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1. Introduction. Simons [5] has proved a pinching theorem for compact minimal
submanifolds in a unit sphere, which led to an intrinsic rigidity result. Sakaki [4] improved
this result of Simons for arbitrary codimension and has proved that if the scalar curvature
S of the minimal submanifold M" of Sn+P satisfies

/ I (W-1) (2H 2 + « - 8 )

2(«2 + n - 3)

then either hi" is totally geodesic or S = 2/3 in which case n = 2 and M2 is the Veronese
surface in a totally geodesic 4-sphere. This result of Sakaki was further improved by Shen
[6] but only for dimension n =3 , where it is shown that if 5 > 4 , then M3 is totally
geodesic (cf. Theorem 3, p. 791).

Let M" be a compact minimal submanifold of the unit sphere Sn+P with normal
bundle v. We denote by Rx the curvature tensor field corresponding to the normal
connection Vx in the normal bundle v of M", and define /CX:M—> R by

Kx= 2 [Rx(ei,ej,Na,Nfi)]
2,

where {eu... , en} is a local orthonormal frame on M" and {Nu... , Np} is a local field of
orthonormal normals. We call the function Kx the normal curvature of the minimal
submanifold M". In this paper we prove the following result.

THEOREM. Let M" be a compact minimal submanifold of S"+p. If the normal curvature
Kx, the scalar curvature S and the square of the length of the second fundamental form a
of M" satisfy

Kx<a, 5>(n-l)2,

then M" is totally geodesic.
This theorem can be considered as a partial generalization of the result of Shen [6,

Theorem 3]. However, it will be an interesting question whether the condition Kx < a is
redundant and Shen's result can be extended beyond dimension 3.

2. Preliminaries. Let M be a minimal submanifold of the unit sphere Sn+P, with
normal bundle v. Then the second fundamental form h of M" satisfies

(Vh)(X,Y,Z) = (Vh)(Y,Z,X) = (Vh)(Z,X,W), X,Y,Ze%(M), (2.1)

where 3?(A/) is the Lie algebra of smooth vector fields on M and (V/i)(Ar, Y, Z) is defined
by

, Y, Z) = V^(K, Z) - h(VxY, Z) - h(Y, VXZ),

where Vx is the connection defined in v and V is the induced Riemannian connection
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with respect to the induced Riemannian metric g on M". The second covariant derivative
(V2h)(X, Y, Z, W) of the second fundamental form is given by

(V2h)(X, Y, Z, W) = Vx(Vh)(Y, Z, W) - (Vh)(VxY, Z, W)

- (Vh)(Y, VXZ, W) - (Vh)(Y, Z, VXW), X, Y,Z,We %{M\

We have the following form of the Ricci identity

(V2h)(X, Y, Z, W) - (Vzh)(Y,X, Z, W) = ̂ (X, Y)h(Z, W) - h(R(X, Y)Z, W)

-h(Z,R(X,Y)W), X,Y,Z,W e%(M), (2.2)

where R± and R are the curvature tensors of the connections Vx and V respectively. Since
M" is a minimal submanifold for a local orthonormal frame {eu... ,en} of M" we have

(2.3)

J(V2/I)(^,yje,,e,) = 0.
1=1

Using the Ricci tensor Ric, we define the symmetric operator R* by

Ric(*, Y) = g(R*(X), Y), X,Ye %(M).

Then the Gauss equation gives

AhiY,Z)X = R(X, Y)Z + AhiX,Z)Y - g(Y, Z)X + g(X, Z)Y, (2.4)

R*(X) = (n - \)X - 2 Ah(tiJCW X,Y,Zs%(M), (2.5)
/=i

where AN, JVev, is the Weingarten map with respect to the normal N, satisfying
g(ANX, Y) = g(h(X, Y),N). We define

\\Ah\\2=2\\Ah(ei<ei)ek\\
2, (2.6)

Now we prove the following lemma.

LEMMA. Let M" be a minimal submanifold of S"+p, then for a local orthonormal
frame {eu... , en}, we have

er, eh Ah^Ci)ek) = -*+ \\Ah\\
2 + \KX - ^ g(Aaeh

ij.k ij.a,P

where Aa^AN<x and {Nu... , Np} is a local field of orthonormal normals.

