16A08 (16A12)

TWO-SIDED LOCALIZATION IN SEMIPRIME FBN RINGS

M.H. Upham

The main result of this paper is that the left- and rightquotient rings at a hereditary link closed set of prime ideals of a semiprime fully bounded Noetherian (FBN) ring coincide. This was a result already known for nonsemiprime FBN rights, but a question left open in the semiprime case. A cornerstone of our approach is that the torsion theory determined by a link-closed hereditary set of prime ideals in an FBN ring is "nice", but not necessarily perfect. Some conditions which do produce perfect torsion theories are investigated.

Introduction

In [7], Müller showed that for an FBN ring with locally finite links, the left and right quotient rings at a hereditary link-closed set of prime ideals coincide. Such rings include all Noetherian PI rings and all FBN rings which are not semiprime [7, Theorem 7], but the question of two-sided quotient rings in semiprime FBN rings was left open (see [7], [8]). In this paper, we show that the left and right quotient rings at a hereditary link-closed set of prime ideals of a semiprime FBN ring do coincide (Theorem 8).

Throughout *R* denotes a fully bounded Noetherian (FBN) ring on both sides. Modules are unitary right modules unless a subscript indicates a Received 16 March 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00.

left module. Maps are written opposite scalars. We assume familarity with the concept of a torsion theory determined by

- (i) an injective module,
- (ii) an incomparable (possibly infinite) set of prime ideals of R ($Q \subseteq R$ is incomparable if $P, Q \in Q$ and $P \subseteq Q \Rightarrow P = Q$).

 $\tau(M)$ denotes the torsion submodule of a module M, $\Delta(M)$ denotes the quotient module of a right module M and $\Lambda(M)$ denotes the quotient module of a left module R^M . If the torsion theory is not clear from the context, suitable subscripts may be added. See [4], [11] for details. When the meaning is clear from the context we shall let Δ denote $\Delta(R_R)$ and Λ denote $\Lambda(R^R)$. When R is FBN, there is a one-to-one correspondence between prime ideals of R and indecomposable injective modules (up to isomorphism). E_Q denotes the indecomposable injective with associated prime ideal Q. A set $P \subseteq \operatorname{Spec} R$ is called hereditary if $P \subseteq Q \notin P \Rightarrow P \notin P$. The torsion theories over an RBN ring are in one-to-one correspondence with the hereditary sets of prime ideals, these being the closed prime ideals in the torsion theory. Every dense right ideal contains a product of dense prime ideals [1].

We also assume familiarity with the ideas of Krull dimension, critical module, basic series, and so on, developed in [3] as well as the definitions of a short right link $P \sim Q$ and a long right link $P \sim Q$ between prime ideals P and Q. (See [6].) Call $P \subseteq \text{Spec } R$ link-closed if $P \sim Q$ and one of P, Q in P implies the other also belongs to P.

We shall begin with a general torsion-theoretic result and then consider two-sided localization in certain factor rings. Out of this comes a useful connection between $\Lambda(R)$ and $\Delta(R)$ which will then be applied to the question of two-sided localization over a semiprime FBN ring R. Finally we offer some contributions to the study of perfect torsion theories and link-closed hereditary subsets of $\operatorname{Spec}(R)$. It is known that a link-closed hereditary subset of $\operatorname{Spec}(R)$ does not necessarily produce a perfect torsion theory. We present some sufficient conditions for this to happen.

We shall require the following result concerning a torsion theory over

an RBN ring R. If τ is a torsion radical on Mod-R and A is a τ -closed right ideal of R, then $\tau(R) \subseteq A$. Hence $A/\tau(A) = A/\tau(R) \subseteq R/\tau(R)$ and $\Delta(A) \subseteq \Delta(R)$. Furthermore $\Delta(A) \cap (R/\tau(R)) = A/\tau(R)$.

