
Canad. Math. Bull. Vol. 39 (1), 1996 pp. 59-67 

AN INTEGRAL REPRESENTATION FOR THE 
GENERALIZED BINOMIAL FUNCTION 

M. HEGGIE AND G. R. NICKLASON 

ABSTRACT. The generalized binomial function *Ba can be obtained as the solution 
of the equation y = 1 +zya which satisfies y(0) = 1 where a ^ 1 is assumed to be real 
and positive. The technique of Lagrange inversion can be used to express (Ba as a series 
which converges for \z\ < cTa\a — l\a~l. We obtain a representation of the function 
as a contour integral and show that if a > 1 it is an analytic function in the complex 
z plane cut along the nonnegative real axis. For 0 < a < 1 the region of analyticity 
is the sector | arg(—z)\ < air. In either case (Ba defined by the series can be continued 
beyond the circle of convergenece of the series through a functional equation which can 
be derived from the integral representation. 

1. Introduction. The generalized binomial function or hyperbinomialfunction (Ba 

can be obtained as the solution of the equation 

(1) y(z)=\+zy(zf 

which satisfies j>(0) = 1. We assume that z is an arbitrary complex number and that a ^ 1 
is real and positive. Throughout the paper a is considered to be a fixed parameter and 
(Ba is considered to be a function of z only. A property of the function derivable from the 
functional equation (1) can be used to deal with negative values of a. The restriction of 
a to real values will serve to cover the applications of the function which we give here, 
however extension to complex values would seem to be straightforward in view of the 
integral representation for the function which we obtain. 

The method of Lagrange inversion [8, p. 133] can be applied to equation (1) to rep
resent the solution in series form as 

A simple application of the ratio test shows that the series converges for 

l a - IIe*"1 

(3) - \A < J 2 4 J L — 
Since the value on the right side of this equation occurs several times throughout the 
course of the paper, we set ,4 = oc~a\a — l | a _ 1 in the following. For a = 1 the series 
reduces to the geometric series and so converges for \z\ < 1. 
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In the following we show that the function defined by (1) can be represented by 

W 2TTÏ J-™ r ( ( a - l)s + 2) 

The integral converges for | arg(—z)\ < ir if a > 1 and for | arg(—z)\ < air if 0 < a < 1. 
It represents an analytic function of z for | arg(—z)\ <ir — Sifa> I and for | arg(—z)\ < 
air — 8 if 0 < a < 1 where 8 > 0. It is also shown that the continuation of (2) beyond 
the circle of convergence \z\ = A is given by the functional equation 

(5) £ a ( z ) = l - £ 1 / a ( - ^ = ) 

since the series represented by the right member converges for \z\ > A. As an appli
cation of (5), we later demonstrate a simple differential equation whose solution on a 
given interval can be expressed by using the appropriate form of the generalized bino
mial function. 

The generalized binomial function is introduced in the form (2) in [1] where it is 
used to obtain various identities involving binomial coefficients. This has been one of 
the primary uses of the function in the past, but our investigations indicate that there is a 
considerable range of applications for which this function is well suited as an analytical 
tool. In the following examples as well as others which we are currently developing, the 
utility of the generalized binomial function appears to be two-fold: Its functional prop
erties can be used to simplify differential equations and non-elementary integral forms 
or they can be used to explicitly invert expressions which would otherwise remain im
plicit. The function has also appeared in previous work, but its form has gone unnoticed. 
An example of this occurs in [4] where the calculation of roots of certain polynomial 
equations is considered. Here, the generalized binomial function appears in the form of 
a generalized hypergeometric function. Application of the fundamental properties of the 
function to the calculations contained therein would have considerably simplified the 
final form. 

A nonlinear, second order differential equation which arises in the study of shocks 
was solved in [5]. There, the properties of the functional relation (1) were instrumental 
in obtaining the solution. It was also shown that a corresponding first order differen
tial equation also has solutions which can be expressed in terms of generalized binomial 
functions. In an unpublished work [6], the function was obtained as the solution to a non
linear recurrence relation. In the same paper a general form involving natural logarithms 
is shown to give rise to generalized binomial functions when it is inverted. The function 
has also been used to evaluate integrals of hyperelliptic type in [2, 3]. 

