A DECOMPOSITION THEOREM FOR MATRICES

MARTIN H. PEARL

According to a classical theorem originally proved by L. Autonne $(\mathbf{1} ; \mathbf{3})$ in 1915, every $m \times n$ matrix of rank r with entries from the complex field can be decomposed as

$$
A=U_{1} D U_{2}
$$

where U_{1} and U_{2} are unitary matrices of order m and n respectively and D is an $m \times n$ matrix having the form

$$
D=\left[\begin{array}{ll}
\Delta & 0 \tag{1}\\
0 & 0
\end{array}\right],
$$

where Δ is a non-singular diagonal matrix whose rank is r. If $r=m$, then the row of zero matrices of (1) does not actually appear. If $r=n$, then the column of zero matrices of (1) does not appear. The main purpose of this paper is to give a necessary and sufficient condition under which both U_{1} and U_{2} may be chosen to be real orthogonal matrices. The result is contained in

Theorem 1. Let A be a rectangular matrix. Then A can be expressed as

$$
\begin{equation*}
A=O_{1} D O_{2} \tag{2}
\end{equation*}
$$

where O_{1} and O_{2} are real orthogonal matrices and D has the form of (1) if and only if $A A^{*}$ and $A^{*} A$ are both real. Here X^{*}, X^{T}, and \bar{X} denote the conjugate transpose, the transpose, and the conjugate of X, respectively.

The necessity of the condition is immediate, for if such a decomposition exists, then

$$
A A^{*}=O_{1} D \bar{D} O_{1}{ }^{T}, \quad A^{*} A=O_{2}{ }^{T} \bar{D} D O_{2}
$$

are both real.
For any real orthogonal matrices Q_{1} and Q_{2}, and any real number θ, Theorem 1 is true for A if and only if it is true for

$$
\begin{equation*}
\widetilde{A}=e^{i \theta} Q_{1} A Q_{2} . \tag{3}
\end{equation*}
$$

We shall say that two matrices, A and \widetilde{A}, related as in equation (3), are orthogonally equivalent. Before demonstrating the sufficiency of the condition of Theorem 1, we shall perform a sequence of orthogonal equivalences, beginning with A and ending with a matrix (also called A) which has a simpler form. Let

$$
A=B+i C,
$$

Received November 12, 1965. This research was performed under a grant from the Walter Reed Army Medical Center, Washington, D.C., Grant No. DA-MD-49-193-65-G177.
where B and C are real, $i=\sqrt{ }(-1)$. Then a direct computation shows that
Lemma 1. $A A^{*}$ is real if and only if

$$
\begin{equation*}
B C^{T}=C B^{T} \tag{4}
\end{equation*}
$$

in which case

$$
\begin{equation*}
A A^{*}=B B^{T}+C C^{T} \tag{5}
\end{equation*}
$$

Similarly, $A^{*} A$ is real if and only if

$$
B^{T} C=C^{T} B
$$

in which case

$$
A^{*} A=B^{T} B+C^{T} C
$$

Henceforth we shall assume that both $A A^{*}$ and $A^{*} A$ are real and, consequently, that equations (4), (5), (4'), and (5') hold.

Lemma 2. The matrices $B B^{T}, C C^{T}$, and $B C^{T}=C B^{T}$ are real and symmetric and commute in pairs. Similarly, the matrices $B^{T} B, C^{T} C$, and $B^{T} C=C^{T} B$ are real and symmetric and commute in pairs.

Proof. It is sufficient to prove the first assertion. That all of the matrices are real and symmetric is obvious. In addition, by repeated use of equations (4) and (4^{\prime}), we have

$$
\begin{align*}
B B^{T} C C^{T} & =B C^{T} B C^{T}=C B^{T} C B^{T}=C C^{T} B B^{T}, \\
B B^{T} B C^{T} & =B B^{T} C B^{T}=B C^{T} B B^{T}, \tag{6}\\
C C^{T} B C^{T} & =C B^{T} C C^{T}=B C^{T} C C^{T} .
\end{align*}
$$

Corollary 1. There exists a real orthogonal matrix Q such that

$$
Q B B^{T} Q^{T}=D_{1}, \quad Q C C^{T} Q^{T}=D_{2}, \quad Q B C^{T} Q^{T}=D_{3}
$$

where D_{1}, D_{2}, and D_{3} are diagonal matrices of order m (2, p. 56). Moreover, D_{1} and D_{2} are non-negative, and, according to equation (6),

$$
\begin{equation*}
D_{1} D_{2}=\left(D_{3}\right)^{2} . \tag{7}
\end{equation*}
$$