PROPOSITION 1. Let Q be an incomparable link closed subset of Spec R where R is FBN. Then

(a) every Q-torsion-free factor module of $\Delta_Q(R)$ is divisible, (b) $\Delta_Q(R)/\Delta_Q(Q) \approx \Delta_Q(R/Q)$ for all $Q \in Q$, (c) $\Delta_Q(Q)$ is a prime ideal of $\Delta_Q(R)$ for all $Q \in Q$. Proof. Let Δ denote $\Delta_Q(R)$.

(a) We first show that any basic submodule of a finitely generated Q-torsion-free module X is closed in the divisible hull of X, D(X). Let C be a basic submodule of some finitely generated, Q-torsion-free module X (that is, C is maximal among the α -critical submodules of X where α is the least possible Krull dimension of a nonzero submodule of X). Suppose $t \in D(X) \setminus C$ and $tD \subseteq C$ where D is a dense ideal. C is uniform [3] and X is torsion-free. Hence Ann_R^C is a prime ideal $P \subseteq Q$ for some $Q \in Q$. If $tR \in tR \setminus C$, trD = 0 would imply tr = 0, contradiction. Hence tr + C is an essential, hence uniform extension of C. If (tR+C)/C is not critical, it contains a basic submodule C_1/C [3]. Let $P' = \operatorname{Ann}_R(C_1/C)$. Since $P' \supseteq D$, P' is Q-dense. Now $0 \subseteq C \subseteq C_1$ is a basic series for C_1 . So

$$K - \dim(R/P) = K - \dim(C) \leq K - \dim(R/P')$$

[3, Theorem 3.4]. On the other hand, the canonical epimorphism $C_1 \rightarrow C_1/C \rightarrow 0$ induces a nonzero homomorphism $E_P \rightarrow E_{P'}$. This implies P' contains some prime ideal B with $P \sim B$ [6, Lemma 3]. Hence $K - \dim(R/P') \leq K - \dim(R/B) = K - \dim(R/P)$. In other words, we have a link between closed prime ideal P and dense prime ideal P' which contradicts [7, Corollary 3].

Now consider the module $X = \Delta/Y$ where Y_R is a Q-closed submodule of Δ_R . Then Y_R is torsion-free divisible. Thus $Y\Delta = Y$ and we may assume $X = x\Delta$. We proceed by induction on the Krull-composition length of xR.

If xR is already basic, we have shown xR is closed in D(xR), hence is divisible. Then $x\Delta \subseteq D(xR) = xR$. If xR has Krull-composition series of length n, say $0 = B_0 \not\subseteq B_1 \not\subseteq B_2 \not\subseteq \dots \not\subseteq B_n = xR$ then, by induction assumption, $x\Delta/B_{\perp}$ is divisible. Also B_1 is divisible. Since divisible modules are closed under group extensions, $x\Delta$ is divisible.

(b) We first show that $\Delta(R)/\Delta(Q)$ is a torsion-free *R*-module. If for some $x \in \Delta(R)$ there exists a dense (right) ideal *D* such that $xD \subseteq \Delta(Q)$, since *D* is finitely generated, we can find a dense ideal *D'* such that $xDD' \subseteq Q/\tau(R)$. This implies $x \in \Delta(Q)$. By (a), $\Delta(R)/\Delta(Q)$ is torsion-free divisible. The canonical homomorphism $m : R/Q \neq \Delta(R)/\Delta(Q)$ is an essential monomorphism whose image is dense in $\Delta(R)/\Delta(Q)$. Hence $\Delta(R/Q) = \Delta(R)/\Delta(Q)$.

(c) Suppose $x\Delta(R)y \subseteq \Delta(Q)$ for elements $x, y \in \Delta(R)$. Let D_x, D_y be dense ideals such that xD_x and $yD_y \subseteq R/\tau(R)$. Then $xD_xyD_y \subseteq Q/\tau(R)$. Either $xD_x \subseteq Q/\Delta(R)$ and $x \in \Delta(Q)$ or $yD_y \subseteq Q/\tau(R)$ and $y \in \Delta(Q)$.

