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1. Introduction. By an energy-type functional defined on smooth maps
f:(M",g)— (V¥ h) of compact Riemannian manifolds we mean a functional
obtained by integration of a first order differential operator ¢(df) where df € T'(T*M ®
/*TV) denotes the differential of / and ¢ : M(R, n x k) - R/ is invariant under the
action of O(n) x O(k). Especially ¢ yields a parallel function T*M ® f*TV — R} . We
can rewrite ¢(df’) = ®(df*df) for some function @ : M(R, n x n)* — R on nonnegative
symmetric matrices which is invariant under conjugation by O(n). The functionals in
question take the form

Eo()i= [ o@rdnavol,

where we have used the Riemannian metrics to identify T*M =TM and T*V =TV
to get the endomorphism df*df of TM.

Famous examples of this construction are the classical energy, ®(A4)=TrA4, the
exponential energy, ®(A4)= exp(Tr4) as in [7], the p-energy, ®(A4) = (Tr4)” but also
the volume, where ®(A4)=(det4)'/?. Results similiar to ours in the case where ® is
a function of the Trace, ®(A4) = F(TrA), have been obtained in [1]. In particular the
exponential energy was treated in [2] and the p-energy in [3]. There is a vast literature
for the classical energy, see e.g. the survey papers [5, 6]. For a discussion of stability
results in this case we refer to [9] and the references there.

Here we will derive the first and second variational formulae for the ®-energy
functional. The Bochner formula for vector fields then implies that isometries are
d-stable under certain conditions on the first and second derivative of ®. As in the
classical case, (see [4], [9]) there is also a range of maps ® such that the identity on the
sphere S” is unstable for the ®-energy.

2. Variation formulae for the ®-Energy. In order to derive variational formulae
we will restrict ourselves to functionals which can be expressed with smooth @, i.e. we
work with @ rather than ¢. This has the advantage that the domain TM* ® TM of &
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is independent of /. For polynomial (or even analytic) ¢ this is no loss of generality by
the remark at the end of this section. In the sequel we will always assume M compact or
at least that the variations are compactly supported. Consider a 2-parameter variation
of f,i.e. a map

F:IxJxM-— V(s,t,m) f;,(m)

where [, J are intervalls around 0. Denote by V the Riemannian connections on the
bundles TM, F*TV and f*TV and let v := dF(%) = a%fs,t(m), w = dF(%) = %fs,,(m)
be the variation vector fields along /' = fo = fo.0,f: =/f0.;- We compute the variation
ata point p € M. Let e, ..., ¢, be a local orthonormal framing of 7M in a vicinity
of p with V,,¢;=0 at p. Note that for the commutators we have [¢;, =] = 0, [¢;, ] =0
and [e;, ej](p) = 0. We also write 5,-7]{1) = 0;;® 4 9;;®. In the subsequent calculations
summation over the indices i, j, k, [ is tacitely assumed. For the first variation of the
®-energy density we obtain

S o) = AoV © df +df @ V)
= 3, ®(df*df)(V s dFe; | dFe))
= 3;;D(df*df)(Ve,v | dfe))
= (0 P(d*d ) (v | dfep) — (v | Ve, (B, @(df*df )df e))
= div((0;,; @(df*df v | df e;))ei) — (v] Ta ()

We thus get the

PROPOSITION 2.1. Define the ®-tension of a smooth map f: M — V of compact
Riemannian manifolds to be the vector field along f

To(f) == Ve, (0, Pdf*df )df ¢))
= 04,10, P(df*df )Vedf ex | df e))df e + 3, (df *df )V df ¢ (2.2)

Then f is ®-harmonic, i.e. critical for the ®-energy, if and only if to(f) = 0.
For the second variation we get up to divergence

d? d
——d(df; dfs.0) = - (v]te(f)))

dsdt
= —(Vav | 1e() = {v] V2 ta(£)
= ~{Vav|ta() = (v| V2 V@@ df)dFe)
= (Va0 [76() = (v | Ruvare Boy @ dN)df )
— (0| Ve,V (B 0(df; df)dFey))

where R denotes the curvature tensor of V. The last term is
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V|V, aVa (BUCD(df*dﬂ)dFej))

=

<v v (W#eﬁ 51‘,_;<I>(df*00’)WdF€-">>
—{v
—{v

| Ve, (k.10 P(df*df )V s dFerc | df er)df ¢ + (3, 0(df *df )Ve,w)))
| Ve Bk 18,0l d)Vo,w | df er)df e + (3:,9(dfdf )V w)))
+5 1P ANV | dfe)(Vew | dfer) + 3,0 *df)Vew | Vo w)

where the last identity holds only up to divergence.

