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ON ALEXANDROFF BASE COMPACTIFICATIONS 

J. S. WASILESKI 

In [13] we characterized the completely regular Hausdorff spaces as the 
class of spaces whose topology is generated by an Alexandrofï base. A space 
may have more than one Alexandrofï base and each such base s/ determines 
a Hausdorff compactification a^X. It was shown in [13] that each Wallman 
compactification œ&X where 3? is a normal base for X (see [3] for appropriate 
definitions) is obtainable as an Alexandrofï base compactification. Recent 
works ([1; 4; 7; 8, and 9]) have shown that many compactifications are 
Wallman and consequently of the type a^X. It is possible that all compact 
Hausdorff extensions can be obtained this way but we have not been able to 
settle this question. 

The purpose of the present paper is to characterize those compactifications 
which are Alexandrofï base. We shall do this by relating the base srf to the 
proximity and uniformity aspects of the compactification it determines. In 
addition, we give a characterization directly in terms of the embedding of X 
in one of its compactifications; this yields necessary and sufficient conditions 
for the space a^X to be Wallman and also simplifies some previous results. 
We begin by recalling the necessary results from [13]. 

Definition. Le t J^ be a family of subsets of a set X. For A, B C X we define 
A < B (rels/) if and only if there exist G,H G J / with A C G, X - B C H, 
and G H H = 0. 

The relation A < B (rels/) is read "A is well-inside B relative toJ^Z". When 
no confusion can result, reference to the family<$/ will be dropped. 

Definition. An Alexandroff base for a space X is a base, stf, for the open subsets 
of X satisfying: 

(1) stf is closed under finite unions and intersections, (i.e.s/ is a ring of sets) 
(2) If p e G Ç s/, then p £ H < G for some H G se'. 
(3) HGyH e^f with G < H, then G < U < H for some U G J / . 
By a regular J^-filter we mean a non-void set a C^/ satisfying: (l) no 

member of a is empty. (2) a is closed under finite intersections. (3) if G 6 o" 
and H £ s/ with G C H, then H £ v. (4) If G £ a, then H < G for some 
H G o". A maximal regular J^-filter is called an s/-cluster and the set of all 
^-clusters is designated by a^X or merely aX when the base reference is 
unnecessary. 
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T H E O R E M 1. A space X is a completely regular Hausdorff space if and only if 
its topology is generated by an Alexandroff base. Moreover, if s/ is such a base 
for Hausdorff X, then for each G G se, define G* = {a G aX : G G a); 
{G* : G G sé\ is then a base for a compact Hausdorff topology on aX which con
tains a dense sub space homeomorphic with X. 

Proof. T h e proof can be found in [13]. We point out t h a t if j / * denotes the 
ring in aX generated by {G* : G G S$\, then J^/* is an Alexandroff base for aX 
and for U, V G s/* we have U < V (rel j / * ) if and only \i U C\ X < V C\ X 
(rel<$/) ; moreover the trace in X oisé* is p r e c i s e l y ^ . 

1. P r ox imi t i e s . I t is well-known (Smirnov [6]) t ha t there is a one-to-one 
correspondence between the class of Hausdorff compactifications of a com
pletely regular space and the class of proximities compatible with the topology 
of the space. Our immediate aim is to establish the exact relationship between 
the Alexandroff b a s e J ^ and the proximity on X associated with a^X. 

By a (separated) proximity on X is meant a relation b between the subsets of 
X satisfying: 

( P I ) AbB implies Bo A. 
(P2) Ab{B U C) if and only if AbB or AbC. 
(P3) {a} b {b} if and only if a = b. 
(P4) 0j(X. 
(P5) AJB implies there exist C, D C X so t h a t C U D = I , A$C and BJD. 
Following Smirnov one defines A <<C B if and only if Af(X — B); the relation 

<<C is called the subordination associated with b. A proximity is compatible with 
a topology if the topology consists precisely of those sets G CZ X for which 
p G G implies {p\ « G . T h e subordination relation satisfies: 

(51) A«B i m p l i e s ^ C B. 
(52) i « ( S H C) if and only if A « B and 4 « C. 
(53) a 5* ft implies {a} «X - {b). 
(54) 0«A for every i C I 
(55) A « 5 implies 4 « C « 5 for some C CX. 
(SI) thru (S5) are sufficient to characterize the subordination of a proximity 

and can be used as an al ternat ive approach to proximity s t ructures ; we shall 
find this approach more convenient for our purpose. 