We now perform an orthogonal equivalence, using Q, and call the resulting matrix A. That is, first we set $Q A=\widetilde{A}=\widetilde{B}+i \widetilde{C}$ (and consequently $\widetilde{B}=Q B$, $\widetilde{C}=Q C$). Then we drop the tildes and obtain a new matrix $A=B+i C$ which satisfies equations (4), (5), (4'), and (5') and for which we have, in addition,

$$
\begin{equation*}
B B^{T}=D_{1}, \quad C C^{T}=D_{2}, \quad B C^{T}=D_{3} \tag{8}
\end{equation*}
$$

Let us denote the rank of the matrix X by $r(X)$. It is well known that for any matrix X (4, p. 147),

$$
\mathrm{r}(X)=\mathrm{r}\left(X^{*}\right)=\mathrm{r}\left(X X^{*}\right)=\mathrm{r}\left(X^{*} X\right)
$$

Corollary 2. For any matrix $A=B+i C$ for which $A A^{*}$ and $A^{*} A$ are both real,

$$
\mathrm{r}(A) \geqslant \max [\mathrm{r}(B), \mathrm{r}(C)] .
$$

Proof. Note that the orthogonal equivalence just performed above does not change the rank of A, B, or C. Hence we may assume (8) without loss of generality. Then it follows from the fact that D_{1} and D_{2} are non-negative that

$$
\begin{align*}
& \mathrm{r}(A)=\mathrm{r}\left(A A^{*}\right)=\mathrm{r}\left(B B^{T}+C C^{T}\right)=\mathrm{r}\left(D_{1}+D_{2}\right) \tag{9}\\
& \quad \geqslant \max \left[\mathrm{r}\left(D_{1}\right), \mathrm{r}\left(D_{2}\right)\right]=\max [\mathrm{r}(B), \mathrm{r}(C)]
\end{align*}
$$

since $\mathrm{r}\left(D_{1}\right)=\mathrm{r}(B)$ and $\mathrm{r}\left(D_{2}\right)=\mathrm{r}(C)$.
Lemma 3. There exists a real number θ for which the real part of $\widetilde{A}=e^{i \theta}$ Ahas the same rank as \widetilde{A}.

Proof. Set $\widetilde{A}=\widetilde{B}+i \widetilde{C}$. Then a computation shows that

$$
\widetilde{B}=\cos \theta B-\sin \theta C, \quad \widetilde{C}=\sin \theta B+\cos \theta C
$$

Consequently, by equations (4) and (8), we have

$$
\begin{array}{r}
(\cos \theta B-\sin \theta C)\left(\sin \theta B^{T}-\cos \theta C^{T}\right)=\sin \theta \cos \theta\left(B B^{T}+C C^{T}\right) \tag{10}\\
-B C^{T}=\frac{1}{2} \sin 2 \theta\left(D_{1}+D_{2}\right)-D_{3}
\end{array}
$$

By (7), D_{3} has zero on the diagonal in any position in which either D_{1} or D_{2} has a zero. Since D_{1} and D_{2} are non-negative, it follows that for $2 \theta \neq k \pi$, $k=0, \pm 1, \pm 2, \ldots$,

$$
\begin{equation*}
\mathrm{r}\left[\frac{1}{2} \sin 2 \theta\left(D_{1}+D_{2}\right)-D_{3}\right] \leqslant \mathrm{r}\left(D_{1}+D_{2}\right) \tag{11}
\end{equation*}
$$

Moreover, it is clear that for a proper choice of θ (which we now select and henceforth use) we can obtain equality in (11). Then, from equations (9) and (10), we have

$$
\mathrm{r}(\widetilde{B}) \geqslant \mathrm{r}\left[\frac{1}{2} \sin 2 \theta\left(D_{1}+D_{2}\right)-D_{3}\right]=\mathrm{r}\left(D_{1}+D_{2}\right)=\mathrm{r}(A)=\mathrm{r}(\widetilde{A})
$$

On the other hand, by Corollary $2, \mathrm{r}(\widetilde{B}) \leqslant \mathrm{r}(\widetilde{A})$ and consequently $\mathrm{r}(\widetilde{B})=\mathrm{r}(\widetilde{A})$.
We define the diagonal matrices $\widetilde{D}_{1}, \widetilde{D}_{2}$, and \widetilde{D}_{3} as follows:

$$
\begin{aligned}
& \widetilde{D}_{1}=\widetilde{B} \widetilde{B}^{T}=\cos ^{2} \theta D_{1}+\sin ^{2} \theta D_{2}-\sin 2 \theta D_{3} \\
& \widetilde{D}_{2}=\widetilde{C} \widetilde{C}^{T}=\sin ^{2} \theta D_{1}+\cos ^{2} \theta D_{2}+\sin 2 \theta D_{3} \\
& \widetilde{D}_{3}=\widetilde{B} \widetilde{C}^{T}=\frac{1}{2} \sin 2 \theta\left(D_{1}-D_{2}\right)+\cos 2 \theta D_{3} .
\end{aligned}
$$

Note that $\widetilde{D}_{1}, \widetilde{D}_{2}$, and \widetilde{D}_{3} satisfy equations (7) and (8). As before, we perform an orthogonal equivalence, replacing A by $\widetilde{A}=e^{i \theta} A$, and then drop the tildes.

