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Abstract
We propose an extension of the anisotropic interaction model which allows for collision avoidance in pairwise
interactions by a rotation of forces (Totzeck (2020) Kinet. Relat. Models 13(6), 1219–1242.) by including the agents’
body size. The influence of the body size on the self-organisation of the agents in channel and crossing scenarios as
well as the fundamental diagram is studied. Since the model is stated as a coupled system of ordinary differential
equations, we are able to give a rigorous well-posedness analysis. Then we state a parameter calibration problem
that involves data from real experiments. We prove the existence of a minimiser and derive the corresponding first-
order optimality conditions. With the help of these conditions, we propose a gradient descent algorithm based on
mini-batches of the data set. We employ the proposed algorithm to fit the parameter of the collision avoidance
and the strength parameters of the interaction forces to given real data from experiments. The results underpin the
feasibility of the method.

1. Introduction

Mathematical modeling of pedestrian dynamics has a practical benefit in civil engineering [23, 26, 27]
for example in the design of complex architectures, e.g., stadiums, city centers, and shopping malls, or
for the management of large public events like festivals, concerts, pilgrimages, or manifestations [10].
Capturing both, the individual and collective behaviors in pedestrian dynamics, is rather complex [2, 7].
Many different approaches have been proposed in the literature: for example, models based on magnetic
forces proposed by S. Okazaki and S. Matsushita in which pedestrians are modeled as magnetic charges
in a magnetic field [33]; the gas-kinetic model which treats pedestrians as molecules in liquefied gas
[22]; cellular automata [4, 5, 13]; models incorporating anticipative, rational behavior [1, 11, 12] and
(smooth) sidestepping [15, 34]. Another group of pedestrian models has emerged from the pioneering
work on social forces [20] and can be classified as force-based [9, 34] and the overview given in [8].

Most of these models share the property of reproducing collective features such as lane formation
in counter-flow scenarios and traveling waves in crossing flows. Moreover, they can be used to study
evacuation scenarios. On the other hand, they strongly differ in their description. Indeed, some models,
for example, the class of forces-based models have a sound mathematical description and allow for a
statement in terms of a closed system of ordinary or partial differential equations. Others have a rather
algorithmic structure because they require the solution of optimization problems to estimate for example
the time-to-collision in every iteration. For the latter, a rigorous mathematical study of well-posedness
is difficult.

Naturally, the modeling process is followed by an optimization or calibration procedure. For pedes-
trian dynamics, the optimization of buildings, evacuation routes, and traffic safety or the minimization
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of the occurrence of high densities are of special interest [28, 37]. Moreover, the collection of data
from real-world experiments grew the interest in parameter fitting for the different pedestrian models
[3, 17, 18].

This work is in a similar spirit. First, we extend the anisotropic model proposed in [34] by incorpo-
rating a body size for the interacting agents. This induces another dimension of volume exclusion in the
model and makes the model more realistic. However, it is simple enough to derive the gradient used
for the optimization explicitly. We emphasize that this is exceptional, as many other particle models for
pedestrian dynamics include terms like the Heaviside function in the social force model or an optimiza-
tion problem in their dynamics that prohibit the straight forward computation of adjoints and gradients.
We study the influence of the body size on the formation of lanes and traveling waves as well as the
fundamental diagram of the dynamics numerically and provide a rigorous study of the well-posedness
of the interaction dynamics with and without body size employing standard ODE theory. The second
part of the article is concerned with the rigorous derivation of a gradient-based parameter calibration
algorithm. We begin with the derivation of the first-order optimality system and propose a mini-batch
gradient-descent algorithm for the calibration problem.

In more detail, the article is organized as follows: the anisotropic model for pedestrian dynamics is
extended by including the agents’ body size in Section 2. Moreover, we study the influence of body
size on collective behavior and the fundamental diagram in there. Section 3 is devoted to the parameter
calibration problem. We begin with the statement of the problem, investigate its well-posedness, and
derive the corresponding first-order optimality conditions. Finally, the iterative gradient descent algo-
rithm based on mini-batches for the parameter calibration is proposed in Section 4, where we show
results obtained with this algorithm. We conclude with a summary of the results and an outlook on
future projects.

2. Microscopic model with body size

We include the body size in the anisotropic model proposed in [34] as follows: let us consider a second-
order equation of motion with N ∈N agents. Their positions and velocities are denoted by xi : [0, T] →
R

2 and vi : [0, T] →R
2, i = 1, . . . , N. Moreover, the agents are assumed to have a body diameter d > 0.

This leads to the following interaction dynamics
d

dt
xi = vi, (2.1a)

d

dt
vi = τ (wi − vi) − 1

N

∑
j �=i

M
(
vi, vj

)
K
(
d, xi, xj, vi, vj

)
, (2.1b)

xi(0) = xi
0, vi(0) = vi

0, i = 1, . . . , N, (2.1c)

where K
(
d, xi, xj, vi, vj

)
: R2 ×R

2 ×R
2 ×R

2 →R
2 is a pairwise interaction force between the agents i

and j. The rotation matrix M
(
vi, vj

)
changes the direction of the interaction force. It reads

M
(
vi, vj

)=
(

cos αij − sin αij

sin αij cos αij

)
, αij =

{
λ arccos vi·vj

‖vi‖‖vj‖ , if vi �= 0, vj �= 0,

0, else.
(2.2)

In addition, the model includes a relaxation parameter τ > 0 which controls the adaption of the current
velocity vi towards the given desired velocity wi ∈ C([0, T], R2). In general, the desired velocity w can
be time dependent. For example, in evacuation scenarios, we may obtain the desired velocity with the
help of the Eikonal equation. Here, we focus on simple scenarios to understand the basic properties
and parameters of the model, we therefore set the desired velocity to a constant value for each specific
scenario. The rotation of the force vectors induced by the matrix M models a collision avoidance behavior
of the agents. The direction of the collision avoidance is controlled by the sign of the parameter λ. For
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λ > 0 agents move to the right, to avoid a collision, for λ < 0 the movement is directed to the left. See
[34] for further details.

For notational convenience, the solution of the system is expressed by the vectors x(t) =
(x1(t), . . . , xN(t)) ∈R

2N and v(t) = (v1(t), . . . , vN(t)) ∈R
2N for t ∈ [0, T].

Remark 1. We can easily include obstacles or walls in the model, by describing them as artificial
agents with fixed positions and fixed velocities and adding an additional interaction term similar to the
interaction of the agents in (2.1b).

2.1. Well-posedness

In this section, we study the well-posedness of the dynamics given in (2.1). We make the following
assumptions on the interaction force K

(
d, xi, xj, vi, vj

)
with i, j ∈ {1, . . . , N}.

Assumption 1. The interaction forces K
(
d, xi, xj, vi, vj

)
are locally Lipschitz and globally bounded with

respect to d, the positions xi, xj and the velocities vi, vj.