REMARK. Lambek [4] calls an injective module I "nice" if the localization at I satisfies property (a) of Proposition 1. It is clear that if the torsion theory determined by I is perfect, then I is certainly nice. The converse is not generally true. Indeed, if a ring Ris right hereditary, every injective module is nice, [4, Example 1, p. 68]. However, if R is hereditary but non-Noetherian, then any torsion theory whose filter of dense right ideals contains a non-finitely generated right ideal yields a nice injective whose corresponding torsion theory is not perfect.

Two-sided localization in factor rings

In this section we assume that R is FBN, not necessarily semiprime. We show that under suitable conditions, left- and right-quotient rings coincide for certain factor rings of R.

Consider an incomparable, link-closed set $Q \subseteq \text{Spec } R$. Let π be any product of members of Q. Then $\mathbb{N}_{\pi} = \{P \in Q : P \supseteq \pi\}$ is finite; in fact, it corresponds to the set of minimal prime ideals of R/π . Since Q is link-closed, $\{P/\pi : P \in \mathbb{N}_{\pi}\}$ is link-closed [6, Theorem 5]. Hence the semiprime ideal N_{π}/π (where $N_{\pi} = \bigcap\{P : P \in \mathbb{N}_{\pi}\}$) is localizable and the corresponding torsion theory is induced by the localizable multiplicative set of regular elements modulo N_{π}/π , $C_{R/\pi}(N_{\pi}/\pi)$. One consequence is that the left- and right-quotient rings of R/π at N_{π}/π coincide. Denote this quotient ring by Q_{π} . Furthermore N_{π}/π is a semiprime ideal of R/π such that some power of N_{π}/π is torsion (in fact, 0). Since N_{π}/π is localizable, by Lambek and Michler [5, 3.3 and 3.4], Q_{π} is right and left Artinian and every element of $C_R(N_{\pi})$ is regular modulo π .

LEMMA 2. Let Q, R and π be as described above. Then

- (a) $\tau_0(R) \subseteq \pi$,
- (b) π is Q-closed,
- (c) R/π is a subring of Q_{π} .

PROPOSITION 3. Suppose Q is an incomparable link-closed subset of Spec R (R FBN) and π is any product of elements of Q. Then $\Delta_Q(R)/\Delta_Q(\pi) \cong Q_{\pi} \cong \Delta_Q(R/\pi)$ (as rings)

Proof. Let $\overline{R} = R/\tau_Q(R)$. We have $\Delta_Q(\pi) \cap \overline{R} = \overline{\pi}$, hence $R/\pi \hookrightarrow \Delta_Q(R)/\Delta_Q(\pi)$. Now $\Delta_Q(R)/\Delta_Q(\pi)$ is Q-torsion free, hence divisible by the argument of Proposition 1 (b). Thus $\Delta_Q(R)/\Delta_Q(\pi) \cong \Delta_Q(R/\pi) \subseteq Q_{\pi}$ since every Q-dense ideal is certainly N_{π} dense. For the reverse inclusion, given $t \in Q_{\pi}$, there exists a product of N_{π}/π -dense prime ideals of R/π - say $F = (P_1P_2 \dots P_k^{+\pi})/\pi$ - such that $tF \subseteq R/\pi$. The incomparability of Q and the definition of N_{π} guarantee that $P_1 \dots P_k$ is Q-dense. Hence $t \in \Delta_Q(R/\pi) \cong \Delta_Q(R)/\Delta_Q(\pi)$. COROLLARY 4. Under the same hypotheses,

$$\Lambda_{\mathcal{Q}}(R/\pi) \cong \Lambda_{\mathcal{Q}}(R)/\Lambda_{\mathcal{Q}}(\pi) \cong Q_{\pi} \cong \Delta_{\mathcal{Q}}(R)/\Delta_{\mathcal{Q}}(\pi) \cong \Delta_{\mathcal{Q}}(R/\pi)$$

It should be noted that the isomorphisms in Corollary 4 leave the ring R/π fixed. Hence we obtain the following explicit rule for the isomorphism $\psi : \Delta_Q(R/\pi) \neq Q_{\pi}$. Given $q \in \Delta_Q(R/\pi)$, there exists a Q-dense ideal D such that $qD \subseteq R/\pi$. Since D is N_{π} -dense, there exists $c \in C(N_{\pi}) \cap D$ and $qc = [r]_{\pi} \in R/\pi$. Then $\psi(qc) = [r]_{\pi}$. But $\psi(qc) = \psi(q)c$. Hence $\psi(q) = [r]_{\pi}[c]_{\pi}^{-1}$.