In the preceding discussion we have mentioned some of the applications of the gen
eralized binomial function to problems arising in rather diverse fields and beyond these, 
we are currently developing additional applications of the function. The function appears 
to have very useful analytic properties, but does not appear to have been widely studied. 
Based on this, we believe that a systematic study of the function should be carried out 
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and that, as this is done, further applications of the function will be uncovered. This paper 
is a first step in that process. 

In Section 2 the actual form for the integral representation is obtained. It is based 
on the observation that when a = n is a positive integer greater than 1, the general
ized binomial function is a generalized hypergeometric function of type nln-x- These 
functions have representations as contour integrals of Mellin-Barnes type and when the 
specific form applicable to the nJ'n-i hypergeometric function is considered, it is shown 
that the integrand reduces to a simple ratio of Gamma functions. Moreover, the same 
form holds when n is replaced by a general parameter a. We specifically note that if a is 
not a positive integer, then # a is not hypergeometric in nature. 

In the next Section we show that the series for the evaluation of the integral for arbi
trary values of the parameter a leads directly to the series (2) for the generalized binomial 
function. The analytic continuation of ®a given by (5) and valid for \z\ > A is found in 
the last Section. 

2. Connection with the generalized hypergeometric function. In [5] the gener
alized binomial function occurred in the solution of a particular second order, nonlinear 
ordinary differential equation. It was observed there that if n> 2 is an integer, then *Bn 

is a generalized hypergeometric function of type n7n-\> The particular form is 

/ I 2 n=± n x nnz \ 

(6) %) = X X'7' " 1 h—ipr • 

The generalized hypergeometric function q+\ 5q can be expressed as a contour integral 
by (see e.g., [7, p. 101]) 

(7) 

where 

and B is a Barnes path of integration which separates the poles of T(—s) to the right of 
the path from the poles of T(aj + s) to the left of the path. According to general theory 
(see e.g., [7, p. 97]), the integral in (7) represents an analytic function of z in the region 
| a r g ( - z ) | < 7T. 

In terms of the particular generalized hypergeometric function nfn-i which defines 
the generalized binomial function CBn, the contour integral defined by (7) becomes 

1 2 n-\ n r(-*)n£jr(i+*-£) 
" M â . â . - . A r J IJB UUT(S+^) {z)ds 
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The integral appearing in this expression can be considerably simplified in form if we 
make use of the Gaussian multiplication formula [7, p. 26] for the Gamma function 

(8) T(nz) {2^nn 
n-\ A / - 1 j 

Applying (8) to the products which appear in the integrand as well as to the factor F 
allows us to express the integral as 

J_ 
27T/ • iJBr((n-l)s + 2)\ n" Z) 

ds 

where we have used the recurrence relation V(t + 1) = tF(t) several times to simplify 
the form. Comparing this with (6), we obtain the contour integral representation for the 
generalized binomial function for the case when n > 2 is an integer as 

(9) 
2 7 r i A r ( ( / i - l ) s + 2) 

{-z)s ds. 

The general form given in (4) is obtained by replacing « by a in (9) and is, in fact, 
valid for any a > 0, although we do not specifically consider the case a — 1. For this 
value, the integral reduces to the known form for the function (B\ (z) = 1/(1 — z) and is 
valid for arg(—z) < IT, but the following analysis is not directly applicable. 

For the general integral, the path of integration is along the imaginary axis indented 
to the left at the origin to avoid the pole of T(—s) at the origin but passing to the right of 
the pole of F(as + 1) at s = — 1 /a on the negative real axis. On the contour for s = iy 
and a > 1, it is straightforward to show that 

r ( a s + l ) r ( - s ) 

r ( ( a - l > + 2) (-zY 
-7rM-yaig(-z) 

( a - l ) 3 / 2 |y|3/2 

as \y\ —» oo. Hence, the integral is convergent for any z ^ 0 and can easily be shown 
(see e.g., [8, p. 92]) to be uniformly convergent for | arg(—z)\ < IT. Then in the complex z 
plane with the nonnegative real axis deleted, the above estimate shows that (4) represents 
an analytic function of z. Similarly, if a < 1, we have 

T(as + l)T(-s) 

r ( ( a - l > + 2) 
i-z)s 

(1 - a)V2 £J3/2 

as \y\ —+ oo. Here the integral is uniformly convergent for | arg(—z)\ < a7r and represents 
an analytic function for z in this sector. 