PROPOSITION 2.3. The second variation of the ®-energy at a ®-harmonic map f is
the integral over

Itb(f)(vv LU) = - <U | Rw,c&‘e,(z_)l]q)(df*af)dj‘e/))
+ O 101 R(df*df )Ve,v | df €))(Vo,w | df er)
+ 0y ®(df*df)(Ve,v | Ve,w)

for any vector fields v, w along f.

We finally compute the leading symbol of the second variation. We have

d?
7s th(D(fS D)= /M v | Pw) dvolg (2.4

with a symmetric second order partial differential operator P acting on vector fields
along f, i.e. on sections v, w of f*TV — M. The restriction P of P (or of the
bilinear form given by (2.4)) to the orthogonal complement of the image of df : TM —
f*TV will be called second variation perpendicular to f. The leading symbol of P is
determined by the highest order term

~(v | 9191, @(d*df Ve, Ve w | df er)df ¢ + 3,;P(df *df )V, Ve,w)

in Proposition 2.3. Hence we get

PROPOSITION 2.5. The leading symbol of the second variation of the ®-energy is

(&) = 04101, P(df*df )& &xddf e ® df e + 0 P(df *df )&, (2.6)
Jor & =% &e;. Thus
(CE)w | w) = d 3, D(df*dEEr(w | df er) (w | dfe;) + 3, P(df*df )&l w |

Jor&E e Ty,M* andw e (f*TV),.

REMARK. Let ¢ : M(n x k) — R be a polynomial function, invariant under the

action of O(n) x O(k), i.e. such that ¢p(BX A) = ¢(X) for all B € O(k), A € O(n) and
X € M(n x k). For any X € M(n x k) we can diagonalize X*X and find othogonal

https://doi.org/10.1017/S0017089502001064 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089502001064

120 STEFAN BECHTLUFT-SACHS

matrices B and A4 as before such that

Al 0

BXA = or
0 Ag

0 -.. 0

asq :=min{n, k} =norq = k. Hence (X' ) = ¢(A1, ..., Ay) is a symmetric polynomial
and since ¢(£A1, ..., £A,) = ¢(A1, ..., A,) this does not involve odd powers of the 4.
Thus we find a symmetric polynomial & in » variables such that ¢(A1, ..., A,) =
O3, ..., )»2, 0,...,0). This extends to a polynomial ®: M(n x n)* — R such that
¢(X) = &(X*X ). For analytic ¢ this construction yields an analytic function ®.

Note that if ¢ is differentiable we do not necessarily get a differentiable function ®
with the above properties. In general @ is only differentiable on the set of matrices of
full rank ¢. For instance ¢(X ) := det(X*X)** is differentiable but ®(A4) := det(4)*/*
is not.

For polynomial ¢ there are polynomials ®° and ®“ such that

d(X) = P(X*X) = D(s1,...,8) =D (01, ...,0y)

where o7 is the /th elementary symmetric polynomial in the eigenvalues A2, ..., )‘3 of
X*X determined by

> (X X)i' = det(1 + £X*X)
=0

and
se= Y A = Te((X* X)),
=0

In the smooth case one can use a theorem of Glaeser, [8], to get smooth functions ®*
and ®°.

3. Applications.

3.1. Isometric immersions. For isometric immersions the preceding formulae
simplify substantially. By invariance d®(id) must be some multiple ATr of the trace.
We have the following.

THEOREM 1. Let f : M — V be an isometric immersion and assume that d®(id) # 0.
Then
1. f is ®-harmonic if and only if it is harmonic.
2. If &> 0 then the leading symbol of P is positive definite, hence the second variation
perpendicular to f has finite index.

