber
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of fixed points as the control parameters A are varying amd
(ii) the dynamic studies concerned with the change in the
topology, (the phase portraits), as A are changing. By chang-
ing A a bifurcation may occur at any time and the phase port-
rait may change to a topologically non-equivalent portrait.

Let us consider a descrete dynamical system whose evo-
lution is represented by the deterministic map

x =F(xn) 3.1)

n+l

The equil ibrium value x*, for which x* = F &*), is said to be
the fixed point of F. Then, x* is said to be stable if the
sequence of iterates xl,xz,...,xn,... of F converges to x¥*,

i,e. lim Xy = x*, B.2)
k-)oo
for all initial values x (o) of x, or alternatively, if
X - x*
] * = n-+l - dF
IFra, x| -—x:—_—;;- s 2 <1, 3.3)
and x* is unstahle if | g%,—; | > . G.4)

Figures 2(a) and 2(b) respectively representing stable and
unstable fixed points.

Xn.1: F(Xn)

)

=

x
-
¥ — -
X
x
3

Figure 2 @): Stable fixed point (Attractor)
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Xne1=F (xp) -

l Xns1= Xn

——

x X2 Xn
olf
1 x* is unstable. l-d——,-,-|>1
x

Figure 2 (b): Unstable fixed point

A stable fixed point is termed as an attractor because
the points in its neighbourhood approach to it when iterated.

As stated earlier, when the controlling parameters A of
F vary and attain some critical value, say ),, stability of
x* is disturbed and bifurcation starts and we observe a per-
iod doubling scenario, (631,0113],012],{243-{303,0(371],[511],
[52]), of which a periodic pattern of period p or a p-cycle
is defined by

= X.,

xi+p i Xl # X4y for all k < p, (3.5)

and i greater than certain N.
Thas, p = 1 corresponds to the fixed point x*. An attr-

actor x* is not only the isolated point, there might be p-
point in p-cycle, xI,x’z',...,x; such that

H
*
1]

F&Y), i=1,2,...,p-1

]
%
It

%*
F(xp) (3.6)

The set {xf, xz,...,x;} is called a p-point limit cycle.The
p-cycle is stable if
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P
| T P, x;.‘.)l < 1 , 3.7)
i=1

where the chain rule of differentiation has been used. That
is, the p-point limit cycle is stable if each x’i in {xi‘,x’i,..
ceer x; is a stable fixed point of Fb

If the set {x';} , 1=1,2,...,p is a global attractor
then for almost every initial point x_, the sequence xn=F (n)

(xo) approaches the sequernce xf,xz, cen ,x;,xi ,x"é, ces ,x’l"1 Poes

4. INSTABILITY LEADING TO CHAOS

The sequence of critical values of A where bifurcations
occur obey the general rule (1.1). It has been observed that
the limiting value. § in (1.1) approaches by third or fourth
bifurcation. S by changing A one may accurately determine
that critical value of X after which the motion turns to be
chaotic.

To illustrate chaotic behaviour, Feigenbaum and many
others ([241-(281,[45], etc.) have used population model, [67],
vhich is also known as logistic mapping and is written as

flix) = xx 1=x), 4.1)

x = 0and x = 2‘-;‘-—lare fixed points of £. The period two poi-
nts of £, including the fixed points of f, are given by the
roots of the equation

£2x) -x = 0

or [f&)=x] [A%x2 = A0+ 1)x + O + 1)1 = o. 4.2)

Thus, the period two points of £ (not fixed points of f) are
given by

A+l + /Y (A=3) O FH)
2X

and

(A+l) - yR=3VO0H)
2A

w if (i) A < 3, there are no such real points,

(ii) » = 3, there is exactly one point, the fixed point
of £

and (iii) X > 3, there are two different points.

Thus a point two or 2-cycle is created as A increased through
3. Also, note that the fixed point is attracting for A < 3 and
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repelling for X > 3 and the attracting nature is passed on
to the period two cycle which exists only for A > 3 a is
attracting. We can illustrate this by plotting f and £4 aga-
inst x for various values of A, (above, below and equal to 3)
Figure 3 (a) and 3 (b) are such plottings.

F(x) F2(x)

./ . X

[
|
{
|
|
!
|
|
|
t
|
|

L » » »
X1 xXp=Xx2 X X1 Xp=x2Xx X

Figure 3 (@) ard 3 (b)

As ) increases further, the 2—cycle becomes repelling
and an attractive 4-cycle is born; then a 8—cycle and so on
and we observe the period doubling scenario. For example
= 2,9 gives an attractive l-cycle
= 3.1 gives an attractive 2-cycle
3.5 gives an attractive 4—cycle

3.56 gives an attractive 8-cycle

> > > >
[

3.566 gives an attractive l6—cycle

i.e., there is a set {Ac lof critical values of A sich that if
A < A< )‘c there is” a stable per iod 2n-cycle and

n n+l
lim A _ = Ao s (finite). In the control phase space the ab-
n+o n

ove period douhl ing bifurcations look like Fig. 4. The +
sign for branches indicate that each bifurcation point x )

can be associated with its kranch by a + =ubscript, (e.g.
(n) = +, +, =, +, =, =)
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Figure 4:

It has been observed that beyond the critical values of
for which motion show period doubling, chaotic motion exist
in a kand of parameter values. When these bands are of finite
width, periodic windows be developed for the parameter within

vhich the motion may again undergo period douhling bifurca

t-

ion and again leading to chaotic motion, (@61]1,[111,[12],[511],

[52]). Thus in the alove example as A increases to 4, at

various values of A, an attractive g-cycle is born followed

immed iately by period doubling sequence of attractive 2q,
8g,... cycles.