Assumption 2. The gradients of interaction forces ∇K
(
d, xi, xj, vi, vj

)
exist, are locally Lipschitz and

globally bounded with respect to the positions xi, xj and the velocities vi, vj.

Remark 2. Note that the first assumption is necessary to show the well-posedness of (2.1) while we
need the second assumption later on to obtain the well-posedness of the calibration problem.

A key step to derive the well-posedness of the system is to establish the Lipschitz property of the
right-hand side. In particular, the rotation of the force vector is of interest.

Lemma 1. Let Assumption 1 hold. For the rotation of the force term with vi, vj, vk, v� ∈R
2 and d ≥ 0 it

holds

|M (
vi, vj

)
K
(
d, xi, xj, vi, vj

)− M (vk, v�) K (d, xk, x�, vk, v�) |
≤ L1|(vi, vj) − (vk, v�)| + L2|(xi, xj) − (xk, x�)|

for some Lipschitz constants L1, L2 > 0.

Proof. We introduce the short hand notation

v1 = (vi, vj

)
, v2 = (vk, v�) , x1 = (xi, xj

)
, x2 = (xk, x�).

In the following, we omit the dependence on d. Hence we rewrite the left-hand side of the Lipschitz
condition as

|M (
v1
)

K
(
x1, v1

)− M
(
v2
)

K
(
x2, v2

) | (2.3)
≤ |K (x1, v1

) |∞|M (
v1
)− M

(
v2
) | + |M (

v2
) |∞ |K (x1, v1

)− K
(
x2, v2

) |.
We estimate the first term on the right-hand side of (2.3) as

|M (
v1
)− M

(
v2
) | ≤ ∣∣∣∣

∫ 1

0

∇M(v2 + s(v1 − v2))ds

∣∣∣∣ ∣∣v1 − v2
∣∣ , (2.4)

where

∇M
(
v1
)=(dM

dvi

(
v1
)

,
dM

dvj

(
v1
))

,
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with

dM

dvi

=
(− sin α − cos α

cos α − sin α

)
· dα

dvi

,

dα

dvi

=
⎧⎨
⎩−λ 1√

(‖vi‖‖vj‖)2−〈vi ,vj〉2

(
vj − 〈vi, vj〉 vi

‖vi‖2

)
, if vi, vj �= 0

0, else
.

Analogously, we derive dM
dvj

. Each element of ∇M(v2 + s(v1 − v2)) is bounded, for a detailed proof of the
boundedness see Appendix A. Note that K is globally bounded by Assumption 1. Moreover, K is locally
Lipschitz by Assumption 1 which allows us to estimate the second term on the right-hand side of (2.3).
Altogether, this proves the existence of the Lipschitz constants L1 and L2 as desired.

Lemma 2 (Existence and Uniqueness). Let Assumption 1 hold. Further we assume wi ∈
C([0, T], R2), i = 1, . . . , N and λ ∈ [−1, 1].

Then system (2.1) admits a unique solution x ∈ C1([0, T], R2N), v ∈ C1([0, T], R2N).

Proof. On the basis of Assumption 1 and Lemma 1, the result can be directly obtained with the help of
the Picard-Lindelöf theorem.

2.1.1. Body size
In the previous discussion, the body size is an abstract parameter. To give more details, we consider a
variation of the Morse potential [14] leading to the interaction potential

U
(
d,
∥∥xi − xj

∥∥)= R · e
d−‖xi−xj‖

r − A · e
d−‖xi−xj‖

a

leading to the forces K given by

K
(
d,
∥∥xi − xj

∥∥)=(A

a
· e

d−‖xi−xj‖
a − R

r
· e

d−‖xi−xj‖
r

)
· xi − xj∥∥xi − xj

∥∥ . (2.5)

Remark 3. Note that the forces depending on the body size as given in (2.5) with the standard regular-
isation satisfy the assumptions of Lemma 2. Hence, we have the existence and uniqueness of solutions
for the case with body size d > 0 as well.

2.2. Numerical studies

For the numerical studies of the model, we draw random initial positions with uniform distribution in
the domain and set initial velocities with respect to the desired direction of motion. We set the initial
velocity to the desired velocity. Then we solve (2.1) with a variant of the leap-frog scheme [34]. Indeed,
the relaxation terms are solved implicitly and the interaction is solved explicitly as given by

xk′
i = xk

i + �t

2
vk

i , vk′
i = (vk

i + �t · τ · wi

)
/(1 + �t · τ )

vk+1
i = vk′

i + �t · 1

N

∑
j �=i

M
(
vk′

i , vk′
j

) · K
(
xk′

i , xk′
j

)
, xk+1

i = xk′
i + �t

2
vk+1

i , i = 1, . . . , N, (2.6)

where �t denotes the step size of the time discretization.
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(a)

(b)

Figure 1. Initial positions and initial velocity vectors for the two scenarios with parameters
N = 80, Nblue = 40, Nred = 40, d = 0.2.

2.2.1. Influence of the body size
In the following, we provide some numerical results showing the influence of the body size on lane for-
mation in the corridor and crossing scenario, respectively. The first experiment simulates the movement
of two oncoming streams of pedestrians along a spacious corridor. The group of blue agents moves
from left to right with desired velocity wblue = (0.7, 0)T , whereas the red group of agents moves from
right to left with desired velocity wred = (−0.7, 0)T . We consider Nblue blue and Nred red agents. Hence,
the total number of pedestrians in the corridor is N = Nblue + Nred. The initial positions of the pedestrians
x(0) = x0 and their initial velocities v(0) = v0 are illustrated in Figure 1a.

To assure that the pedestrians do not leave the scenario, we add reflective and periodic boundary
conditions. In the corridor case the black lines (top and bottom) in Figure 1a show reflective boundaries.
We model the avoidance of wall contact, by reflecting the velocity vector of an agent that would step
outside of the domain in the next time step. The behavior of reflection from the wall is the same as in [34].
The light blue lines illustrate periodic boundaries. Blue agents leaving the domain at the boundary on the
right, enter again from the left. Analogously for the red agents. With the periodic boundary condition,
the number of agents in the system remains constant.

In the second scenario, we consider two groups of pedestrians at a crossing. Here, the blue group of
pedestrians moves from left to right with desired velocity wblue = (0.7, 0)T , and the red group of pedes-
trians move from bottom to top with desired velocity wred = (0, 0.7)T . In total, there are N = Nblue + Nred

pedestrians. The initial positions and initial velocity vectors are presented in Figure 1b. There, light
blue and green lines represent periodic boundaries for blue and red agents, respectively. Altogether, this
results in Algorithm 1 for the state system (2.1).

Algorithm 1. state system
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(a) (b)

(c) (d)

Figure 2. Simulation results in the corridor by different body sizes of pedestrians at time T = 35. In
each simulation, we fix parameters: A = 5, R = 20, a = 2, r = 0.5, λ = 0.25. Desired velocities for red
and blue agents are wred = (−0.7, 0)T and wblue = (0.7, 0)T , respectively. The time step in the Leap-Frog
Scheme is �t = 0.00625.