PROPOSITION 5. Let Q be an incomparable link-closed subset of Spec R (R FBN). Let $\pi' \subseteq \pi$ be products of members of Q. Then there is a commutative diagram

(p is the canonical epimorphism and i, i' are inclusions.) Furthermore f is onto.

Proof. $N_{\pi'} = N_{\pi} \cap A$ where A = R or A is an intersection of members of Q. Consequently, R/π' is an N_{π} -dense submodule of $Q_{\pi'}$. Since Q_{π} is N_{π} -torsion free divisible, there exists a unique $f : Q_{\pi'} \neq Q$ such that fi' = ip. To be explicit, given $[r]_{\pi'} [c]_{\pi'}^{-1} \in Q_{\pi}$ with $c \in C(N_{\pi'}) \subseteq C(N_{\pi})$, we must have $f([r]_{\pi'} [c]_{\pi'}^{-1}) = [r]_{\pi} [c]_{\pi}^{-1}$.

To verify that f is onto, select any $q \in Q_{\pi}$. There exists a product D of prime ideals, each non-minimal among primes containing π , such that $qD \subseteq R/\pi$. Since Q is incomparable, D is Q-dense, hence N_{π} ,-dense. Then there exists $c \in D \cap C(N_{\pi})$ and $r \in R$ such that

$$qc = [r]_{\pi} \in R/\pi$$
. It follows that $q = [r]_{\pi} [c]_{\pi}^{-1} = f\left([r]_{\pi}, [c]_{\pi}^{-1}\right)$.

In what follows, E denotes $\bigoplus \{E_Q : Q \in Q\}$ where Q is an incomparable link-closed subset of Spec R. Since E is Q-torsion free, every R-homomorphism $\phi : \Delta_0(R) \to E$ is automatically a $\Delta_0(R)$ - homomorphism. It follows that E is $\Delta_Q(R)$ -injective. Also, for any $Q \in Q$, since $\Delta_Q(R)/\Delta_Q(Q)$ is an essential extension of R/Q, it is embedded in a finite product of copies of E.

Consider the following topologies on $\Delta = \Delta_0(R)$ (cf. [5]):

- (1) the *E*-adic, whose basic open neighborhoods of zero have the form ker(*f*) for some $f \in \text{Hom}_{\Lambda}(\Delta, E^n)$ $(n \in \mathbb{N})$;
- (2) the $\Delta(\pi)$ -adic, whose basic open neighborhoods of zero have the form $\Delta(\pi)$ where π is some product of members of Q.

Recall that a torsion theory is called *stable* if the family of torsion modules is closed under injective hulls.

PROPOSITION 6. Let Q be an incomparable, link-closed set of prime ideals of an FBN ring R. Then the E-adic and the $\Delta(\pi)$ -adic topologies on $\Delta = \Delta_0(R)$ coincide.

