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1. Introduction. By an energy-type functional defined on smooth maps
f : (M n, g) → (Vk, h) of compact Riemannian manifolds we mean a functional
obtained by integration of a first order differential operator φ(df ) where df ∈�(T∗M ⊗
f ∗TV ) denotes the differential of f and φ : M(�, n × k) → �+

0 is invariant under the
action of O(n) × O(k). Especially φ yields a parallel function T∗M ⊗ f ∗TV → �+

0 . We
can rewrite φ(df ) = �(df ∗df ) for some function � : M(�, n × n)+ → � on nonnegative
symmetric matrices which is invariant under conjugation by O(n). The functionals in
question take the form

E�( f ) :=
∫

M
�(df ∗df ) dvolg,

where we have used the Riemannian metrics to identify T∗M = TM and T∗V = TV
to get the endomorphism df ∗df of TM.

Famous examples of this construction are the classical energy, �(A) = TrA, the
exponential energy, �(A) = exp(TrA) as in [7], the p-energy, �(A) = (TrA)p but also
the volume, where �(A) = (detA)1/2. Results similiar to ours in the case where � is
a function of the Trace, �(A) = F(TrA), have been obtained in [1]. In particular the
exponential energy was treated in [2] and the p-energy in [3]. There is a vast literature
for the classical energy, see e.g. the survey papers [5, 6]. For a discussion of stability
results in this case we refer to [9] and the references there.

Here we will derive the first and second variational formulae for the �-energy
functional. The Bochner formula for vector fields then implies that isometries are
�-stable under certain conditions on the first and second derivative of �. As in the
classical case, (see [4], [9]) there is also a range of maps � such that the identity on the
sphere S n is unstable for the �-energy.

2. Variation formulae for the �-Energy. In order to derive variational formulae
we will restrict ourselves to functionals which can be expressed with smooth �, i.e. we
work with � rather than φ. This has the advantage that the domain TM∗ ⊗ TM of �
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is independent of f . For polynomial (or even analytic) φ this is no loss of generality by
the remark at the end of this section. In the sequel we will always assume M compact or
at least that the variations are compactly supported. Consider a 2-parameter variation
of f , i.e. a map

F : I × J × M → V (s, t, m) �→ fs,t(m)

where I, J are intervalls around 0. Denote by ∇ the Riemannian connections on the
bundles TM, F∗TV and f ∗TV and let v := dF( ∂

∂t ) = ∂
∂t fs,t(m), w := dF( ∂

∂s ) = ∂
∂s fs,t(m)

be the variation vector fields along f = f0 = f0,0, ft = f0,t. We compute the variation
at a point p ∈ M. Let e1, . . . , en be a local orthonormal framing of TM in a vicinity
of p with ∇ei ej = 0 at p. Note that for the commutators we have [ei,

∂
∂s ] = 0, [ei,

∂
∂t ] = 0

and [ei, ej](p) = 0. We also write ∂̄i,j� := ∂i,j�+ ∂j,i�. In the subsequent calculations
summation over the indices i, j, k, l is tacitely assumed. For the first variation of the
�-energy density we obtain

d
dt

�(df ∗
t dft) = d�(∇df ⊗ df + df ⊗ ∇df )

= ∂̄i,j�(df ∗df )
〈∇ ∂

∂t
dFei

∣∣ dFej
〉

= ∂̄i,j�(df ∗df )
〈∇eiv

∣∣ df ej
〉

= ei(∂̄i,j�(df ∗df )〈v | df ej〉) − 〈
v

∣∣∇ei (∂̄i,j�(df ∗df )df ej)
〉

= div((∂̄i,j�(df ∗df )〈v | df ej〉)ei) − 〈v | τ�( f )〉.