2.2.2. Study for different body sizes
To analyze the simulation results for different body sizes, we fix values for the force parameters and
desired velocities of each pedestrian. The parameters are chosen to satisfy the stability ranges of the
interaction force discussed in [14]. In fact, in the range, R/A > 1 and r/a < 1 the interaction force K is
repulsive in the short range and attractive in the long range. This allows the distance between pedestrians
to be maintained. Even if we include body size into the interaction force, it remains repulsive in a short-
range and attractive in a long range. The strength of attraction and repulsion forces between agents
ensures that they remain at a comfortable distance from each other and avoid collisions, regardless
of their color. However, the overall direction of movement of the agents is primarily determined by
their desired velocity w, which varies depending on the type of directed motion, such as bi-directional
movement, crossing motion, crossing at an angle, and so on.

Figure 2 shows the simulation results of the corridor scenario for different body sizes. The results
indicate a relation between the body size and the number of lanes formed. The smaller the body size,
the more lanes are obtained. The parameters used for the simulation are reported in the caption of the
figure. Similar results are found for the crossing scenario in Figure 3. Again, the smaller the body size,
the more lanes are formed.

In all simulations, we see the formation of so-called traffic lanes. This formation seems to be inde-
pendent of the choice of the random initial positions and velocities. It is interesting to note that even
though every pedestrian is guided by simple rules for movement and interaction, phenomena arise that
go beyond the behavior of single pedestrians. Such phenomena of self-organization are manifested in
many multi-agent systems [19]. They were reported in many articles concerning the movement of pedes-
trian flows [31, 36], which speaks in favor of the proposed model. Moreover, we want to emphasize that
not only the body size can influence the number of lanes. In fact, the choice of the width of the corridor,
the number of agents, and attraction and repulsion force parameters can change the formation of lanes
as well. For the force parameters, this is shown exemplarily in Figure 4.
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(a) (b) (c)

Figure 3. Simulation results at the crossing by different body sizes of pedestrians at time T = 35. In
each simulation, we fix parameters: A = 5, R = 20, a = 2, r = 0.5, λ = 0.25. Desired velocities for red
and blue agents are �wred = (0, 0.7)T and �wblue = (0.7, 0)T respectively. The time step in the leap-frog
scheme is �t = 0.00625.

(a) (b)

(c) (d)

Figure 4. Simulation results in the corridor by different force parameters at time T = 35. In each
simulation, the body diameter of the agents is fixed: d = 0.5. The time step in the leap-frog scheme
is �t = 0.00625.

As the body size, the ratio of repulsion and attraction amplitudes, and the size of the corridor have
similar effects in terms of volume exclusion, we suspect from these studies that volume exclusion is the
main driver of the lane formation process.

2.2.3. Fundamental diagram
Often fundamental diagrams are employed to analyze crowd motion models [27, 36]. Main objective
is the relationship of speed and density [29, 32, 36] which we study for the bi-directional and crossing
flow simulated with the model described in Section 2. For the illustration, we take the corridor with
17m length and 4m width, see Figure 5 for the bi-directional flow and the intersection of corridors with
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Figure 5. Bidirectional pedestrian flow at time T = 0 and T = 5 s.

Figure 6. Crossing pedestrian flow at time T = 0 and T = 4 s.

a width of 4m and a length of 10m for the crossing flow, see Figure 6. The density approximation is
realized with the help of Voronoi diagrams as proposed in [6, 32]. Initially, agents move with their
desired walking speed until they slow down (or speed up) due to interaction forces. Most interactions
take place in the center of the domain, it is therefore the focus of our interest.

To approximate the density we construct Voronoi cells based on the positions of agents. The Voronoi
diagram allows separating the area into computational grids (polygons) based on the triangulation of the
computational area, in particular, the Delaunay triangulation [30]. Every point on the Voronoi diagram
has a region that is closer to it than any other [32]. In Figure 7a we see Voronoi cells of all agents.
Figure 7b shows the same cells, but only the ones in the region of interest � = [−2, 2] × [0, 4]. For
the crossing flow, the region of interest is � = [−2, 2] × [−2, 2]. Outside of the domain � agents are
involved in fewer interactions and walk approximately with their desired velocities. The model param-
eters in these simulation are set λ = −0.07, A = 6, R = 33, a = 1, r = 0.3, d = 0.46. In the preceeding
studies we focussed on the effect of the body size on the model dynamics. The magnitude of the param-
eter values was incidental. Now, we investigate whether the model is able to reproduce the fundamental
diagram, which was found in many experimental studies. We therefore already use here the parameters
obtained from the calibration in Section 3.

We employ the method proposed in [6, 32] to compute the density as follows

ρxy(t) =
{

1/Ai(t) if (x, y) ∈ Ai(t),

0 else

where Ai(t) gives the Voronoi cell area for agent i, and ρxy is the density distribution of the space. Voronoi
cells are computed using the Python, Scipy module, with the Voronoi and ConvexHull methods. Note
that the velocities are given by the integration of (2.1).

In Figure 9 we illustrate the relationship between density and speed at different time points. In the
beginning, the agents move with the desired speed in regions with lower density leading to weak inter-
action forces. When the two groups meet, we see that as the density increases and at the same time the
speed decreases as expected. Body size seems to have a minor influence on this effect.
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(a) (b)

Figure 7. Voronoi diagrams of bidirectional pedestrian flow at T = 5 s.

Figure 8. Bounded Voronoi diagram on � = [−2, 2] × [−2, 2] of crossing pedestrian flow at T = 5s.

(a) (b)

Figure 9. Fundamental diagrams of pedestrian flow in the corridor and at the crossing scenario.
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Table 1. Model parameters
λ Scaling factor (collision angle) τ Relaxation parameter (desired velocity)
A Attractive force amplitude R Repulsive force amplitude
a Attractive force range r Repulsive force range
w Desired velocity d Body size of pedestrian

This ends our analysis and numerical study of the model. In the following sections, we are concerned
with its parameter calibration based on real data [25]. We begin with the statement of the calibration
problem and analyze its well-posedness.

3. Analysis of the parameter calibration problem

In this section, we state the parameter calibration problem and analyze the existence of minimizers. Then
we lay the theoretical ground for the formulation of a gradient-descent method by deriving the first-
order optimality conditions, the existence of adjoint states, and finally the identification of the gradient
of the reduced cost functional. This prepares the formulation of a gradient descent-based calibration
algorithm that will be employed in the numerical section to fit the parameters to real data from the
BaSiGo experiment carried out in Düsseldorf in 2013 [6, 25] in the next section.

