P. Colwell Nagoya Math. J. Vol. 50 (1973), 1-6

MEROMORPHIC FUNCTIONS WITH LARGE SETS OF JULIA POINTS

PETER COLWELL

1. Introduction. Let $D = \{z : |z| < 1\}$ and $C = \{z : |z| = 1\}$. If W denotes the Riemann sphere equipped the chordal metric X, let $f : D \to W$ be meromorphic. A chord T lying in D except for an endpoint $\gamma \in C$ is called a *Julia segment* for f if for each Stolz angle Δ in D at γ which contains T, f assumes infinitely often in Δ all values of W with at most two exceptions. We call $\gamma \in C$ a *Julia point* for f if every chord in D ending at γ is a Julia segment for f, and we denote by J(f) the set of Julia points of f.

In this paper we show that for a certain class of functions meromorphic in D the sets of Julia points are residual in C. This class of functions lies in the intersection of two previously-studied classes of functions. In [1] K. Barth defined the class A_m : $f \in A_m$ if f is meromorphic in D, and if for each point γ of a set dense in C there exists a curve K in D ending at γ such that $\lim_{z\to\gamma(z\in K)} f(z)$ exists. More recently, in [7] K-F. Tse divided all functions meromorphic in D into two classes in the following way. For each pair of points $z, w \in D$, the hyperbolic distance between z and w is defined by

$$\rho(z, w) = (1/2) \log \{ [1 + \sigma(z, w)] / [1 - \sigma(z, w)] \},$$

where $\sigma(z,w)=|z-w|/|1-\overline{w}z|$. A meromorphic function f is of the second kind if there exist a sequence $\{z_n\}_{n=1}^{\infty}\subset D,\ |z_n|\to 1$, a constant r>0, and a point $\alpha\in W$ such that for $\mathcal{D}(r)=\bigcup_{n=1}^{\infty}\{z:\rho(z,z_n)< r\}$, f tends uniformly to α as $|z|\to 1$ in $\mathcal{D}(r)$. And f is of the first kind if it is not of the second kind. Tse's results in [7] characterize the functions of the first kind and show how wild their boundary behavior must be.

THEOREM 1. If $f \in A_m$ is of the first kind, then J(f) is residual in C.

Received April 11, 1972.

After proving Theorem 1 in § 2, we show that if in addition the set of points on C at which f has an asymptotic value is of measure 2π on C, then J(f) has measure 2π on C also. It is important to note that these results apply to the Tsuji functions, a well-studied class of meromorphic functions. Following the notation in [5], let $f^*(z) = |f'(z)|/(1+|f(z)|^2)$ be the spherical derivative of f in D; f is a Tsuji function if for some finite constant l>0, $\sup_{r<1}\left[\int_0^{2\pi}f^*(re^{i\theta})rd\theta\right]< l$. It is a consequence of [5, Theorem 6] that each Tsuji function is in class A_m .

2. Proof of Theorem 1. We begin with a few lemmas. For any $\gamma \in C$ and any $\beta \in (-\pi/2, \pi/2)$, let $T(\gamma, \beta)$ denote the chord in D ending at γ and making angle β with the radius to γ .

LEMMA 1. Let f be meromorphic in D and suppose for some $\gamma \in C$, $\beta \in (-\pi/2, \pi/2)$, that $T(\gamma, \beta)$ is not a Julia segment for f. Then there exists $\varepsilon > 0$ such that $T(\gamma, \alpha)$ is not a Julia segment for f if $\alpha \in (-\pi/2, \pi/2)$ and $|\alpha - \beta| < \varepsilon$.

Proof. Obvious.

For each $\beta \in (-\pi/2, \pi/2)$, let $E(\beta) = \{ \gamma \in C : T(\gamma, \beta) \text{ is not a Julia segment for } f \}$.

LEMMA 2. Let f be meromorphic in D and E be the set of points on C which are not Julia points for f. Then $E = \bigcup_{\beta} E(\beta)$, where β is rational and $\beta \in (-\pi/2, \pi/2)$.

Proof. If $\gamma \in E$, from Lemma 1 it follows that $\gamma \in E(\beta)$ for some rational $\beta \in (-\pi/2, \pi/2)$. And it is obvious that for each rational $\beta \in (-\pi/2, \pi/2)$, $E(\beta) \subset E$.