A cover, 0, in a proximity space is called a p-cover (see Engelking [2]) if and 
only if there is a cover a so t ha t A G CL implies A « B for some B G j3. If all 
the elements of a cover belong to a certain family s/, then we call the cover 
an J^/-cover. In particular, we introduce the concept of a regular ja/-cover. 

Definition. Lets/ be a family of subsets of X. An J^-cover j3 is called regular 
with respect to S$ if and only if there is an J^-cover a so t ha t G G a. implies 
G < H (rel J^/) for some H G 0. a is then said to well-refine /3. 

Definition. Let 5 be a proximity on X and <C its associated subordinat ion. 
By a frase for ô we mean a ring, ja/, of open subsets of X satisfying: 
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(1) If G, H e s/, then G < H if and only if G « H. 
(2) If A, B C X, then A « B if and only if there are G, H £s/ with 

A CG < H CB. 
For any covering y of X and any set A C X, we use the notation 7* (̂ 4) to 

represent U {G G 7 : G P\ 4̂ 9^ 0}. The next theorem provides great utility 
in dealing with proximity bases. 

THEOREM 2. Lets/ be a base for the proximity ô on X. Then for subsets A and 
B of X, one has the following mutually equivalent statements: 

(1) A « 5 if and only if A C G « H C B for some G, H ^s/. 
(2) A « 5 if and only if A « G « B for some G es/. 
(3) A <£B if and only ifA<£G<KH<£B for some G, H £s/. 
(4) A <^B if and only if y* (A) <3C B for some finite regular s/-cover y. 
(5) AôB if and only if every finite regular s/-cover contains a member which 

meets both A and B. 
(6) AôB if and only if each G G s/ either AôG or BôX — G. 
(7) AôB if and only if A and B meet every member of a for some a G a^X. 
(8) A\B if and only if A CG, B CH, G^H for some G, H es/. 
(9) A\B if and only if A « G, B « H, GfH for some G, H Ç J / . 

(10) AfB if and only if there is a finite regular s/-cover no member of which 
meets both A and B. 

(11) A§B if and only if there is a regulars/-cover {G, H) with AfG and BfH. 
(12) A$B if and only if there is a finite regulars/-cover y so that 7* {A )fy* (B). 
(13) A$B if and only if there areG^^sé (i = 1, 2, 3, 4) with A C Gx < G2, 

B C G3 < G4 and G2r\G, = 0. 

Proof. The proof of this theorem, although tedious, follows directly from the 
definitions given and the properties (PI) thru (P5) and (SI) thru (So) so we 
shall not present it here. We remark, however, that if 7 is any finite s/-cover 
satisfying (4) then there is a finite regular J^Z-cover also satisfying (4). In addi
tion, condition (13) leads to a neat rephrasing of the definition of a proximity 
base by noting that two members of the base are far apart if and only if they 
are well-inside disjoint members of the base; hence, two arbitrary subsets are 
far apart if and only if they are separated by members of the base which are 
far apart. 

LEMMA 1. Let Y be a compact Hausdorff space ands/ an Alexandroff base for Y. 
Then for any G, H £ s/ the following are equivalent: (i) G < H. (ii) G C H. 
(iii) G « H. 

Proof. If G < H, let U, V G s/ so that G C U, Y - H C_V} and U C\ V = 
0. Then GCUCY-VCHznd since Y - V is closed G C H. 

If G C H, then G and Y — H are disjoint closed sets in a compact space; 
such a space has a unique proximity structure defined by AfB if and only if 
I n S = 0 (see Smirnov [6, page 11],). Thus G$Y — H and it follows that 
G«H. 
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Finally, if G <& H then G and Y — H are disjoint compact subsets in a 
Hausdorff space and can therefore be separated by disjoint members of any 
basic ring of open sets; thus, G < H. 

THEOREM 3. Let se be an Alexandroff base for X and 8 the proximity on X 
associated with the compactification a^X. Then se is a proximity base for 8. 