Let us begin with the statement of the parameter calibration problem. Table 1 shows all model param-
eters. For the calibration, we focus on the scaling factor λ involved in the collision avoidance process
and the force strengths A and R and body size of agents d. We do not include the parameters a and r
in the calibration problem, as the forces are driven by the ratios A/a as well as R/r, hence increasing
A, R or decreasing a, r has similar effects. Numerical tests that included r, a in the calibration led to very
unstable gradient behaviour, which we understood as a sign of overparameterization. We therefore fix r
and a for the following considerations.

For fixed 1 � ε > 0, we define the set of admissible parameters

Uad =
{

(λ, A, R, d) ∈ [−1 + ε, 1 − ε] × [0, Amax] × [0, Rmax] × [0, dmax]
}

and we want to find u := (λ, A, R, d) ∈ Uad such that the model trajectories fit the real trajectories best.
We thus consider the cost functional

J(x, u) :=
∫ T

0

σ1

2N

N∑
i=1

∥∥xi(t) − xdata
i (t)

∥∥2

2
dt + σ2

2
‖u − uref‖2

2

with xdata given trajectory data from experiments. The first term measures the distance of the trajectories
resulting from the model to the real trajectories from the data. The second term of the cost functional
penalizes the distance of the parameters to some given reference parameters uref. In case there are no
reference values available, we set σ2 = 0.

To study well-posedness, we use the following notion of optimality:

Definition 3.1. We call u ∈ Uad optimal, if it is a solution to the optimization problem

min
(x,u)∈H1([0,T],R2N )×Uad

J(x, u) subject to (2.1). (P)

Note that the calibration problem is constrained by the ODE system without boundary conditions.
The boundary conditions are only incorporated in the numerical simulations to reflect the domain of the
experiments appropriately.

In the following, we consider the spaces Y and U given by

Y = [H1
(
[0, T], R2N

)× H1
(
[0, T], R2N

)]
, U = [−1, 1] ×R×R×R.
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Note that both, Y and U are Hilbert spaces, and Uad ⊂ U is closed. For notational convenience we define
the state vector y = (x, v) ∈ Y and the state operator

e : Y × U → Z∗, e(y, u) =
(

d
dt

y − F(y, u)

y(0) − y0

)
, (3.1)

where F(y, u) is the vector containing the right-hand side of (2.1a) and (2.1b), respectively.

3.1. Well-posedness of the parameter calibration problem

The proof of the existence of an optimal parameter set for the calibration problem will be based on the
following Lemmata which are concerned with the boundedness of the states with respect to the control
parameters and the weak continuity of the state operator e.

Lemma 3 (Boundedness). Let wi ∈ C([0, T], R2) for all i = 1, . . . , N and Assumption 1 hold and sup-
pose the interaction forces are given by (2.5). For given u ∈ Uad there exists a constant C > 0 depending
only on the body size d and

w̄ := max
i

sup
t∈[0,T]

‖wi(t)‖ ,

such that the solution y ∈ Y with e(y, u) = 0 satisfies

‖y‖Y ≤ C(1 + ‖u‖ ).

Proof. We begin with the estimate for ‖y‖L2([0,T],R2) . It holds

‖x(t)‖2 ≤ 2 ‖x0‖2 + 2
∫ t

0

‖v(s)‖2 ds, ‖v(t)‖2 ≤ 2 ‖v0‖2 + 2
∫ t

0

‖w(s) − v(s)‖2 + Ced ‖u‖2 ds.

Hence, using Gronwall Lemma we obtain ‖y(t)‖2 ≤ ‖u‖2 eCt and integration over [0, T] yields
‖y‖L2(0,T ,R2) ≤ C1 ‖u‖ . For the time derivatives, we find

∥∥∥∥ d

dt
x(t)

∥∥∥∥
2

≤ ‖v(s)‖2 ,

∥∥∥∥ d

dt
v(t)

∥∥∥∥
2

≤ 2 ‖w(s) − v(s)‖2 + 2Ced ‖u‖2 .

Integration over [0, T] leads to
∥∥∥∥ d

dt
y

∥∥∥∥
L2(0,T ,R2)

≤ C(1 + ‖u‖ ). The two estimates together give the

result.

Lemma 4. Let Assumption 1 hold. The state operator

e : Y × U → Z∗, e(y, u) =
(

d
dt

y − F(y, u)

y(0) − y0

)

is weakly continuous.

Proof. Let (yk, uk) ⇀ (ŷ, û) as k → ∞. We need to show that e(yk, uk) ⇀ e(ŷ, û) as k → ∞, which can
be reformulated as follows.

For any given test function ϕ ∈ C1
c (Z), we need to obtain the following convergence property

lim
k→∞

∫
〈e(yk, uk), ϕ〉dt →

∫
〈e(ŷ, û), ϕ〉dt.
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We estimate

lim
k→∞

∫ t

0

[
d

dt
yk − d

dt
ŷ − F(yk, uk) + F(ŷ, û)

]
ϕdt

= : lim
k→∞

∫ t

0

[
d

dt
yk − d

dt
ŷ

]
ϕdt

+ lim
k→∞

∫ t

0

[
v̂ − vk

τ (−v̂ + vk) − Mλ̂(v̂)KÂ,R̂(d̂, x̂) + Mλk (vk)KAk ,Rk (dk, xk)

]
ϕdt

= lim
k→∞

∫ t

0

[
d

dt
yk − d

dt
ŷ

]
ϕdt + lim

k→∞

∫ t

0

[−(vk − v̂)

τ (vk − v̂)

]
ϕdt

+ lim
k→∞

∫ t

0

[
0(

Mλk (vk) − Mλ̂(v̂)
)
KAk ,Rk (dk, xk) + Mλ̂(v̂)

(
KAk ,Rk (dk, xk) − KÂ,R̂(d̂, x̂)

)
]

ϕdt

Clearly, the first and second integral tends to zero for k → ∞ by the weak convergence of yk to y ∈ Y .
Let us consider the third integral separately. We can estimate the first summand as∥∥Mλk (vk) − Mλ̂(v̂)

)
KAk ,Rk (dk, xk)

∥∥
≤ ∥∥Mλk (vk) − Mλk (v̂) + Mλk (v̂) − Mλ̂(v̂)

)∥∥ · ∥∥KAk ,Rk (dk, xk)
∥∥

≤ ∥∥Mλk (vk) − Mλk (v̂)
∥∥ · ∥∥KAk ,Rk (dk, xk)

∥∥+ ∥∥Mλk (v̂) − Mλ̂(v̂)
)∥∥ · ∥∥KAk ,Rk (dk, xk)

∥∥
≤ Lλk

∥∥vk − v̂
∥∥ · ∥∥KAk ,Rk (dk, xk)

∥∥+ ∥∥Mλk (v̂) − Mλ̂(v̂)
)∥∥ · ∥∥KAk ,Rk (dk, xk)

∥∥ .