Proof. Using the Ricci equation

Y), X,Y e X(M),NUN2 e v,
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we get

2 £
= 2 S g(AaehA0ej)2-2 £ g(AaAeehej)g(ApAaehej), (2.7)

ij.a.0 'J.a.P

since 2 g{Aaej,Apei)
2 = £ g(Apej,Aaej)2 which follows from the symmetry of Aa

ij.a.0 ij.a.0

and Ap. Next using the Gauss equation, we have

R(ek,ei\ej,Ah(e^i)ek) = S,yg(/z(e*,^),/z(e,,e,)) - 8kJg(li(ehej),h(ehek))

+ g{h{eh ej),h{ek, Ah(ehej)ek)) - g(h(ek,ej), h(eh Ah(e^ei))ek)) (2.8)

since Ah(e^i}ek = Y,g(Ac,ehej)Aaek, we obtain
a

eh ej),h(ek, Ah(e._C))ek)) = ]£ g{Ah(ei_e>)ek, Ah^Ci)ek) = \\Ah||
2 (2.9)

ij.k ij.k

and
^Jg(h(ek,ej),h(ei,Ah^ej)ek))= X g^a^e^OgO^/l^e,). (2.10)

Then using (2.7), (2.9) and (2.10) in (2.8) and using minimality of M" we find

which proves the lemma.

3. Proof of the theorem. Let M" be a compact minimal submanifold of S"+p

satisfying the hypothesis of the theorem. Define F:M—>R by F = \cr. Then it is
straightforward to compute the Laplacian AF of the function F as

ij.it ij,k

Using the Ricci identity (2.2) and equations (2.1) in above equation we arrive at

AF = 2 [R±(ek, e,; h(ek,ej), h(eh ey)) - ^(e^, e,; ek,Ah(eijei)ej)
ij.k

We employ (2.4) in the Ricci equation, to compute

/?x(e^,er,h(ek, et), h{eh e})) = g(Ah{e.,ei)ek, Ah^ej)

+ R(eh ek)ej - 5 -̂e

or

e,, e,-)) = ||/4A ||2 - a + 2 #(e,, e*; ey, ^ A ^

iJ.Ar

e*.«-,)eit. ^/.(e,.e,)e,)- (3-2)
Since (2.5) gives /?*(ey) = (n - l)ey -iAh(ek.e)ek, we have

= (/I - 1)(T -
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= (n - \)<r - X R(ek, ej,Ah(et_ei)eh ek)
ij.k

= (n - \)a + 2 R{ek, eh ek,Ah(e,.e,)ej)- (3-3)
ij.k

Thus using (3.3) in (3.2), we have

X R±(ek,ei\h(ek,ej),h(ehej)) = -na + \\AJ2+ £ {R(ehek\erAh{et,ei)ek)
ij.k ij.k

- R{ek, eh ek,Ahie,,ei)ej)]. (3.4)

Using (3.4) in (3.1), we obtain

AF= -ncr+ \\Ah f - 2 2 [Rie^e^e^A^^e,)
ij.k

- R(ek,eh ek\ A^^e,] + \\Vh ||2. (3.5)

Also, we have

X R(ek, er, ek,Ah(e^j}ej) = ~ X

= " E g(R*ei,Aaej)g(AQei,eJ)
ij.a

= - S (« - l)g(Aaej,Aaej) + J

= - ( n - l ) a + X g(^,Mae ; )
2 . (3.6)

'j.a.P

Using (3.6) and the lemma in Section 2 in (3.5), we obtain

AF = {n - l)cr - \\Ah ||
2 + (a - Kx) + ||V/i ||2. (3.7)

Now using the facts that

ij.k ij.k,a

)2 \\AJ2 = 2 \\AJ2 \\AJ2 = 2 \\AJ4= 1 g{Aaehe,)2 \\AJ2 = 2 \\AJ2 \\AJ2 = 2 \\A

and a - E ll^oll2, in (3.7) and integrating it over Mn we obtain
a

\ {l[(«-l)- | | / l a | | 2] | | / lJ |2 + (cr-^)+| |V^| | 2U = 0. (3.8)
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From the hypothesis of the theorem S> (n — I)2, it follows that

n(n-l)-^\\Aa\\
2>(n-l)2,

a

that is, 2 | | / l a | | 2<(/ j - 1 ) , consequently | | /4a | | 2<(n - 1), and that Kx < a. Thus in order
a

for (3.8) to hold we must have \\Aa || = 0, that is M" is totally geodesic.
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