For each chord $T(\gamma, \beta)$ at $\gamma \in C$, we let $\Delta(\gamma, \beta, \alpha)$ denote the Stolz angle in D at γ which is symmetric about $T(\gamma, \beta)$ and has vertex angle α . (We presume here that $0 < \alpha < \pi/2 - |\beta|$.)

LEMMA 3. Let β , α be fixed, where $\beta \in (-\pi/2, \pi/2)$ and $0 < \alpha < \pi/2 - |\beta|$. If $M = \tanh^{-1} \{ \sin (\alpha/2) / [4 + \sin (\alpha/2)] \}$ and $z \in T(1, \beta)$, then $\{ w \in D : \rho(w, z) < M \} \subset \Delta(1, \beta, \alpha)$.

Proof. From a lemma of P. Lappan [7, Lemma 2], if $\rho(z, w) < M$, then $|w - z|/(1 - |z|) \le 2 \tanh M/(1 - \tanh M) = (1/2) \sin{(\alpha/2)} < \sin{(\alpha/2)}$. Thus $|w - z| < (1 - |z|) \sin{(\alpha/2)} \le |1 - z| \sin{(\alpha/2)}$, and $w \in \Delta(1, \beta, \alpha)$.

Now suppose $f \in A_m$ is of the first kind but J(f) is not residual. Then C - J(f) is of second category on C, and Lemma 2 implies that for some rational $\beta \in (-\pi/2, \pi/2)$, $E(\beta)$ is of second category on C.

For each positive integer n, let

$$E_n(\beta)=\{\gamma\in E(\beta)\colon \exists \alpha\geq 1/n\ni f \text{ omits at least three values}\}$$
 . in $\varDelta(\gamma,\beta,\alpha)$

We see that $E_{n+1}(\beta) \supset E_n(\beta)$, and $E(\beta) = \bigcup_n E_n(\beta)$. Thus for some integer N, $E_N(\beta)$ is of second category on C.

Since, for each $\gamma \in E_N(\beta)$, f omits at least three values in $\Delta(\gamma, \beta, 1/N)$, there exists $d(\gamma) > 0$ with this property: for any two sets A, B on W whose union contains the values omitted by f in $\Delta(\gamma, \beta, 1/N)$, either diam $A \geq d(\gamma)$, or diam $B \geq d(\gamma)$. For each positive integer f, let $E_{N,f}(\beta) = \{ \gamma \in E_N(\beta) : d(\gamma) \geq 1/f \}$. Clearly $E_{N,f+1}(\beta) \supset E_{N,f}(\beta)$, and $E_N(\beta) = \bigcup_{f} E_{N,f}(\beta)$. Hence, for some integer f > 0, f is of second category on f.

If $\gamma \in E_{NJ}(\beta)$, there exists $\mu > 0$ such that f never assumes some three distinct values in the region $\Delta(\gamma, \beta, 1/N) \cap \{|z - \gamma| < \mu\}$. For each positive integer k, let $E_{NJ,k}(\beta) = \{\gamma \in E_{NJ}(\beta) : \mu \ge 1/k\}$. Since $E_{NJ,k+1}(\beta) \supset E_{NJ,k}(\beta)$ and $E_{NJ}(\beta) = \bigcup_k E_{NJ,k}(\beta)$, there exists integer K > 0 such that $E_{NJK}(\beta)$ is of second category on C. For brevity let us denote $E_{NJK}(\beta)$ by E^* .

There exists an arc A on C such that E^* is dense in A. Since $f \in A_m$, we can choose an interior point $\lambda \in A$ at which there ends a curve Γ in D along which f has a limit. Let Γ' be the "last part" of Γ in $\{|z-\lambda|<1/K\}$ and $\{w_m\}$ be any sequence on Γ' converging to λ . For each m, let $\varepsilon(m)=2^{-m}$, and let $\delta(m)>0$ be chosen so that $X[f(w),f(w_m)]<\varepsilon(m)$ whenever $\rho(w,w_m)<\delta(m)$. For m sufficiently large there exists $\gamma_m\in E^*$ for which the chord $T(\gamma_m,\beta)$ intersects the neighborhood $\{w\in D\colon \rho(w,w_m)<\delta(m)\}$. We select a point $v_m\in T(\gamma_m,\beta)$ (which may be w_m itself) such that $|v_m-\gamma_m|<1/K$ and $\rho(v_m,w_m)<\delta(m)$. Within each such neighborhood $\{w\in D\colon \rho(w,w_m)<\delta(m)\}$ we deform Γ' to make it pass through v_m . The resulting curve we call Γ^* , and we see that f has a limit as $z\to\lambda$ along Γ^* .