From Lemma 1 we have Lλk . We recall that K is Lipschitz continuous by Assumption 1, and that vk is in
H1([0, T], RD) ↪→↪→ L2([0, T], RD). By weak convergence of vk ⇀ v̂ and by this compact embedding,
the first norm tends to zero as k → ∞. The

∥∥Mλk (v̂) − Mλ̂(v̂)
)∥∥ tends to zero by continuity of the map

λ �→ Mλ(v).
Analogously we obtain the convergence of the term

∥∥∥Mλ̂(v̂)
(
KAk ,Rk (dk, xk) − KÂ,R̂(d̂, x̂)

)∥∥∥. Then, using
continuity of the interaction force with respect to A, R and d, and weak convergence of xk ⇀ x̂ and
compact embedding xk in H1([0, T], RD) ↪→↪→ L2([0, T], RD), we obtain the desired result.

Theorem 3.2. There exists at least one solution (y∗, u∗) ∈ Y × Uad to (P).

Proof. The cost functional J is bounded from below and the state system is well-posed, so there exists

m = inf
(y,u)∈Y×Uad

J(y, u).

Let (uk) ∈ Uad be a minimizing sequence. The sequence (uk) ⊂ Uad is bounded, and by the reflexivity
of U it has a weakly convergent subsequence (not relabeled) with limit û. By Lemma 3 we obtain the
boundedness of (yk) and, again by reflexivity, the existence of ŷ such that

uk ⇀ û in Uad and yk ⇀ ŷ in Y as k → ∞. (3.2)

The weak continuity of e(y, u) shown in Lemma 4 implies∥∥e(ŷ, û)
∥∥≤ lim inf

k→∞
‖e(yk, uk)‖ = 0.

Hence ŷ is the solution to the state equation with parameters û. By the weak lower semi-continuity of
the norm, we obtain

J(ŷ, û) ≤ lim inf
k→∞

J(yk, uk) = m,

which allows us to conclude that (ŷ, û) is a minimizer of (P).
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Remark 4. Because of the non-linearity of the state equation, we cannot expect the uniqueness of the
optimal control.

Having the existence of an optimal solution, we proceed with the derivation of the first-order
necessary conditions, which will form the basis of the identification algorithm.

3.2. First-order necessary conditions

We introduce the dual pairing

〈e(y, u), (ξ , η)〉Z,Z∗ =
∫ T

0

(
d

dt
y − F(y, u)

)
· ξ (t)dt + (y(0) − y0) · η, (3.3)

where ξ , η are the Lagrange multipliers in the Banach space

Z = [L2([0, T], R2N) × L2([0, T], R2N) ×R
2N ×R

2N]

that represent the space of the adjoint states. Here, ξ = (ξx, ξv), η = (ηx, ηv) and (ξ , η) ∈ Z. The space of
states Y and the set of controls U are defined at the beginning of Section 3.

We formally derive the first-order optimality system with the help of the Lagrangian corresponding
to the constrained parameter calibration problem given by

L : Y × U × Z →R, L(y, u, ξ , η) = J(y, u) + 〈e(y, u), (ξ , η)〉Z,Z∗ . (3.4)

3.2.1. Derivation of the adjoint system and the optimality condition
Solving dL(y, u, ξ , η) = 0 yields the first-order optimality condition [21]. We begin with the computation
of the directional derivatives of (3.4) with respect to the state y. For notational convenience we consider
x and v separately.

First, we obtain Gâteaux derivatives of the objective function

dxi J(y, u)[hxi ] = σ1

N

∫ T

0

(xi(t) − xdata
i (t))hxi (t)dt, dvi J(y, u)[hvi ] = 0.

Now we derive the directional derivatives with respect to the positions of agents for the second part
of the Lagrange functional

dxi 〈e(y, u), (ξ , η)〉 [hxi ] = dxi 〈ei(y, u), (ξ , η)i〉 [hxi ] +
N∑

j=1
j �=i

dxi

〈
ej(y, u), (ξ , η)j

〉
[hxi ].

Using integration by parts, we obtain

dxi 〈e(y, u), (ξ , η)〉 [hxi ] =
∫ T

0

h′
xi
ξxi (t) + 1

N
hxi

N∑
j=1
j �=i

(
M(vi, vj)dxi K(xi, xj)

)T

ξvi (t)dt (3.5)

+
∫ T

0

hxi

1

N

N∑
j=1
j �=i

[
M(vj, vi)dxi K(xj, xi)

]T
ξvj (t)dt + hxi (0)ηxi .

Since M(vi, vj) = M(vj, vi) is symmetric and dxi K(xi, xj) = −dxi K(xj, xi) by the radial symmetry of K, we
obtain

dxi〈e(y, u), (ξ , η)〉[hxi ] = hxi (0)ηxi

+
∫ T

0

[
h′

xi
(t)ξxi (t) + hxi (t)

1

N

N∑
j=1
j �=i

(
M(vi, vj)dxi K(xi, xj)

)T

(ξvi (t) − ξvj (t))

]
dt.
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Similarly, we obtain the derivative in direction hvi . Indeed, by using integration by parts we find

dvi 〈e(y, u), (ξ , η)〉 [hvi ] = dvi 〈ei(y, u), (ξ , η)i〉 [hvi ] +
N∑

j=1
j �=i

dvi

〈
ej(y, u), (ξ , η)j

〉
[hvi ]. (3.6)

To simplify the notation we introduce the operator dvi M
∗(vi, vj) resulting from matrix reformulations,

see Appendix B for more details. We get

dvi〈e(y, u), (ξ , η)〉[hvi ] =hvi (0)ηvi +
∫ T

0

h′
vi
ξvi (t) − hviξxi (t) + τhviξvi (t) dt

+
∫ T

0

hvi

[
1

N

N∑
j=1
j �=i

dvi M
∗(vi, vj)K(xi, xj)ξvi (t)

+ 1

N

N∑
j=1
j �=i

dvi M
∗(vj, vi)K(xj, xi)ξvj (t)

]
dt.

Moreover, the directional derivatives with respect to the control are given by

duJ(y, u)[hu] = σ2(u − uref )hu, (3.7)

du 〈e(y, u), (ξ , η)〉 [hu] = −
∫ T

0

hu

∑
i

[
duF(yi, u)

]T
ξvi (t)dt. (3.8)

Remark 5. For the specific choice (2.5), as we choose the interaction forces for the numerical results,
the derivatives read

dF(yi, u)

dλ
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1
N

∑
j �=i

(− sin αij − cos αij

cos αij − sin αij

)
arccos vi·vj

‖vi‖‖vj‖ · K(xi, xj), for vi, vj �= 0,

�02×1, else

,

dF(yi, u)

dA
= − 1

a · N

∑
j �=i

M(vi, vj) · e
d−‖xi−xj‖

a · xi − xj∥∥xi − xj

∥∥ ,

dF(yi, u)

dR
= 1

r · N

∑
j �=i

M(vi, vj) · e
d−‖xi−xj‖

r · xi − xj∥∥xi − xj

∥∥ .

dF(yi, u)

dd
= − 1

N

∑
j �=i

M(vi, vj) ·
(

A

a2
e

d−‖xi−xj‖
a − R

r2
e

d−‖xi−xj‖
r

)
· xi − xj∥∥xi − xj

∥∥ .