¥hen XA > 4, then there is a cantor set J in [0,1]
such that (1) x € J iff £ &) ¢ J, (i) fRK) + ~>» if x 4
and (iii) £ has a chaotic action on J.

Therefore, we can conclude that the period doubling

4q,

J

phenomenon is the most celelrated scenmario for chaotic motion.

In case of the logistic mapping [45], written as X,

1=~ )\xi__ » the period doubling scenario appears at critical

values of X given by

p=1, 0< A< A_ = 0,75
€1
p=2, A, <XA<i_  =1,25
€1 €2
p=4, A, <A<\, =1.3680%9
Cz C3
P =8 e, 2 e 13006
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which quickly converges to an aperiodic orbit at n - «, the
value A _ = 1.401155... In the range (A _,2) there exists an

infinite mumber of periodic windows immer sed in the lkackgro-
und of aperiodic regime. Figure 5 represent bifurcation dia~-

. 2
gram for the mapping X 4 = A =X Ref. [371],0[681].

= \ / ]
04 \

"l'/’\\ /
0.0F \ n
\\
-04 1 I L 1 1 1 ! 1
20 -5 -0 -05 Q00 05 10 15 20
A e

Figure 5: Bifurcation diagram for equation: x a = C—xrzl .
From Grelog, Ott and Yorke (1982) D

The problem of turhulence is a long standing phenomenon
of physics and as it appears in recent literature, ((22],[25]
(271,£501,0511,052]3,0(55]), the chaotic phenomena are relevant
to the onset mechanism of turbulence. When the Reynold's mum-
ber R is small emough, the fluid flow is laminar and statio-
ary corresponding to a suitable fixed point in its phase sp-
ace. Hwever, when R is increased to a certain critical val-
ue R, the fixed point is no more stable, f(r of attracting
nature) and a stable limit cycle closed around the fixed po-
int be established. When R again be increased to anmother
critical value Rc , the limit cycle loses its stability amd

a stable 2--'I’orus,2 fan attracting closed tube), around the un-
stable 1imit cycle be :established and so on. Landau and Hopf,
(£581-[60]), identified the final state of this infinite pro-
cess with an infinite mumber of incommensurable frequencies
as fully turhulent. This is known as Landau~ibpf route to
turbulence. Later on,((503,[51]), it has been showed that
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three consecutive bifuractions are emough to have erratic
motion by interweaving trajectories attracted to a low dime-
nsional manifold in the same phase space called strange att-
ractor. The motion on strange attractors be identified with
turhulence. Thus, in the scheme we have,

Fixed Point -+ Limit Cycle + 2-Torus -+ Strange Attractor
Chaos

This concludes. that the quasiperiodic motion on a.2-Torus
may have loose stability and may give birth to chaos direct-
ly.

5. STRANGE ATTRACTOR: (€ 233,021,[71,[241-[281,[561)

As stated earlier a stable fixed point is an attractor.
An attracting 2-cycle is the stahle tw=-period cycle and, in
general, an attracting p-—cycle means stable p-~period cycle.

We say that the descrete dynamical system posses chaos
if it has some strange attractor. Strange attractors are math-
ematical objects but computers have given them l1ife and draw
pictures of them. A strange attractor is first an attractor
which consists of an infinity of points in the plane of m-di-
mensional space. These points correspond to the state of a
chaotic motion. We call it "strange" as it has the structure
of a fractal set. The intersection of this object with a
straight line results in a "Cantor Set". It has an infinite-
ly nested structure which can be seen in each repeated minor
magnification.

A strange attractor is defined for a map £ as an infi-
nite point set € sach that (i) £Q) = @ , (ii) £ has an or-
bit which is dense in @ and (iii) '@ has a neighbourhood N
consisting of points whose orbits tends asymptotically to
i.e., lim £@)(N) < @ . Orbit in or near such limit set be-

nreo

have in an essentially chaotic manner.

Hérnon's attractor [7] and lorenz's attractors [ 23] are
examples of strange attractors.

6. CONCLUDING REMARKS

What has been revealed through this lrief review indi-
cates that to study nonlinear phenomena in more realistic
way one must use the chaotic theory. Finally, let us recall
the statement of Ian Stewart,[54],that chaos is (i) exciting
as it provides tools for simplifying complicated phenomena,
(ii) worrying because it introduces new doubts about the tra-
ditional model building procedure, (iii) fascinating for its
interplay of mathematics, science and techmology and {iv)
beautiful, ablove all.
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