Summer Meeting, 28 June-1 July 2010, Nutrition and health: cell to community

Prediction of body fat percentage from skin-fold and bio-impedance measurements in Indian children

S. H. Kehoe¹, G. V. Krishnaveni², H. Lubree³, A. K. Wills¹, A. Guntupalli¹, A. Kurpad⁴, S. R. Veena², D. S. Bhat³, C. S. Yajnik³ and C. H. D. Fall¹

¹Medical Research Council – Epidemiology Resource Centre, University of Southampton, Tremona Road, Southampton SO16 6YD, UK, ²Holdsworth Memorial Hospital, Mysore, India, ³Diabetes Unit, KEM Hospital, Rasta Peth, Pune, India and ⁴St. John's Research Institute, Bangalore, India

Anthropometry and bio-impedance analysis (BIA) are frequently used for estimating children's body composition in nutrition research. There are currently no equations in the literature for calculating BF% from skin-folds or BIA in South Asian children that have been developed using a four-compartment model of body composition. Given that South Asians tend to have a more adipose body composition than other ethnic groups for a given BMI, our objective was to investigate the agreement between Indian children's BF% values derived from a primary reference method and those predicted from published skin-fold and BIA equations.

We measured BF% using primary reference methods in two groups of Indian children. In Pune, West India, 534 children aged 6 years underwent Dual Energy X-Ray Absorptiometry (DXA) scans. We administered Doubly Labelled Water (DLW) to 59 children aged 9 years living in Mysore, South India and derived BF% according to age-specific values of hydration of fat free mass⁽¹⁾. In both groups, at the time of BF% assessment, we measured sub-scapular and triceps skin-folds, weight, height and bio-impedance at 50 kHz using standardised methods. We used the published equations of Slaughter⁽²⁾ and Shaikh⁽³⁾ to calculate BF% from skin-folds and the 'Bodystat' manufacturer's equation^(1,4) to do the same for BIA measurements. We tested the agreement between these calculated values of BF% and those derived from DXA and DLW using scatterplots and Bland Altman plots.

In Pune, the mean (sD) weight was $16.2 \,\mathrm{kg}$ (2.2) and height was $110.0 \,\mathrm{cm}$ (6.2). The mean (sD) BF% derived from DXA was 18.2% (4.5) for boys and 21.2% (5.2) for girls. The mean (sD) weight of the Mysore children was $24.1 \,\mathrm{kg}$ (3.5) and height was $128.2 \,\mathrm{cm}$ (5.6). BF% from DLW was 21.6% for boys (n 30) and 29.2% for girls (n 29). Scatterplots (Fig. 1) show the relationship between the BF% values derived from the primary reference methods and those from skin-fold equations. The Slaughter equations under-predicted the BF% of all children except for those with a BF% ≤ 10 as measured by DXA. The shaikh equations over-predicted body fat at lower levels of BF% and under-predicted at higher levels. There was no systematic bias for the BIA equations, although the limits of agreement (LoA) were wide (in Pune mean bias: $+4.2 \,\mathrm{LoA} - 6.6,16.0$; in Mysore mean bias $+1.95 \,\mathrm{LoA} - 7.84,11.74$).

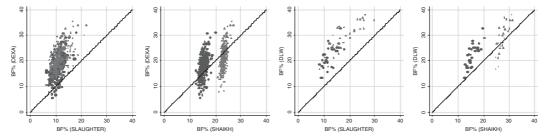


Fig. 1. Scatterplots of BF% from skin-fold equations by BF% from DXA and DLW.

Currently available equations for calculating body fat percentage from skin-folds in children do not accurately predict body fat percentage in these two groups of Indian children. We recommend that equations be specifically developed for South Asian children using a four-compartment model. The BIA equation predicts BF% most accurately at the group level and in the absence of new equations may be useful for investigating between-population differences or within-population changes over time.

- 1. Lohman T (1989) Assessment of body composition in children. Pediatr Exerc Sci 1, 19-30.
- 2. Slaughter MH, Lohman TG, Boileau RA et al. (1988) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60, 709-723.
- 3. Shaikh S & Mahalanabis D (2004) Empirically derived new equations for calculating body fat percentage based on skinfold thickness and midarm circumference in preschool Indian children. *Am J Hum Biol* 16, 278–288.
- 4. Kushner RF & Schoeller DA (1986) Estimation of total body water by bioelectrical impedance analysis. Am J Clin Nutr 44, 417–424.