We thus get the

PROPOSITION 2.1. Define the �-tension of a smooth map f : M → V of compact
Riemannian manifolds to be the vector field along f

τ�( f ) := ∇ei (∂̄i,j�(df ∗df )df ej)

= ∂̄k,l ∂̄i,j�(df ∗df )
〈∇ei df ek

∣∣ df el
〉
df ej + ∂̄i,j�(df ∗df )∇ei df ej (2.2)

Then f is �-harmonic, i.e. critical for the �-energy, if and only if τ�( f ) = 0.

For the second variation we get up to divergence

d2

dsdt
�(df ∗

s,tdfs,t) = − d
ds

〈v|τ�( fs)〉
= −〈∇ ∂

∂s
v

∣∣ τ�( f )
〉 − 〈

v
∣∣∇ ∂

∂s
τ�( fs)

〉
= −〈∇ ∂

∂s
v

∣∣ τ�( f )
〉 − 〈

v
∣∣∇ ∂

∂s
∇ei (∂̄i,j�(df ∗

s dfs)dFej)
〉

= −〈∇ ∂
∂s
v

∣∣ τ�( f )
〉 − 〈

v
∣∣ Rw,df ei (∂̄i,j�(df ∗df )df ej)

〉
− 〈

v
∣∣∇ei∇ ∂

∂s
(∂̄i,j�(df ∗

s dfs)dFej)
〉

where R denotes the curvature tensor of V . The last term is
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− 〈
v

∣∣ ∇ei∇ ∂
∂s

(∂̄i,j�(df ∗
s dfs)dFej)

〉

= −
〈
v

∣∣∇ei

(
d∂̄i,j�(df ∗

s dfs)
ds

df ej + ∂̄i,j�(df ∗df )∇ ∂
∂s

dFej

)〉

= − 〈
v

∣∣ ∇ei

(
∂̄k,l ∂̄i,j�(df ∗df )

〈∇ ∂
∂s

dFek
∣∣ df el

〉
df ej + (∂̄i,j�(df ∗df )∇ej w)

)〉
= − 〈

v
∣∣ ∇ei (∂̄k,l ∂̄i,j�(df ∗df )

〈∇ekw
∣∣ df el

〉
df ej +

(
∂̄i,j�(df ∗df )∇ej w)

)〉
= + ∂̄k,l ∂̄i,j�(df ∗df )

〈∇eiv
∣∣ df ej

〉〈∇ekw
∣∣ df el

〉+ ∂̄i,j�(df ∗df )
〈∇eiv

∣∣∇ej w
〉

where the last identity holds only up to divergence.

PROPOSITION 2.3. The second variation of the �-energy at a �-harmonic map f is
the integral over

I�( f )(v,w) = − 〈
v

∣∣ Rw,df ei (∂̄i,j�(df ∗df )df ej)
〉

+ ∂̄k,l ∂̄i,j�(df ∗df )
〈∇eiv

∣∣ df ej
〉〈∇ekw

∣∣ df el
〉

+ ∂̄i,j�(df ∗df )
〈∇eiv

∣∣ ∇ej w
〉

for any vector fields v,w along f .

We finally compute the leading symbol of the second variation. We have

d2

dsdt
E�( fs,t) =

∫
M

〈v | Pw〉 dvolg (2.4)

with a symmetric second order partial differential operator P acting on vector fields
along f , i.e. on sections v,w of f ∗TV → M. The restriction P⊥f of P (or of the
bilinear form given by (2.4)) to the orthogonal complement of the image of df : TM →
f ∗TV will be called second variation perpendicular to f . The leading symbol of P is
determined by the highest order term

−〈
v

∣∣ ∂̄k,l ∂̄i,j�(df ∗df )
〈∇ei∇ekw

∣∣ df el
〉
df ej + ∂̄i,j�(df ∗df )∇ei∇ej w

〉

in Proposition 2.3. Hence we get

PROPOSITION 2.5. The leading symbol of the second variation of the �-energy is

σ (ξ ) = ∂̄k,l ∂̄i,j�(df ∗df )ξi ξkdf el ⊗ df ej + ∂̄i,j�(df ∗df )ξiξJ , (2.6)

for ξ = ∑
i ξiei. Thus

〈σ (ξ )w | w〉 = ∂̄k,l ∂̄i,j�(df ∗df )ξiξk〈w | df el〉〈w | df ej〉 + ∂̄i,j�(df ∗df )ξiξj‖w‖2

for ξ ∈ TpM∗ and w ∈ ( f ∗TV )p.