Since f is of the first kind, $\{v_m\}$ is a ρ -sequence [7, Corollary 3.1]. Thus for each r > 0, [4, Theorem 2] implies that there exist sets G(m, r), H(m, r) on W with chordal diameter less than or equal to r, and integer M(r) > 0 such that for m > M(r)

$$W - [G(m,r) \cup H(m,r)] \subset f[\{w \in D : \rho(w,v_m) < r\}].$$

We choose r to be less than the smaller of 1/J and $\tanh^{-1} \{\sin (1/2N)/[4 + \sin (1/2N)]\}$. For this choice of r and every m > M(r) we have:

- (i) $\{w \in D : \rho(w, v_m) < r\} \subset \Delta(\gamma_m, \beta, 1/N) \text{ by Lemma 3};$
- (ii) $f[\{w \in D : \rho(w, v_m) < r\}]$ omits at least three values, all of which lie in $G(m, r) \cup H(m, r)$.

But since $\gamma_m \in E^* \subset E_{NJ}(\beta)$, either diam $G(m,r) \geq 1/J > r$, or diam $H(m,r) \geq 1/J > r$. This is a contradiction. Hence J(f) is residual on C.

3. Further results. Now we consider functions meromorphic in D which have asymptotic values at almost every point of C.

THEOREM 2. Suppose f is meromorphic in D and has an asymptotic value at each point of a set of measure 2π on C. If f is of the first kind, then, J(f) is residual and of measure 2π on C.

Proof. That J(f) is residual follows from Theorem 1. If C - J(f) has positive measure on C, we can easily alter the selection process in the proof of Theorem 1 so that the resulting set E^* has positive measure on C. And at every point of some subset of E^* of positive measure f has an asymptotic value.

Let $\lambda \in E^*$ be a two-sided accumulation point of E^* at which f has an asymptotic value. The remainder of the argument proceeds as in the proof of Theorem 1: we construct a curve ending at γ along which f has a limit, and which intersects a sequence of chords $\{T(\gamma_m,\beta)\}$, where $\gamma_m \in E^*$ and $\gamma_m \to \lambda$.

Since Tsuji functions of the first kind satisfy the hypotheses of both Theorems 1 and 2, we have a corollary.

COROLLARY 1. If f is a Tsuji function of the first kind, J(f) is residual and of measure 2π on C.

For each $\alpha \in D$, let $\phi_{\alpha}(z) = (z - \alpha)/(1 - \overline{\alpha}z)$. In [3] Collingwood and Piranian defined the Tsuji set of a meromorphic function f to be the set of points $\alpha \in D$ such that $f \circ \phi_{\alpha}$ is a Tsuji function. The following lemma, whose proof we omit, permits a slight extension of Corollary 1.

LEMMA 4. Let f be meromorphic in D and $\alpha \in D$. Then f has a Julia point at $\gamma \in C$ if and only if $f \circ \phi_{\alpha}$ has a Julia point at $\phi_{\alpha}^{-1}(\gamma)$.

COROLLARY 2. If f is a meromorphic function of the first kind with nonempty Tsuji set, then J(f) is residual and of measure 2π on C.

4. Some examples. The author is grateful to Professor *K-F*. Tse for Example 1, which exhibits a function satisfying the hypothesis of the theorems and corollaries above.

EXAMPLE 1. There exists a Tsuji function of the first kind. Let Λ be a monotone spiral in D with the property that for any $\theta \in [0, 2\pi]$, if $\{z_n(\theta)\}_{n=1}^{\infty} = \Lambda \cap \{z \in D : \arg z = \theta\}$ then $\rho[z_n(\theta), z_{n+1}(\theta)] \to 0$ as $n \to \infty$. Select the monotone sequence $\{w_n\}_{n=0}^{\infty}$ from Λ with $w_0 = 0$ and $\rho(w_n, w_{n+1}) = 1/n$ for $n \ge 1$. Let $\{r_n\}$ be a sequence of positive numbers such that $r_n + r_{n+1} < |w_{n+1}| - |w_n|$ for each n, and $r_n = 0(1 - |w_n|)$ as $n \to \infty$.