3.2.2. Existence of adjoint states
The proof of the existence of adjoint states is based on Corollary 1.3 in [21], which we give in Appendix
C for completeness.

Theorem 3.3. Let wi ∈ C([0, T], R2), i = 1, . . . , N be given, the Assumption 1 and 2 hold and u∗ ∈ Uad

be an optimal solution of Problem (P) and let y∗ ∈ Y such that e(y∗, u∗) = 0. Then there exist an adjoint
state p∗ = (ξ ∗, η∗) ∈ Z∗ such that the following optimality conditions hold

〈e(y∗, u∗), p〉Z,Z∗ = 0 ∀p ∈ Z∗,

〈Ly(y
∗, u∗, p∗), h〉Y∗ ,Y = 0 ∀h ∈ Y∗,

u∗ ∈ Uad, 〈Lu(y∗, u∗, p∗), u − u∗〉U∗ ,U ≥ 0, ∀u ∈ Uad.
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Proof. We check requirements given in Assumption 3 (see Appendix C):

(A1) Uad = [−1 + ε, 1 − ε] × [0, Amax] × [0, Rmax] × [0, dmax] ⊂ U is nonempty, convex and closed.
(A2) We first note that U, Y , Z are Banach spaces. Further, J is of tracking type and therefore Fréchet

differentiable [35]. We are left to show Fréchet differentiability of the state operator e(y, u) : Y ×
U → Z. In Section 3.2.1 we computed the first variations of e(y, u) with respect to y and u by

dy

〈
e(y, u)[(hy)], (ξ , η)

〉= lim
ε→0

1

ε

〈
e(y + εhy, u) − e(y, u), (ξ , η)

〉
,

and obtained (3.5) and (3.6). There, the continuity of linear terms follows directly from the
definition. We show the continuity for nonlinear terms:

Let, the sequence yk := (xk, vk) ⊂ Y have the limit yk such that xk → x and vk → v as k → ∞.
Using Assumption 2 we show the continuity of nonlinear terms in (3.5). Indeed, for the i-th
component, it holds

∫ T

0

1

N
hxi

N∑
j=1
j �=i

(
M(vki , vkj )dxi K(xki , xkj ) − M(vi, vj)dxi K(xi, xj)

)T (
ξvi − ξvj

)
dt

≤ L1 · L2

∫ T

0

1

N

N∑
j=1
j �=i

(∥∥vki − vi

∥∥+ ∥∥vkj − vj

∥∥+ ∥∥xki − xi

∥∥

+ ∥∥xkj − xj

∥∥) ∥∥ξvi − ξvj

∥∥ dt ≤ L1 · L2

∫ T

0

∥∥yki − yi

∥∥ ∥∥ξvi − ξvj

∥∥ dt,

where L1, L2 are Lipschitz constants. Analogously, we show the continuity for the nonlinear terms
of (3.6) using Assumption 1 and Appendix A. These, yield the continuity of the state operator
e(y, u) by y. The continuity with respect to u, can be concluded from the continuity of the λ �→ M,
and the linearity of the force term with respect to A and R. Altogether, this proves the continuity
of e as desired.

(A3) By Lemma 2 the state system e(y, u) = 0 has an unique solution y = y(u) ∈ Y for all u ∈ V ⊂ U a
neighborhood of Uad.

(A4) We have to show that ey(y(u), u) ∈L(Y , Z) has a bounded inverse for all u ∈ V ⊃ Uad. We can write
dye(y, u)[h] in general form

dye(y, u)[h] = d

dt
h(t) + dyF(y, u)h(t),

where dyF(y, u) is integrable in t over every finite interval I ⊂ [0, T] thanks to Assumption 2. We
consider dye(y, u)[h] = r for arbitrary r ∈ Z∗. By Carathéodory’s existence theorem, we get for
every r ∈ Z∗ a unique solution [16], namely h = dye(y, u)−1[r]. Using dye(y(u), u), we obtain

‖h(t)‖ ≤ ‖h(0)‖ +
∫ T

0

‖r(s)‖ ds + C exp

(∫ T

0

‖h(s)‖ ds

)
, t ∈ [0, T]

and with the help of Gronwall’s Lemma, we get the boundedness of the inverse of dye(y(u), u).

Altogether, the requirements of Assumption 3 are satisfied, and thus Proposition 1 (see Appendix C)
yields the existence of an adjoint state.
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Remark 6. Note that assuming more regularity of the adjoint states, for instance, Z = Y , we may
establish the strong formulation of the adjoint system given by

ξ ′
xi

(t) =σ1

N
(xi(t) − xdata

i (t)) + 1

N

N∑
j=1
j �=i

(
M(vi, vj)dxi K(xi, xj)

)T

(ξvi (t) − ξvj (t)),

ξ ′
vi

(t) = − ξxi (t) + τξvi (t) − 1

N

N∑
j=1
j �=i

dvi M
∗(vi, vj)K(xi, xj)ξvi (t)

− 1

N

N∑
j=1
j �=i

dvi M
∗(vj(t), vi(t))K(xj(t), xi(t))ξvj (t) (3.9)

supplemented with the terminal conditions ξxi (T) = 0, ξvi (T) = 0. The strong form will be employed for
the numerical results in Section 4.

3.2.3. Gradient of the reduced cost functional
To minimize the objective function we aim to apply a gradient descent algorithm. In order to deter-
mine the gradient, we define the control-to-state operator F : U → Y , and introduce the reduced cost
functional as Ĵ(u) := J(F(u), u). Using e(y, u) = 0, we obtain

0 = dye(F(u), u)[dF(u)] + due(F(u), u).

Taking the derivative of the Lagrangian with respect to the state y, we get

dye(y, u)∗ξ = −dyJ(y, u).

With these, we can compute the Gâteaux derivative of the reduced cost functional in the direction
hu ∈ U, and obtain

dĴ(u)[hu] = 〈dyJ(y, u), dF(u)[hu]〉 + 〈duJ(y, u), hu〉
= 〈due(y, u)∗ξ , hu〉 + 〈duJ(y, u), hu〉 = duL(y, u, ξ )[hu].