Proof. (1) For an isometric immersion or a Riemannian submersion the first term
in (2.2) vanishes. Since an isometric immersion f has df*df = id we get

to(f) = B, @(d)Ve dfe; = 2TxVdf = 201(f).
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(2) On vector fields w normal to £, i.e perpendicular to the dfe; in (2.6), the first
summand in (2.6) vanishes. As before the second summand is some multiple of the
trace which shows that

o (&) = 3, D(df*df)EE; = 20 IIEN* > 0

for £#0. Thus the restriction of P to (Image (df))* C f*TV is elliptic with
positive definite leading symbol and therefore has only finitely many negative
eigenvalues. Il

3.2. Stability of isometries. By invariance, the second derivative d>®(id) is a
homogeneous polynomial of degree 2. Therefore there are u, v € R such that

d*®(id)(H ) = uTr (H?) + v(TrH)*
The second variation formula in Proposition 2.3 simplifies to

Io(f)(,v) = —(v | Ry, (0;;P(id)ey))
+ 9,101y P(d)Ve,v | €)(Ve,v | €)) + 01, P>d)(Ve,v | Vo)
= —2ARic(v)
(Vv | )+ (Vor e’
+ 4v(VQv | e,)(Vekv ’ ek> + 2)L<Veiv | Ve,v>
= —2ARic(v)
+ 2u([Vo]? 4+ Tr((Vv)?)) + 4v(div(v))* 4 24| Vv]?
= —2ARic(v) + 2(i 4+ V)| Vv|> + 2uTr((Vv)?) + 4v(div(v))?
= —2ARic(v) + |l Logl? + 4v(div(v))? + 24| Vu|?

since Tr(Vv) = div(v). Comparing this with the Bochner formula (see e.g. [10]):
. 1 .
| ~Rictw) = JILgl + @ivw)? + 191 =0 G
M

we obtain

THEOREM 2. Assume that uw> —X\ and that 2v > \. Then any isometry of M is
d-stable.

We now derive a sufficient criterion for the identity map on a sphere to be unstable.
To that end let v be the gradient vectorfield on §” C R"*! of the restriction of a linear
map p:R"™! — R, p(x) = (p, x) for a unit vector p € R"™*! as in [9]. Then [[v(x)|> +
p(x)*> =1 and Vv = —px for all x € TS", hence (V,,v, ¢;) = —pé;,. Since the Ricci
curvature of S” is Ric(v) = (n — 1)||v||%, the formula for the index form yields

Io(v,v) = =2x(n — D|v|* + (4un + dvn’® + 2xn)p. (3.2)

Denoting by w,_; the volume of the standard (» — 1)-sphere we compute
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/2
/ 1% = o / cos(0)"*do

/2

/2
- wn_l([sin(e)cos(e)"]”f/z+ / sin(0)? cos(e)"—ld9>
—/2

=n/ .

Inserting this into (3.2) shows the following

THEOREM 3. If
An—2)>2u—+2vn

thenid:S" — S" is ®-unstable.

3.3. Examples. For some of the functionals mentioned in the introduction
theorems 2 and 3 give:

1. For the p-energy, ®(A4) = (Tr(4)y’ we compute A =pn’~', u =0 and v =
p(p— D=2, Thus ids is unstable if n>2p. Isometries are generally stable if
n<2(p-—1).

2. The exponential energy, ®(A4)=e"™, has A =¢", u=0,v=¢" Thus
isometries are always stable for Eg. This is the proof of [2].

3. For®(4) = Tr(4”)wegetA = p, u = p(p — 1)and v = 0. Thus ids» is unstable

ifn > 2p.

4. For ®(A) = Trexp(4) we get A = e, u = e, v = 0. Therefore ids. is unstable if
n>4.

5. For ®(A) = det(A4) we get A = 1, u = —1, v = 1. Thus any isometry is stable
for Ege.

6. Let «y,...,a, be the eigenvalues of 4 and if n> 2 define the discriminant

D(A) := H1§i</‘§n(ai — ozj)z. Then E4 has A = u = v = 0 and the second variation at
an isometry vanishes.
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