Proof. By Propositions 1 and 3, $\Delta(R)/\Delta(\pi)$ is right (and left) Artinian for all π and $\Delta(R)/\Delta(Q)$ is simple Artinian for all $Q \in Q$. We claim that for any i, $\Delta(Q_1 \dots Q_{i-1})\Delta(Q_i) \subseteq \Delta(Q_1 \dots Q_i)$. Indeed, given $x \in \Delta(Q_1 \dots Q_{i-1})$ and $y \in \Delta(Q_i)$, let D_x and D_y be dense ideals such that $xD_x \subseteq Q_1 \dots Q_{i-1}/\tau(R)$ and $yD_y \subseteq Q_i/\tau(R)$. Since Qis closed under links, the Q-torsion theory is stable [1], [11]. Hence, by [1, Theorem 1.2], there exists a dense ideal D' such that $\overline{D}_x(yD_y) \supseteq \overline{R}yD_y\overline{D}'$. Then $xyD_yD' \subseteq xD_xyD_y \subseteq Q_1 \dots Q_i/\tau(R)$. This implies $xy \in \Delta(Q_1 \dots Q_i)$ as desired. Given a product $\pi = Q_1 \dots Q_k$ with all $Q_i \in Q$, each factor of the chain

$$\Delta(R) \supseteq \Delta(Q_1) \supseteq \Delta(Q_1Q_2) \supseteq \ldots \supseteq \Delta(Q_1 \ldots Q_k)$$

is a finitely generated $\Delta(R)/\Delta(Q_i)$ -module (i = 1, 2, ..., k), hence a finite direct sum of simple $\Delta(R)/\Delta(Q_i)$ -modules, which embeds in a finite direct product of copies of E. It follows that $\Delta(R)/\Delta(\pi) \subseteq E^m$ for some $m \in \mathbb{N}$.

Conversely, given $f : \Delta(R) \to E^n = \bigoplus E_Q^n$, let $f(1) = x_1 + \ldots + x_t$ where each x_j is in E_{Q_j} for some $Q_j \in Q$. By considering a critical series for $x_j R$ [3], one sees that $x_j R$ is annihilated by a product of prime ideals in Q. It follows that $f(\Delta(\pi)) = f(1)\Delta(\pi) = 0$ for some product π of members of Q.

COROLLARY 7. Under the same hypotheses, the bicommutator of E is isomorphic to $S = \lim_{n \to \infty} \{\Delta(R) | \Delta(\pi) : \pi \text{ is a product of members of } Q\}$.

Proof. The conditions of [4, Propositions 2 and 3] are satisfied.

REMARK. *E* is naturally an *S*-module under the following rule. Given $e \in E$ and $s = \langle [s_{\pi}]_{\Delta(\pi)} \rangle \in S$, where $s_{\pi} \in \Delta(R)$, choose any π such that $e\pi = 0$. Define $es = es_{\pi}$. It is tedious to verify that this is a well-defined *S*-action on *E* which extends the existing $\Delta(R)$ -action. Both $\Delta(R)$ and $\Lambda(R)$ can be viewed as subrings of *S* containing $\overline{R} = R/\tau(R)$.

Two-sided quotient rings in semiprime FBN rings

The main result of this section is Theorem 8. If R is a semiprime FBN ring and P is a hereditary link-closed set of prime ideals of R, then the left- and right-quotient rings of R at P coincide. We begin with some observations on torsion theories in a semiprime FBN ring.

Suppose P is a hereditary link-closed set of prime ideals of semiprime FBN ring R. Let S_1, S_2, \ldots, S_n be the minimal prime ideals of R (Minspec R). Suppose $S_1, S_2, \ldots, S_t \in P$ and $s_{t+1}, \ldots, S_n \notin P$. Let $N_p = \bigcap_{i=1}^{t} S_i$. Since $\bigcap \{S_j : j = t+1, \ldots, n\}$ is P-dense and annihilates N_p , $N_p \subseteq \tau_p(R)$. On the other hand, $\tau_p(R) \subseteq P$ for all $P \in P$. Hence $\tau_p(R) = N_p$. Both $\bigwedge(R)$ and $\bigtriangleup(R)$ may be viewed as subrings of $Q_{\max}(R/N_p) = Q_{c1}(R/N_p)$.

THEOREM 8. Suppose R is a semiprime FBN ring. Let P be a hereditary link-closed subset of Spec R. Then the left- and right-quotient rings of R coincide.