Note that we have already computed duJ(y, u) in Section 3.2.1. This allows us to identify the gradient of
the reduced cost functional as

∇ Ĵ(u) = σ2(u − uref ) −
∫ T

0

∑
i

[
duF(yi, u)

]T
ξvi (t)dt. (3.10)

4. Calibration algorithm and results

To calibrate the control parameters we use real data from the BaSiGo experiment carried out
in Düsseldorf in 2013 [6, 25]. In the following, we denote the trajectories from experimen-
tal data by xdata

i : [0, T] →R
2, i = 1 . . . N. For the corridor case, we take the data from file

”bi_corr_400_a_02.txt” in [25]. These show the positions of the pedestrians in the domain � =
[−6, 6] × [0, 4.2], over time t ∈ [0, 150] seconds. For the crossing case, we take the data from file
“CROSSING_90_E_2.txt” in [25]. This file provides the positions of the pedestrians in the crossing
corridors � = ([−5, 5] × [−1.5, 2]) ∩ ([−1.2, 2] × [−5, 5]), over time t ∈ [0, 283] seconds. However, in
the calibration algorithm, we use only 8-second intervals for both scenarios. In this way we can extract
several batches from one movie and are computationally efficient. Moreover, once the model deviates
from the data, cost will accumulate over time. By working with small time intervals this error is reduced.
However, we also tested longer simulations times which led to similar results.
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Algorithm 2. Steepest Descent Algorithm

4.1. Numerical schemes and steepest descent algorithm

In general, the nonlinearities make it rather difficult to solve the optimality system all at once. We,
therefore, opt for an iterative approach to compute the gradient of the calibration problem. Indeed, we
first solve the state system (2.1) as considered in Section 2.1.1. Then, we integrate the adjoint system
(3.9) with the help of a second-order Runge-Kutta method backward in time. Here, we use the same time
steps as for the state problem and transform the time via s = T − t to recover an initial value problem.
With the state solution and the adjoint solution, we calculate the gradient using (3.10), where the integral
is approximated with the trapezoidal rule.

We apply a steepest descent algorithm to update the control parameters in every iteration

uk+1 = uk − βk · ∇ Ĵ(u) (4.1)

where uk denotes the control on current time step, and ∇ Ĵ(u) denotes the descent direction and βk ∈R
4

is a positive scaling vector. The complete optimization procedure is summarized in Algorithm 2.
Since we cannot assume that the data and the model are a perfect match, we employ a stochastic

gradient descent approach using mini-batches [24]. To obtain the mini-batches from the data trajectories
which are given on the interval [0, T], we split the interval into M mini-batches, each of size bi = T/M,
i = 1 . . . M. Then we randomly select m < M mini-batches for each of the gradient steps.

In more detail, at each iteration we compute the gradients of the m batches and approximate the
gradient using the average

∇ Ĵ(u) = 1

m

m∑
i=1

∇ Ĵbi (u)

to update the control via (4.1). The stopping criterion of the calibration algorithm is based on the relative
error between the previous and current cost function value denoted by εrel.

4.2. Numerical results

In this section, we discuss numerical results generated with Algorithm 2 using experimental data
from the Pedestrian Dynamics Data Archive [25]. In particular, we retrieve the trajectories from video
recordings showing bi-directional and cross-directional flows.

We fix the velocity scaling τ = 1, attractive potential range a = 1, repulsive potential range r = 0.3.
The total number of pedestrians presented in the data is N = 84 in the corridor case and N = 71 in the
crossing scenario. The desired velocities of agents that go from right to left and from left to right are
respectively wred = (−0.7, 0)T and wblue = (0.7, 0)T . The value 0.7 is the average velocity that we extracted
from the experimental data. The desired velocities for the crossing scenario are again computed from
the experimental data and set to wred = (0, 1.2)T and wblue = (1.2, 0)T . It is interesting that in the crossing
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(a) (b)

Figure 10. Cost functionals of the corridor and crossing scenarios.

scenario agents move faster than agents in the corridor. However, from the video data of the crossing
scenario, we see that in the interacting part of the domain are fewer people. Also, in the corridor case,
agents try to move alongside the whole corridor avoiding collisions, while in the crossing case, agents
interact just on the crossroad.

The time step in the Leap Frog scheme and second order Runge-Kutta method is set to �t = 0.00625.
Simulations are done in the time interval t ∈ [0, 8]. The gradient is calculated with m = 50 mini-batches
of length |bi| = 10 · �t. The short mini-batch length can lead to a non-smooth decrease in the cost
function.

The initial positions of the agents x0 coincide with the initial positions of the experimental data,
which are distributed in the domain [−6, 6] × [0, 4.2]. As the initial velocity of the pedestrians, we set
the average velocity from the experimental data. We probably induce some error here, as we do not have
the exact values from the data.

As an initial guess of the control parameters, we take u0 = (0, 0, 40, 0.6) for both experiments. We set
the regularization parameters in the cost functional to σ1 = 1 and σ2 = 0. We, therefore, do not need to
choose reference values for the control. In this setting, we repeat Algorithm 2 while the given stopping
criterion is fulfilled. As the interval length of the mini-batches is rather short, the magnitude of the
gradient compontens is rather small. We therefore multiply with a step size parameter β which accounts
for the different ranges of the control values. This can be seen as a kind of preconditioning. The initial
step size parameter β0 = (20, 4000, 4000, 20) was found by trial and error. Further, we change βk using
the Armijo rule. The Armijo rule ensures a sufficient decrease in the objective function.

Figure 10a illustrates the decrease of the cost functional for the corridor case with initial body diam-
eter d = 0.6. It starts from approximately 6.53 in the first iteration and terminates at around 5.14 in the
last iteration. In Figure 10b we see the evolution of the cost for the crossing scenario from 8.83 to 7.46.
We note that the cost values of the corridor are smaller than the ones of the crossing case. This indicates
that the proposed model captures the effects of counter-flow better than the effects of crossing flow.

In Table 2 the calibration results with different body size are presented. The parameters of the
first calibration procedure reached optimal values λ = −0.072, A = 6.14, R = 33.29, and d = 0.46 for
the simulation in the corridor. For the simulation at the crossing scenario, optimal values reached
λ = −0.068, A = 8.66, R = 32.91, and d = 0.456. Interestingly, the optimal λ is negative and in the
same range in both scenarios. This indicates that the pedestrians in the data set have a tendency to move
to the left to avoid collisions. Moreover, the repulsion strengths are similar for both scenarios, but the
values for the attraction strengths differ. The difference in the attraction strengths may arise from the
post-interaction behavior of the model. Simulations, as reported in [34], show that two interacting agents
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Table 2. Calibration results for the corridor and the crossing cases by different initial guesses for body
sizes. The attraction and repulsion ranges are set a = 1, r = 0.3 in both scenarios

Corridor Crossing

Initial d = 0.6 d = 0.5 d = 0.35 Initial d = 0.6 d = 0.5 d = 0.35
λ 0 −0.072 −0.07 −0.065 λ 0 −0.068 −0.065 −0.071
A 0 6.14 6.12 6.23 A 0 8.66 8.97 9.28
R 40 33.29 30.18 31.47 R 40 32.91 29.39 31.62
dopt 0.46 0.45 0.42 dopt 0.456 0.44 0.43
Jmin 5.14 5.27 5.19 Jmin 7.46 7.53 7.34

move on with slightly shifted positions after a collision avoiding interaction. We suspect that this has
more impact on the results in the crossing than the corridor scenario. So far, however, this is only a
conjecture and needs to be proven or discarded by further investigations.