If $\{a_n\}$ is a sequence of positive numbers such that $a_n < r_n^3$, it is shown in [3] that $f(z) = \sum_n \left[a_n/(z-w_n) \right]$ is a Tsuji function with these properties: (i) if $D_n = \{z: |z-w_n| < r_n\}$, the series for f converges uniformly in the plane less $\bigcup_n D_n$; (ii) if $\{w_k\}$ is a subsequence of $\{w_n\}$ such that $w_k \to \gamma \in C$, for k sufficiently large the values f omits in D_k lie in arbitrarily small neighborhoods of $f(\gamma)$.

Now let $\lambda \in C$, let $\{\xi_n\}$ be a sequence in D with $\xi_n \to \lambda$, and let $\delta > 0$ be fixed. For each integer k, if $z \in D_k$, $\sigma(z, w_k) \le r_k/(1 - |w_k|)$, so $\sigma(z, w_k) \to 0$ and $\rho(z, w_k) \to 0$ as $k \to \infty$. Hence $\mathscr{D} = \bigcup_n \{z \in D : \rho(\xi_n, z) < \delta\}$ contains infinitely many disks D_k , and f cannot tend to a constant limit as $|z| \to 1$ in \mathscr{D} . Therefore f is of the first kind.

EXAMPLE 2. There exists a Tsuji function f of the second kind such that J(f) = C. This example is due to Collingwood and Piranian [3, Theorem 1]; here we show additionally that the function is of the second kind.

Let $z_n=(1-n^{-1/2})\exp{(i\log n)},\ n=2,3,4,\cdots$, and let $\{r_n\}_{n=2}^{\infty},\{a_n\}_{n=2}^{\infty}$ be sequences of positive numbers such that $r_n+r_{n+1}<|z_{n+1}|-|z_n|,\ 0< a_n< r_n^3$. Then ([3, Theorem 1]) $f(z)=\sum_{n=2}^{\infty}\left[a_n/(z-z_n)\right]$ is a Tsuji function such that J(f)=C.

The sequence $\{z_n\}$ lies on the monotone spiral

$$\varGamma : \{z(t) = (1-t^{\scriptscriptstyle -1/2}) \exp{(i \log t)} \colon 1 \leq t < \infty\}$$
 .

For any $\theta \in [0, 2\pi]$, if $\{w_k(\theta)\}_{k=1}^{\infty} = \Gamma \cap \{z : \arg z = \theta\}$ is arranged in order of increasing modulus, direct calculation shows that $\lim_{k\to\infty} \rho[w_k(\theta), w_{k+1}(\theta)] = \pi/2$.

Choose a monotone sequence $\{\xi_k\}_{k=1}^{\infty}$ on the radius to $e^{i\theta}$ such that ξ_k is midway between $w_k(\theta)$ and $w_{k+1}(\theta)$, so that $\xi_k \to e^{i\theta}$. We can choose a number δ , $0 < \delta < \pi/2$, and positive integer K such that

$$\mathscr{D}(\delta, K) = \bigcup_{k \geq K} \{ z \in D : \rho(z, \xi_k) < \delta \}$$

is disjoint from all the disks $\{z \in D : \rho(z, z_n) < r_n\}$. The details of [3, Theorem 1] show that f converges uniformly to a constant as $|z| \to 1$ in $\mathcal{D}(\delta, K)$. Thus f is of the second kind.

If E is a subset of C which is residual but of measure 0 on C, there exists a Tsuji function g of bounded characteristic such that $E \subset J(g)$ [3, Theorem 3]. Thus J(g) is residual and of measure 0 on C. And there exists a Tsuji function h for which J(h) is of measure 2π but of first category on C [2, pp. 199–200]. Both g and h are necessarily of the second kind.

REFERENCES

- [1] Barth, K., Asymptotic values of meromorphic functions, Mich. Math. J., 13 (1966), 321-340.
- [2] Collingwood, E. F., A boundary theorem for Tsuji functions, Nagoya Math. J., 29 (1967), 197-200.
- [3] and G. Piranian, Tsuji functions with segments of Julia, Math. Z., 84 (1964), 246-253.
- [4] Gauthier, P., A criterion for normalcy, Nagoya Math. J., 32 (1968), 277-282.
- [5] Hayman, W. K., The boundary behavior of Tsuji functions, Mich. Math. J., 15 (1968), 1-26.
- [6] Lappan, P., Some sequential properties of normal and non-normal functions with applications to automorphic functions, Comm. Math. Univ. Sancti Pauli, 12 (1964), 41-57.
- [7] Tse, K.-F., Some results on value distribution of meromorphic functions in the unit disk, Nagoya Math. J., 34 (1969), 105-119.

Department of Mathematics Iowa State University