Proof. Let $\overline{R} = R/\tau_p(R) = R/N_p$. Let

 $Q = Max P = \{Q \in P : Q \text{ is maximal among elements of } P\}$.

Then Q is link-closed and incomparable ([7], [11]). Let $E = \bigoplus \{E_Q : Q \in Q\}$. We have $\overline{R} \subseteq E(\overline{R}) \subseteq I = \pi E$ for some product of copies of E. Now Bic(I) \cong Bic(E) = $S \cong \lim_{i \to \infty} \Delta(R) / \Delta(\pi)$ ([2, Proposition A2]). By [4, Lemma 3], iS/iR is Q-torsion for all $i \in I$. In particular, if $i = \overline{1}$, we get that $(\Lambda/R)_R$ is torsion. Since Λ may be viewed as a subring of $Q_{\max}(\overline{R})$ and since $Q_{\max}(\overline{R}) \cong E(\overline{R})$, Λ is an essential extension of \overline{R} . Hence $\Lambda \subseteq \Delta$. By symmetry, $\Delta \subseteq \Lambda$.

Semiprime FBN rings and perfect torsion theories

A torsion theory with right localization functor Δ is perfect (on Mod-R) if every $\Delta(R)$ module, considered as an R-module, is torsion-free. This is one of many characterizations of perfect torsion theories. See Stenstrom [10] and Richards [9] for more details. Call a hereditary set $P \subseteq \text{Spec } R$ (or the corresponding incomparable set $Q = \max P$) perfect if the P-torsion theories on Mod-R and on R-Mod are perfect.

A torsion theory with torsion radical τ_0 is said to decompose as a direct sum of torsion theories τ_1 and τ_2 if for all (right) *R*-modules M, $\tau_0(M) = \tau_1(M) \oplus \tau_2(M)$. Müller has established the following necessary and sufficient conditions for such a decomposition. Let \mathcal{D}_i denote the set of τ_i -dense prime ideals for i = 0, 1, 2. Then $\tau_0 = \tau_1 \oplus \tau_2$ if \mathcal{D}_0 is the disjoint union of \mathcal{D}_1 and \mathcal{D}_2 and there are no links between prime ideals in \mathcal{D}_1 and prime ideals in \mathcal{D}_2 [§]. Now by Goldie's theorem, Minspec R is closed under links. In particular, the set of all maximal ideals which are also minimal prime ideals ("min-max" ideals) is finite and link-closed. Any link-closed set \mathcal{Q}_1 of min-max ideals induces a direct sum decomposition $R = N_1 \oplus B$ where N_1 is the intersection of the ideals in \mathcal{Q}_1 and B is the intersection of the

minimal prime ideals not in Q_1 . Furthermore, the Q_1 -torsion theory is classical, hence perfect.

PROPOSITION 9. Let Q be any link-closed set of maximal ideals in a semiprime FBN ring R. Let $Q_1 = Q \cap \text{Minspec } R$ and $Q_2 = Q \setminus Q_1$. Let $N_1 = \tau_{Q_1}(R)$, $N_2 = \tau_{Q_2}(R)$ and let B denote the intersection of all minimal prime ideals not in Q_1 . Let Δ, Δ_1 , and Δ_2 denote the localization functors associated with Q, Q_1 , and Q_2 respectively. Then

$$\Delta(R) \cong \Delta_1(R/N_1) \oplus \Delta_2(R/B) = \Delta_1(R) \oplus \Delta_2(R) .$$