5. Conclusion and outlook

We extended the anisotropic interaction model proposed in [34] by including body size and thus addi-
tional volume exclusion effects. Numerical studies indicate that body size has an influence on the lane
formation process. In fact, it seems that a smaller body size leads to a higher number of lanes formed and
vice versa. Moreover, we investigated the fundamental diagram of the dynamics and found that higher
densities lead to lower velocities. This observation was expected from other experiments and underlines
the feasibility of the approach.

Due to the ODE formulation of the model, we were able to analyze the model in terms of well-
posedness and further rigorously derive a gradient-based descent algorithm for a calibration problem
using real data. The optimal scaling parameters for the collision avoidance and the repulsion strength
turn out to match very well for the two tested scenarios. For the attraction parameter, we find different
values for the two scenarios. We suspect that this is related to the post-collision behavior of the model.

To prove or discard this conjecture is interesting future work. Moreover, the rigorous analysis of
stationary states like the lanes in the corridor case and the traveling waves in the crossing case is planned
for future investigations.
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Appendix A. Boundedness of ∇M( · )

We show the boundedness of ∇M(vi, vj), where

∇M(vi, vj) =
(

dM(vi, vj)

dvi

,
dM(vi, vj)

dvj

)
,
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with

dM

dvi

=
(− sin α − cos α

cos α − sin α

)
· dα

dvi

,

dα

dvi

=
⎧⎨
⎩

−λ 1√
(‖vi‖‖vj‖)2−〈vi ,vj〉2

(
vj − 〈vi, vj〉 vi

‖vi‖2

)
, if vi, vj �= 0

0, else
. (A1)

We, therefore, transform the system to polar coordinates and introduce the notations vi =(
r1 cos φ1

r1 sin φ1

)
, and vj =

(
r2 cos φ2

r2 sin φ2

)
. Here, r1 and r2 are positive scalars. It is clear that∣∣∣∣∣

(− sin α − cos α

cos α − sin α

)∣∣∣∣∣< ∞. Then, we need to show
∣∣∣ dα

dvi

∣∣∣= C < ∞.

For further usage, we define

‖vi‖2 = r1,
∥∥vj

∥∥
2
= r2 and 〈vi, vj〉 = r1r2( cos φ1 cos φ2 + sin φ1 sin φ2).

Substituting the velocity vectors in (A1), we get
∣∣∣∣dα

dvi

∣∣∣∣
2

=
∣∣∣∣∣ −λ√

r2
1r2

2 − (r1r2 cos (φ1 − φ2))2

∣∣∣∣∣
∣∣∣∣∣
(

r2 cos φ2

r2 sin φ2

)
− r1r2 cos (φ1 − φ2)

1

r2
1

(
r1 cos φ1

r1 sin φ1

)∣∣∣∣∣
2

= |λ|
r1r2 |sin (φ1 − φ2)|

∣∣∣∣∣
(

r2 cos φ2 − r2 cos φ1 cos (φ1 − φ2)

r2 sin φ2 − r2 sin φ1 cos (φ1 − φ2)

)∣∣∣∣∣
2

= |λ|
r1r2 |sin (φ1 − φ2)|

[
r2

2( cos φ2 − cos φ1 cos (φ1 − φ2))
2

+r2
2( sin φ2 − sin φ1 cos (φ1 − φ2))

2
] 1

2

= |λ|
r1r2 |sin (φ1 − φ2)| r2

√
1 − cos2 (φ1 − φ2) = |λ|

r1

< ∞.

Analogously, we can show that
∣∣∣ dα

dvj

∣∣∣
2
= |λ|

r2
< ∞. This proves the boundedness of ∇M(vi, vj) as desired.

Appendix B. Tensor dvi M
∗(vi, vj)

Here, we present the details of the mathematical manipulations made to tensor dvi M(vi, vj) in the
derivation of dvi M

∗(vi, vj). Note that dvi M(vi, vj) is a tensor with dimension 2 × 2 × 2 given by:

dvi M
(
vi, vj

)=
(− sin αij · dviαij − cos αij · dviαij

cos αij · dviαij − sin αij · dviαij

)
2×2×2

, (B1)

where

dviαij =
⎧⎨
⎩

−λ · 1√
(‖vi‖‖vj‖)2−〈vi ,vj〉2

·
(

vj − 〈vi, vj〉 vi

‖vi‖2

)
, for vi �= 0, vj �= 0,

�0, else
.
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The elements of the tensor dvi M
(
vi, vj

)
in (B1) are denoted as:

dvi M(vi, vj) =

⎛
⎜⎜⎜⎜⎜⎝

(
m11

m12

) (
m21

m22

)
(

m31

m32

) (
m41

m42

)
⎞
⎟⎟⎟⎟⎟⎠ , with mij ∈R, i = 1, . . . , 4, j = 1, 2,

then its dual dvi M
∗(vi, vj) in (3.6) is the transposed tensor after swapping its axes, as given below:

dvi M
∗(vi, vj) =

⎛
⎜⎜⎜⎜⎜⎝

(
m11

m21

) (
m31

m41

)
(

m12

m22

) (
m32

m42

)
⎞
⎟⎟⎟⎟⎟⎠ .

Appendix C. Existence of adjoint states

For completeness, we give the assumptions and the statement of Corollary 1.3 of [21] which we use to
prove the existence of adjoint states in Section 3.2.2.

Assumption 3. Let the following assumptions hold:

(A1) Uad ⊂ U is nonempty, convex, and closed.
(A2) J : Y × U →R and e : Y × U → Z are continuously Freéchet differentiable and U, Y , Z are

Banach spaces.
(A3) For all u ∈ V in a neighbourhood V ⊂ U of Uad, the state equation e(y, u) = 0 has a unique solution

y = y(u) ∈ Y .
(A4) ey(y(u), u) ∈L(Y , Z) has a bounded inverse for all u ∈ V .

Proposition 1 (Existence of adjoint states [21]). Let (ȳ, ū) be an optimal solution of

min J(y, u) subject to e(y, u) = 0

and let Assumption 3 hold.
Then there exists an adjoint state (or Lagrange multiplier) p̄ ∈ Z∗ such that the following optimality

conditions hold

〈e(ȳ, ū), p〉Z,Z∗ = 0 ∀p ∈ Z∗,

〈Ly(ȳ, ū, p̄), v〉Y∗ ,Y = 0 ∀v ∈ Y∗,

ū ∈ Uad, 〈Lu(ȳ, ū, p̄), u − ū〉U∗ ,U ≥ 0, ∀u ∈ Uad.
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