REMARK. Let φ : M(n × k) → �+
0 be a polynomial function, invariant under the

action of O(n) × O(k), i.e. such that φ(BXA) = φ(X) for all B ∈ O (k), A ∈ O(n) and
X ∈ M(n × k). For any X ∈ M(n × k) we can diagonalize X∗X and find othogonal
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matrices B and A as before such that

BXA =




λ1 0
. . .

0 λq

0 · · · 0


 or




λ1 0 0
. . .

...
0 λq 0




as q := min{n, k} = n or q = k. Hence φ(X ) = φ(λ1, . . . , λq) is a symmetric polynomial
and since φ(±λ1, . . . ,±λq) = φ(λ1, . . . , λq) this does not involve odd powers of the λi.
Thus we find a symmetric polynomial � in n variables such that φ(λ1, . . . , λq) =
�(λ2

1, . . . , λ
2
q, 0, . . . , 0). This extends to a polynomial � : M(n × n)+ → �+

0 such that
φ(X ) = �(X∗X ). For analytic φ this construction yields an analytic function �.

Note that if φ is differentiable we do not necessarily get a differentiable function �

with the above properties. In general � is only differentiable on the set of matrices of
full rank q. For instance φ(X ) := det(X∗X)3/4 is differentiable but �(A) := det(A)3/4

is not.
For polynomial φ there are polynomials �s and �σ such that

φ(X) = �(X∗X) = �s(s1, . . . , sq) = �σ (σ1, . . . , σq)

where σl is the lth elementary symmetric polynomial in the eigenvalues λ2
1, . . . , λ

2
q of

X∗X determined by

n∑
l=0

σl(X∗X)tl = det(1 + tX∗X)

and

sk =
n∑

l=0

λ
2q
l = Tr((X∗X)l).

In the smooth case one can use a theorem of Glaeser, [8], to get smooth functions �s

and �σ .

3. Applications.

3.1. Isometric immersions. For isometric immersions the preceding formulae
simplify substantially. By invariance d�(id) must be some multiple λTr of the trace.
We have the following.

THEOREM 1. Let f : M → V be an isometric immersion and assume that d�(id) �= 0.
Then

1. f is �-harmonic if and only if it is harmonic.
2. If λ> 0 then the leading symbol of P⊥f is positive definite, hence the second variation

perpendicular to f has finite index.

Proof. (1) For an isometric immersion or a Riemannian submersion the first term
in (2.2) vanishes. Since an isometric immersion f has df ∗df = id we get

τ�( f ) = ∂̄i,j�(id)∇ei df ej = 2λTr∇df = 2λτ ( f ).
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(2) On vector fields w normal to f , i.e perpendicular to the df el in (2.6), the first
summand in (2.6) vanishes. As before the second summand is some multiple of the
trace which shows that

σ (ξ ) = ∂̄i,j�(df ∗df )ξiξj = 2λ‖ξ‖2 > 0

for ξ �= 0. Thus the restriction of P to (Image (df ))⊥ ⊂ f ∗TV is elliptic with
positive definite leading symbol and therefore has only finitely many negative
eigenvalues. �

3.2. Stability of isometries. By invariance, the second derivative d2�(id ) is a
homogeneous polynomial of degree 2. Therefore there are µ, ν ∈ � such that

d2�(id)(H ) = µTr (H2) + ν(TrH)2

The second variation formula in Proposition 2.3 simplifies to

I�( f )(v, v) = −〈
v

∣∣ Rv,ei (∂̄i,j�(id)ej)
〉

+ ∂̄k,l ∂̄i,j�(id)
〈∇eiv

∣∣ ej
〉〈∇ekv

∣∣ el
〉 + ∂̄i,j�(id)