Proof. We have $R = N_1 \oplus B$, $N_1 \cong R/B$, $B \cong R/N_1$. It is clear that $\Delta(R) \cong \Delta(R/N_1) \oplus \Delta(R/B)$. We shall show that $\Delta(R/N_1) = \Delta_1(R) = \Delta_1(R/N_1)$ and $\Delta(R/B) = \Delta_2(R/B) = \Delta_2(R)$. Now $\tau Q_1(R) = N_1$. Hence $R/\tau Q_1(R) = R/N_1 + \Delta_1(R)$. If $x \in \Delta_1(R)$, there exists a Q_1 -dense ideal D such that $xD \subseteq R/N_1$. Now R/N_1 is Q_2 torsion and the Q_2 -torsion theory is stable. Hence there exists a Q_2 dense ideal D' such that xD' = 0. The prime ideals containing D + D'are both Q_1 - and Q_2 -dense, hence Q-dense. It follows that $x \in \Delta(R/N_1) = \Delta(R)$. Trivially, $\Delta(R/N_1) \subseteq \Delta_1(R/N_1) = \Delta_1(R)$ since every Q-dense ideal is Q_1 -dense and R/N_1 is Q-torsion free. The proof that $\Delta(R/B) = \Delta_2(R/B)$ is similar after noting that $\tau_2(R/B) = N_2/B = \tau(R/B)$.

LEMMA 10. Suppose R is a semiprime FBN ring with no min-max ideals. If the torsion theory associated with the hereditary set of nonmaximal prime ideals is perfect, then the torsion theory determined by any link-closed set of maximal ideals is perfect. The converse also holds.

Proof. Let P_0 denote the set of non-maximal ideals and let Q_1 be any link-closed subset of Maxspec R. Let Q_2 = maxspec $R \setminus Q_1$. Denote the corresponding cohereditary sets of dense prime ideals by P_0 , P_1 and P_2 and the corresponding torsion radicals by τ_0 , τ_1 and τ_2 . Clearly, $\mathcal{D}_0 = \mathcal{D}_1 \cup \mathcal{D}_2$, $\mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset$ and there are no links between primes in \mathcal{D}_1 and primes in \mathcal{D}_2 . By [8, Lemma 2], $\tau_0 = \tau_1 \oplus \tau_2$. But $\tau_0(R) = \Omega\{P : P \text{ is a minimal } \mathcal{Q}_0\text{-closed prime}\}$ $= \Omega\{P : P \text{ is a minimal prime}\} = 0$.

Hence, by [9, 1.9], τ_1 and τ_2 are perfect if and only if τ_0 is.

REMARK. Obviously the conditions of Lemma 10 are satisfied in a semiprime ring of Krull dimension one with no min-max ideals, in particular in a bounded Noetherian prime ring of Krull dimension one.

PROPOSITION 11. Suppose R is a semiprime FBN ring in which the torsion theory determined by the hereditary set of non-maximal ideals is perfect. Then every link-closed set of maximal ideals determines a perfect torsion theory.

Proof. Let Q be a link-closed set of maximal ideals. Let $Q_1 = \text{Minspec } R \cap Q$ and $Q_2 = Q \setminus Q_1$ as in Proposition 9. To show that the Q-torsion theory is right perfect, it is sufficient to show that every $\Delta(R)$ -module, considered as an R-module, is Q-torsion free (where Δ and Δ_i represent the localization functors corresponding to Q and Q_i , i = 1, 2). Since $\Delta(R) = \Delta_1(R) \oplus \Delta_2(R)$, any $\Delta(R)$ -module M is both a $\Delta_1(R)$ - and a $\Delta_2(R)$ -module. If $\Delta_1(R) \neq 0$ then M is Q_1 -torsion free, hence Q-torsion free.

If $Q_1 = \emptyset$, let A denote the intersection of all min-max ideals and B the intersection of the remaining minimal primes. Then $R = A \oplus B$ where A is a semiprime ring containing no min-max ideals. $\Delta(R) = \Delta(R/B)$. Applying Lemma 10 to R/B we get the desired result.

PROPOSITION 12. Every link-closed hereditary set of prime ideals in a semiprime FBN ring of Krull dimension one is perfect.

Proof. Let Q = Max P where P is a hereditary link-closed subset of Spec R. If Q consists entirely of maximal ideals, the conditions of Proposition 11 are satisfied. If not, let

$$Q_1 = \{ \min-\max \text{ ideals in } Q \}$$
,
 $Q_2 = \{ non-\max \text{ maximal prime ideals in } Q \}$,
 $Q_3 = \{ non-\min \text{ minimal prime ideals in } Q \}$.