One final remark: The integral (4) has been developed for positive values of a. How
ever, it can be shown from (1) that #Q(z) = 1 / $i_a(—z) so we can easily obtain results 
relating to negative values of the parameter. 
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3. Evaluation of the Integral for ®a. In the following we shall establish that (2) 
and (4) are representations of the same function by showing that they agree on a region 
in the complex z plane. Recalling that A is defined by (3), we obtain the following: 

THEOREM. Let either 
(1) a > 1 andz^ Oor 
(2) 0 < a < 1 and | arg(-z)| < air. 

with \z\ <A. Then 

±r ria5+1)r("5i(-z)^^g:(a"+M-^--
27r /^ - /oor ( (a - l> + 2) *toV k Jak+\ 

Furthermore, if 
(1) a > 1 and \ arg(—z)\ < ir — 6 or 
(2) 0 < a < 1 and | arg(-z)| < air - 8. 

where 6 > 0, the integral represents an analytic function ofz. 

PROOF. By the argument at the end of the previous Section we can easily establish 
that the integral is uniformly convergent for | arg(—z)\ < TT — S or | arg(—z)| < air — S 
according to whether a is greater than or less than 1. Hence, in either case, it represents 
an analytic function ofz on the indicated region. It remains to show that (2) and (4) are 
representations of the same function. 

The analysis is slightly different according to whether a > 1 or a < 1. In the follow
ing we assume that a > 1 and indicate, at an appropriate point, what modifications must 
be made to deal with the case a < 1. 

Suppose \z\ < A with z ^ 0. Let N be a positive integer and BN be a contour along 
the imaginary axis running from — (N + j)i to (Af + \)i. We suppose that it is indented 
to the left at the origin to pass between the poles of T(—s) and T(as + 1) at s = 0 and 
s = —\/a respectively. Close the contour to the right by taking a semicircular arc CN 
having radius N + \ and centred at the origin. Set 

The only poles of <p(s) inside the the closed contour /?#+CN are those of T(—s) occurring 
at s = k where k = 0 ,1 ,2 , . . . is an integer. So, by the residue Theorem, 

1 r ,,J 1 r , x , A r ( a * + l ) z* 
—- / ip(s)ds + — <p(s)ds = Y,—r± ^ r — 
2TTI JBN ^ V } 2iri JcN

 YK £o r ( ( a - l)k + 2) k\ 
where we have used the fact that the residue of the Gamma function is (—1)*+1 jk\. Then 
as N —* ex), BM approaches the Barnes' path B indicated earlier and all we must show is 
that the contribution over CN tends to zero. 

On CN it is convenient to rewrite the integrand using the reflection principle of the 
Gamma function as 

T(as + 1) -7T 
r ( ( a - l ) s + 2)r(s + l)sin7rsv 
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Then for s = Rew where R = N+ \ and - T T / 2 < ô < TT/2, we easily see that 

r(as + 1) 
r ( ( a - l > + 2)r(s+l) 

v ^ -RcosO 

Ma -1)3/2 £3/2 

for large values of R. Also, it is straightforward to establish that 

1 

sin7rs 
= 0(eT^ s i n*l) 

and 
\(—z)s\ = \z\

Rc™6e-Rzrg(-z)sm6 ^ 

Then on CM, \(f(s)\ *s of order 

R*/2 

RcosO 
p-R(ir\ sin 0|+arg(-z) sin 0) < 

# / 2 

If a < 1, we also apply the reflection principle to the factor r ( ( a — l)s + 2) to obtain 
the corresponding order estimate as 

R?l2 

nRcOSO 
—R(aw\ sin 0|+arg(—z) sin 0) ^ 

-~ R^2 

if | arg(—z)\ < air. Hence, in either case, we have 

/ j ^ ) | W = o ( - L ) a s * = * + I - > o o 

and this leads immediately to the desired result 

1 ri-oo T(as+\)T(-s) v , _ y* T(ak+l) z* 

2TT/ I-no r ( ( a - \)s + 2) 5 ~ A T 0 r ( ( a - l ) t + 2J Î ! 