〈∇eiv
∣∣∇ej v

〉
= −2λRic(v)

+ µ
(〈∇eiv

∣∣ ej
〉 + 〈∇ej v

∣∣ ei
〉)2

+ 4ν
〈∇eiv

∣∣ ei
〉〈∇ekv

∣∣ ek
〉 + 2λ

〈∇eiv
∣∣ ∇eiv

〉
= −2λRic(v)

+ 2µ(‖∇v‖2 + Tr((∇v)2)) + 4ν(div(v))2 + 2λ‖∇v‖2

= −2λRic(v) + 2(µ + λ)‖∇v‖2 + 2µTr((∇v)2) + 4ν(div(v))2

= −2λRic(v) + µ‖Lvg‖2 + 4ν(div(v))2 + 2λ‖∇v‖2

since Tr(∇v) = div(v). Comparing this with the Bochner formula (see e.g. [10]):

∫
M

−Ric(v) − 1
2
‖Lvg‖2 + (div(v))2 + ‖∇v‖2 = 0 (3.1)

we obtain

THEOREM 2. Assume that µ≥ −λ and that 2ν ≥ λ. Then any isometry of M is
�-stable.

We now derive a sufficient criterion for the identity map on a sphere to be unstable.
To that end let v be the gradient vectorfield on S n ⊂ �n+1 of the restriction of a linear
map p : �n+1 → �, p(x) = 〈p, x〉 for a unit vector p ∈ �n+1 as in [9]. Then ‖v(x)‖2 +
p(x)2 = 1 and ∇xv = −px for all x ∈ TS n, hence 〈∇eiv, ej〉 = −pδi,j. Since the Ricci
curvature of S n is Ric(v) = (n − 1)‖v‖2, the formula for the index form yields

I�(v, v) = −2λ(n − 1)‖v‖2 + (4µn + 4νn2 + 2λn)p2. (3.2)

Denoting by ωn−1 the volume of the standard (n − 1)-sphere we compute
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∫
S n

‖v‖2 = ωn−1

∫ π/2

−π/2
cos(θ )n+1dθ

= ωn−1

(
[sin(θ ) cos(θ )n]π/2

−π/2 +
∫ π/2

−π/2
sin(θ )2 cos(θ )n−1dθ

)

= n
∫

S n
p2.

Inserting this into (3.2) shows the following

THEOREM 3. If

λ(n − 2) > 2µ+ 2νn

then id : S n → S n is �-unstable.

3.3. Examples. For some of the functionals mentioned in the introduction
theorems 2 and 3 give:

1. For the p-energy, �(A) = (Tr(A))p we compute λ = pnp−1, µ = 0 and ν =
p (p − 1)np−2. Thus idSn is unstable if n > 2p. Isometries are generally stable if
n ≤ 2(p − 1).

2. The exponential energy, �(A) = eTrA, has λ = en, µ = 0, ν = en. Thus
isometries are always stable for E�. This is the proof of [2].

3. For �(A) = Tr(Ap) we get λ = p, µ = p (p − 1) and ν = 0. Thus idSn is unstable
if n > 2p.

4. For �(A) = Tr exp(A) we get λ = e, µ = e, ν = 0. Therefore idSn is unstable if
n > 4.

5. For �(A) = det(A) we get λ = 1, µ = −1, ν = 1. Thus any isometry is stable
for Edet.

6. Let α1, . . . , αn be the eigenvalues of A and if n ≥ 2 define the discriminant
�(A) := ∏

1≤i<j≤n(αi − αj)2. Then E� has λ = µ = ν = 0 and the second variation at
an isometry vanishes.
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their Applications, 23 (Birkhäuser Boston, Inc., Boston, MA, 1996).
10. K. Yano, Integral formulas in Riemannian geometry, Pure and Applied Mathematics,

No. 1 (Marcel Dekker, Inc., New York 1970).

https://doi.org/10.1017/S0017089502001064 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502001064