 Q_1 and Q_2 are finite link-closed (hence perfect) sets of minimal primes of R. Q_3 is perfect by Proposition 11. Let

$$N_i = \bigcap \{S : S \text{ is a minimal } Q_i \text{-closed prime ideal} \}$$
, $i = 1, 2, 3$.

There is an essential monomorphism (where $N = \tau_0(R)$)

$$R/N \xrightarrow{h} R/N_1 \oplus R/N_2 \oplus R/N_3$$
.

Let

$$0 \rightarrow R/N \rightarrow \bigoplus_{i=1}^{3} R/N_{1} \rightarrow X \rightarrow 0$$

be exact. Applying the exact functor $\Delta = \Delta_{Q_i}$ for i = 1, 2, 3, we have exact sequences

$$0 \to \Delta_i(R/N) \to \bigoplus_{j=1}^3 \Delta_i(R/N_j) \to \Delta_i(X) \to 0$$

But $\Delta_i(R/N_j) = 0$ for $i \neq j$. Indeed, R/N_j is Q_i -torsion for $i \neq j$, and the Q_i -torsion theory is stable. Also $\Delta_i(R/N) = \Delta_i(R/N_i)$. Hence $\Delta_i(X) = 0$, for i = 1, 2, 3, from which we get that X is Q-torsion. In other words, R/N is a Q-dense submodule of $\bigoplus_{j=1}^3 R/N_j$. It follows that $\Delta(R/N) \cong \Delta(R/N_1) \bigoplus \Delta(R/N_2) \bigoplus \Delta(R/N_3)$. By the proof of Proposition 9, $\Delta(R/N_i) = \Delta_i(R/N_i)$ for i = 1, 2, 3. Consequently, the perfectness of Q_1, Q_2 , and Q_3 , implies perfectness of Q.

REMARK 1. Proposition 12 shows that at least in the case of a semiprime FBN ring, the assumption of zero socle in [7, Proposition 15] can be dropped. We do not know whether this is true for non-semiprime R. REMARK 2. It is an open question when the hypotheses of Lemma 10 and Proposition 11 are satisfied. If R = k[x, y] for some field k, then Ris a prime FBN ring of Krull dimension 2 in which the hypotheses of Lemma 10 are not satisfied (see [7]).

References

- J.A. Beachy, "Stable torsion radicals over FBN rings", J. Pure Appl. Algebra 24 (1982), 227-233.
- [2] C. Faith, Injective modules and injective quotient rings (Lecture Notes in Pure and Applied Mathematics, 72. Marcel Dekker, New York, 1982).
- [3] A.V. Jategaonkar, "Jacobson's conjecture and modules over fully bounded Noetherian prime rings", J. Algebra 30 (1974), 103-121.
- [4] J. Lambek, "Bicommutators of nice injectives", J. Algebra 21 (1972), 60-73.
- [5] J. Lambek and G. Michler, "Localization of right Noetherian rings at semiprime ideals", Canad. J. Math. 26 (1974), 1069-1085.
- [6] B.J. Müller, "Localization in fully bounded Noetherian rings", Pacific J. Math. 67 (1976), 233-245.
- [7] B.J. Müller, "Two-sided localization in Noetherian PI rings", J. Algebra 63 (1980), 359-373.
- [8] B.J. Müller, "Links between maximal ideals in bounded Noetherian prime rings of Krull dimension one", preprint.
- [9] R. Richards, "Noetherian prime rings of Krull dimension 1 " (PhD Thesis, McMaster University, Hamilton, Ontario, 1977).
- [10] B. Stenstrom, Rings and modules of quotients (Lecture Notes in Mathematics, 237. Springer-Verlag, Berlin, Heidelberg, New York, 1971).
- [11] M. Upham, "Right localizable multiplicative sets and prime ideals of FBN rings", Comm. Algebra 9 (1981), 1093-1103.

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901, USA.