_ ^ / a A : + l \ z* 

when we convert the Gamma functions to their binomial coefficient equivalent. 

4. Analytic continuation of ®a. The analytic continuation of the hypergeometric 
series beyond the circle of convergence \z\ = 1 can be obtained by closing the contour to 
the left of the imaginary axis rather than to the right. A similar technique can also be used 
to extend the series (2) for $a(z) beyond \z\ = A. If these straightforward and somewhat 
tedious calculations are carried out, the appropriate result is obtained. However, in place 
of this we present the following simple Proofl of the analytic continuation. 

Proof suggested by the anonymous referee. 
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THEOREM. If 

then 

•«r((a- l )s + 2) 

^ ) = l - % « ( ^ ) -

PROOF. In the integral B is a Barnes' path up the imaginary axis and indented to the 
left at the origin to separate the poles of T(—s) and T(as + 1) at s — 0 and s — — I/a. 
Set w = —as and let B' be a path which proceeds down the imaginary axis and which is 
indented to the right in such a fashion that B + B' is a negatively oriented closed curve 
which encircles only the pole of the Gamma function corresponding to s = w = 0. 

Then 

i r r(-w+i)r(£) . / dw\ 
a W 2 i r i /BT((a- l )^ j+2) \ aJ 

= zl[ n-w){*)r{*) / - l x 
2irf •/-«' r ( ( i - l)w + 2) V !f=~z) r ( ( i - i ) w + 2 ) 

2TTI /-(*+*') r ( ( i - l)w + 2) V ^ = 5 / 

__LriX-w)r(g + i)(_^i_r 
27r/ '-/sr((^-i)w+2)V $ ^ / 

since the residue of T(—w) at w = 0 is —1. This functional equation can be used to 
continue ®«(z) defined by (2) beyond its circle of convergence \z\ = A. 

This functional equation for the generalized binomial function can be shown to have 
an immediate application to the solution of a simple differential equation which has been 
obtained previously in the study of one-dimensional shocks. In [6] the equation 

dx o 
(10) A(2* + , 4 - 2 ) — = 2 j c - x 2 f o r 0 < j c < 2 

at 
where A and À are positive constants with A > 2 was considered. Although the solution 
of this type of equation is normally expressed in terms of natural logarithms, it was shown 
there that it could be explicitly given by 

(11) JC(0 = 2 ^ ( - 2 ^ V ( ' - ' o ) ) 

where g = -2/[\(A + 2)], p = 2/[X(A - 2)] and p = -q/p where 0 < /3 < 1. 

https://doi.org/10.4153/CMB-1996-008-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-008-4


66 M. HEGGIE AND G. R. NICKLASON 

The solution is normalized, as can easily be seen from the functional equation, so that 
x(t0)= 1. 

In ( 11 ), if we associate ft and — 2^~l eq(J~to) with 1 / a and the argument of % j a in (5) 
respectively, thenz = —2a~xep(t~to) and we obtain two convergent series representations 
of the solution valid on different t intervals. We have 

,12) xV> = 2-2Z(->r(0k
k 'Y-^^mor 

and 

<ak+\\2k{a-x)ekp(t-t(i) 

(-ir-( 
k=\ 

t-t0 < - I ( a - l ) l n ( a ) - a l n a ) . 

By (5), one of these expressions represents the continuation of the; other so the limit
ing / values are equal. Of particular interest is the fact that they also directly give the 
asymptotic behaviour of the solution as / —• ±oo which is necessary information within 
the context of the original problem. Finally, we note that (12) and (13) can be obtained 
directly from the differential equation by assuming exponential series of this type about 
the stationary values x = 0 and x = 2 and solving the resulting nonlinear recurrence 
relations using generating functions. 

The differential equation (10) is the lowest order equation of a family of nonlinear dif
ferential equations derivable from a general integro-differential equation. Each of these 
equations can also serve as a shock model, but are generally, with the noted exception in 
[5], not explicitly solvable. However, they do seem to have convergent exponential type 
series solutions which can be generated by knowledge of the asymptotic behaviours. The 
form is similar to (12) and (13) although the coefficients are not readily identifiable. 
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