Proof. Let G, H £ s/ with G < H; for some U £ s/ we have G < U < H. 
By lemma 4, page 367 of [13], G C U* (closure in <xX)\ moreover, for some 
F Ç j / , I - F C F a n d [/ C\ V = 0. Thus U* H F* = 0 and we now see 
that V* COLX - U*, hence (X - H) C aX - ET», therefore G C\ (X - H) 
= 0 so G « H. Conversely, if G « H, then G H (X - H) = 0 (closures in 
a l ) , thus there are U, V G J / * with G C G C I 7 C ^ C F C « I -
(X — H). By Lemma 1, £/ < F (rel J^*) and from our observation in the 
proof of Theorem 1,G C U Pi X < V C\ X ÇHjrels/), thus G < H. 

Now iiA,BCX with A «B then i H ( I - 5 ) = 0 (closures in aX) so 
there are sets U, V G j / * with 1 C C/C Î / C F C a l - (X - 5 ) ; again by 
Lemma 1 and our observation in Theorem 1, this yields AC.Ur\X<VC\ 
X C B. Since s/ is a ring of open sets the proof is complete. 

THEOREM 4. Ifs/ is a base for the proximity 8 on X thens/ is an Alexandroff 
base on X and 8 is exactly the proximity on X associated with a^X. 

Proof, sé is a ring of open sets by definition. If U is any open subset of X 
and peU then {p} « U so there are sets G, H £ s/ with p £ G < H C U; 
this shows that stf is a topological base and also satisfies condition (2) of 
the definition of Alexandroff base. That stf is densely ordered by the well-
inside relation follows at once from condition (2) of Theorem 2 and the fact 
that < and <<C agree o n j / ; thusJ^/ is an Alexandroff base. 

To see that 8 is the proximity on X associated with a^X we employ (7) of 
Theorem 2 which shows that A8B if and only if Â C\ B ^ 0 (closure in a^X). 

By combining the results of Theorems 3 and 4 we arrive at the following 
characterization of Alexandroff base compactifications: 

(I) A compactification, Y, of X is an Alexandroff base compactification of X 
if and only if the proximity on X induced by Y has a base. 

2. Uniformities. We now focus our attention on the relationship between 
Alexandroff bases and precompact separated uniformities (see e.g. Engelking 
[2] for basic definitions). A {separated) uniformity on a set X is a filter, °U', on 
XXX satisfying: (i) E~l 6 % whenever E £ <%. (ii) Pi <% = A (A denotes 
the diagonal in I X I ) , (iii) Whenever F £ ^ , then E o E C F for some 
E £ °tt. We shall drop the adjective "separated" throughout. 

For A C X and E G <% let E(A) = {x G X : (a, x) Ç E for some a Ç 4 } . 
A uniform cover (relative to %) of X is any cover which is refined by a cover 
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of the form {E(x) : x £ X} for some E £ °l/\ the family of uniform covers will 
be denoted by ^ and satisfies: 

(UC1) If p is refined by some a ^ , then 0 Ç # . 
(UC2) If a, j8 6 ^ , then some 7 <E ^ refines both a and p. 
(UC3) Every cover in *€ is star-refined by a cover in (if. 
(UC4) Whenever x T* y} there is a cover in ^ no member of which contains 

both x and y. 

Any class of covers satisfying (UC1) thru (UC4) is the class of uniform 
covers of a uniformity on X. A uniformity is precompact if and only if every 
uniform cover has a finite subcover and it is known (e.g. [5]) there is a one-to-
one correspondence between compactifications of a space and the precompact 
uniformities compatible with the topology of the space. Thus there is a bi-
jective correspondence between precompact uniformities and proximities. A 
direct connection is given by any of the following where °tt is a precompact 
uniformity and 8 its associated proximity: 

(UP1) AbB if and only if E(A) C\ E(B) ^ 0 for every E £ <%. 
(UP2) AbB if and only if E(A) H B ^ 0 for every E ^ °lt. 
(UP3) AJB if and only if E C\ (A X B) = 0 for some £ G <2T. 
(UP4) AfB if and only if y*(A) f~\ y*(B) — 0 for some uniform cover y. 
(UP5) i4 « B if and only if E(A) C 5 for some E £ <2f. 
(UP6) 4̂ <3C -B if and only iî y*(A) C. B for some uniform cover y. 

Definition. Let ^ be a precompact uniformity (in the covering sense) on X. 
A ring of open sets, s/, is a ôase for ^ if and only if 

(1) if G, H £s/ with G < H, then for some finite regular S-cover 0, 
0*(G) C # ; a n d 

(2) 7 G ^ if and only if y is refined by a finite regulars-cover. 

THEOREM 5. If s/ is a base for the uniformity ^ on X and b is the proximity 
on X associated with *$, thenstf is a proximity base for b. 

Proof. By (2) in the above definition, every finite regular S-cover is uniform, 
thus if G, H <E se with G < H, then condition (UP6) yields G « H. Now iî A, 
B C X with A « B, let D C X so that ^ « D « 5 . By (UP6), let 71, 72 £ ^ 
with 71*(A) C -D and 72*(D) C £ . Now (2) yields the existence of finite 
regulars-covers /3i and /32 refining 71 and 72 respectively; let a\ and a2 be 
finite S-covers which well-refine 0i and £2 respectively. We then have A C 
ai*(A) < fa*(A) C 7i*G4) C D C «2*(P) < fa*{D) C 72*(Z>) C B. Since 
S is a ring and a\ and a2 are finite, this yields A C OL\*{A) < a2*(D) C -8. 
Hence S is a proximity base. 

THEOREM 6. Let s/ be a base for the proximity b on X and let *& denote the 
precompact covering uniformity on X associated with b. Then se is a uniform base 
forV. 

Proof. *£ is precisely the class of covers of X which are refined by the finite 
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^-covers of 5 (see Engelking [2]) ; hence, if G, H £ s/ with G < H then G « H. 
T h u s for some 7 ^ , 7*(G) C H. Now let ci = [A{ : 1 ^ i ^ w} and c2 = 
{Bi : 1 ^ i ^ n} so t h a t A{<^ B{ for each i and c2 refines 7. Since J^/ is a 
proximity base there are sets Gu Ht Ç J / with A i C G< < H^ C Btîor each i. 
T h e family 0 = {J^^ : 1 ^ i ^ n} is thus seen to be a finite r e g u l a r s - c o v e r 
with j3*(G) C -H". This a rgument also shows t ha t each cover in ^f is refined by 
a finite r e g u l a r s - c o v e r , h e n c e S is a uniform base for ^ . 

Theorems 5 and 6 show the equivalence of proximity bases and uniform 
bases and we therefore have a characterizat ion of Alexandroff base compactifi-
cations in terms of the associated precompact uniformity: 

( I I ) A compactification Y of X is an Alexandroff base compactification if and 
only if the precompact uniformity on X induced by Y has a base. 

3. Traces a n d enve lopes . While the characterizat ions derived in §1 and §2 
are useful, it is often convenient to have a direct connection between a given 
compactification, F, of X and Alexandroff bases in X. We provide such a 
connection in this section. 

Definition. Let X be a dense subset of Y and G an open set in X\ the set 
Y — (X — G) (closure in Y) will be denoted by Y(G) and, following T a m a n o 
[10], called the envelope of G in Y. 

I t is easily shown t h a t Y(G P H ) = Y (G) P\ Y(H) and t ha t Y(G) is the 
largest open subset of Y whose trace in X is G. 

LEMMA 2. Let Y be a compactification of X and Se a ring of open sets which is 
a base for Y. Then the ring generated by {Y(G Pi X) : G G âë) is also a base for Y. 

This result can be found in [12] and we have recently discovered t h a t it had 
previously been shown by F . J. Wagner in [11]. 

Proof. Let U be an open set in Y and take y G Y. Then there are sets G and 
H in 38 satisfying y G H C B C G C U; we claim t h a t Y(H H X) C G. By 
the definition of Y (H C\ X) this conta inment is clearly equivalent with 
Y - G C X - H. Now if z G Y - G, then z G Y - B and for any open set 0 
with z £ 0, 0 C^\ Y — B is a. nonvoid open set in Y and consequently 0 P \ 
( Y - B) C\X y* 0. Since X - B C X - H, it follows t ha t 0 C\ {X - H) ?± 
0 thus z £ X - H. 

T h e lemma shows t h a t a basic ring in a compact Hausdorff space may always 
be taken as the ring generated by the envelopes of its traces in a dense subset. 
We shall say t ha t such a ring is envelope generated. In addit ion, Lemma 1 
shows t h a t any basic ring of open sets in a compact space is an Alexandroff base. 

T H E O R E M 6. Let Y be a compactification of X ands/* be an Alexandroff base 
in Y. Lets/ denote the trace ofJX?* in X and assume thats/* is the ring generated 
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by { Y (G) : G G s/\ and suppose that for ail G, H G s/ G < H if and only if 
Y (G) C Y (H). Then s/ is an Alexandroff base in X and Y and a^X are equal 
compactifications of X. 

Proof. The trace of a basic ring is a basic ring. Now if p G G G s/, then 
P G G C Y (G) € s/* so for some H G s/*, p £ H < Y (G) (relj /*). It follows 
that j> G g H K G (rel J / ) . Now suppose G, H £ s/ with G < H (rel J / ) 
Then F(G) C F ( # ) and by Lemma 1, F(G) < Y(H) ( rel j /*) , hence there is 
Ues/* with F(G) < U < Y (H) (rel J / * ) and we have G < U C\ X < H 
(rel s/) with [ / P i l Ç J^. This shows that J / is an Alexandroff base. 

Now for any A and B in X we have ^4 F H 5 F = 0 if and only if there are sets 
G, H, U, V £ s/* with l r C G < ^ (rel J / * ) , F C t / < F (rel J / * ) , and 
H C\ V = 0 if and only i f i C G H K i f n i (rel J / ) , J3 C J 7 H_Z < 
VC\X (rel J / ) and (H C\ X) C\ (V H X) = 0 if and only if 4 H B = 0 
(closure in a J ) . This shows that F and a^X are the same compactification 
since they induce the same proximity on X. 

To yield a characterization, we observe that if s/ is an Alexandroff base on 
X, then for each G est?, G* = aX(G); clearly G* ÇaXjG). For the reverse 
containment, let a G a^X - (X - G), then a & X - G so H C\ (X — G) = 0 
for some H £ a but this means i J C G so G G o- hence a- G G*. 

Combining this observation with the above theorem yields: 

THEOREM 7. F w aw Alexandroff base compactification of X if and only if Y has 
an envelope generated basic ring, s/*, satisfying G < H (rel s/) if and only if 
Y(G) C Y(H). 

It is clear from the arguments presented that we also have 

COROLLARY 1. If Y is a compactification of X and se is an Alexandroff base 
in X then Y and a^X are equal compactifications if and only if,s/*} the ring in Y 
generated by { F'(G) : G G s/) is a base for Y such that G < H if and only if 
Y{G) C Y(H). 

The theorem also provides the following useful results. 

COROLLARY 2. Let Y be a compactification of X which has an envelope generated 
basic ring se*. If G, H G s/* with X = (G H X) \J (H Pi X) implies Y = 
Y {G C\ X) yj Y(H C\ X), then Y is an Alexandroff base compactification of X. 

Proof. Lets/ be the trace ois/* in X. If G < H ( rels/) , let G C U, X -
H C V, and U H V = 0. Then {H, V} covers X so { Y (H), F( V)} covers F and 
it follows that Y (G) C Y(U), Y - Y{H) Ç Y(V), and F(£/) H Y(V) = 0 
so F(G) < F(ff) (rel J / * ) . Therefore F(G) C Y (H). 

COROLLARY S. If a compact Hausdorff space Y has a basic ring of regular open 
sets, then Y is an Alexandroff base compactification of each of its dense subspaces. 
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Proof. Let se be such a ring, then for any dense subset X and any U 6 s/, 
U = Y(Ur\X). Moreover, if X = ( i n G ) U ( i n H) for any G, H g j / f 

then F = ( i n G ) U ( i n H ) = G U Ë But G \JH£s/, therefore 
G \J H is regular; since F is also a regular open set F = G U 77 if and only if 
F = G U 27. Now just apply Corollary 2. 

4. Conclusion. Corollary 3 is not surprising, for spaces possessing basic 
rings of regular open sets are regular Wallman spaces (see Steiner [7]) hence 
are also Alexandroff base compactifications of each dense subspace. The proof 
presented here is somewhat easier than Steiner's. 

Corollary 2 is more interesting since it in fact characterizes those Alexandroff 
base compactifications which are Wallman; this can be seen by noting that 
the complements of the members of a base satisfying the condition in Corollary 
2 form a normal base with the trace property given by Steiner in [7] and con
versely. The condition in Theorem 7, however, seems to be weaker than the 
requirement that base members cover X if and only if their envelopes cover F. 
One sees the difference more clearly by comparing our notion of a uniform base 
with the uniform base defined in [9]. Our definition requires only the regular 
finite covers by base members to be uniform whereas in [9] it is necessary that 
all finite base covers be uniform. It may be therefore that there are Alexandroff 
base compactifications which are not Wallman. 
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