Since a permutation matrix P is a real orthogonal matrix, it is easily seen that there is an orthogonal equivalence (replacing A by $\widetilde{A}=P A P^{T}$) which preserves all of the properties thus far established, and for which $B B^{T}$ has the form

$$
B B^{T}=D_{1}=\left[\begin{array}{ll}
\Delta_{1} & 0 \\
0 & 0
\end{array}\right]
$$

where Δ_{1} is a non-singular diagonal matrix of order r, the rank of A. Then

$$
C C^{T}=D_{2}=\left[\begin{array}{cc}
\Delta_{2} & 0 \tag{12}\\
0 & 0
\end{array}\right], \quad B C^{T}=D_{3}=\left[\begin{array}{ll}
\Delta_{3} & 0 \\
0 & 0
\end{array}\right]
$$

where Δ_{2} and Δ_{3} also have order r. Moreover, Δ_{1} and Δ_{2} are non-negative and

$$
\Delta_{1} \Delta_{2}=\left(\Delta_{3}\right)^{2}
$$

We partition A as

$$
A=\left[\begin{array}{l}
A_{1} \tag{13}\\
A_{2}
\end{array}\right]
$$

where A_{1} is an $r \times n$ matrix and A_{2} is an $m-r \times n$ matrix. Then, by equations (5), (12), and (13),

$$
A A^{*}=\left[\begin{array}{ll}
A_{1} A_{1}{ }^{*} & A_{1} A_{2}{ }^{*} \\
A_{2} A_{1}{ }^{*} & A_{2} A_{2}{ }^{*}
\end{array}\right]=\left[\begin{array}{cc}
\Delta_{1}+\Delta_{2} & 0 \\
0 & 0
\end{array}\right]
$$

and it follows immediately that $A_{2}=0$. Clearly

$$
B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right], \quad C=\left[\begin{array}{c}
C_{1} \\
0
\end{array}\right]
$$

the partition being the same as in equation (13). Moreover, by the construction in Lemma 3, the rows of B_{1} are linearly independent.

Lemma 4. There is an orthogonal matrix Q of order n such that

$$
B_{1} Q=\left[\begin{array}{ll}
\widetilde{B}_{1} & 0
\end{array}\right], \quad C_{1} Q=\left[\begin{array}{cc}
\widetilde{C}_{1} & 0 \tag{14}
\end{array}\right]
$$

where \widetilde{B}_{1} and \widetilde{C}_{1} are square matrices of order r and \widetilde{B}_{1} is non-singular.
Proof. Since B_{1} has n columns and is of rank r, it follows (4, p. 34) that the null space of B_{1} has dimension $n-r$. It is only necessary to construct any orthogonal matrix Q in which the last $n-r$ columns form an orthogonal basis for the null space of B_{1}. Then the first part of equations (14) is immediately satisfied. Set

$$
C_{1} Q=\left[\begin{array}{ll}
\widetilde{C}_{1} & \widetilde{C}_{2}
\end{array}\right] .
$$

Then
$\tilde{A}=A Q=\left[\begin{array}{cc}\widetilde{B}_{1}+i \widetilde{C}_{1} & i \widetilde{C}_{2} \\ 0 & 0\end{array}\right], \quad \widetilde{A}^{*} \widetilde{A}=\left[\begin{array}{c}\widetilde{B}_{1}{ }^{T} \widetilde{B}_{1}+\widetilde{C}_{1}{ }^{T} \widetilde{C}_{1} \\ -i\left(\widetilde{C}_{2}{ }^{T}\left(\widetilde{B}_{1}+i \widetilde{C}_{1}\right)\right. \\ \left.-i \widetilde{C}_{1}{ }^{T}\right) \widetilde{C}_{2} \\ \widetilde{C}_{2} \widetilde{C}_{2}\end{array}\right]$.
However, $\widetilde{A}^{*} \widetilde{A}$ is real, and since \widetilde{B}_{1} is non-singular, it follows that $\widetilde{C}_{2}=0$.
As before, there is an orthogonal equivalence (replacing A by $\widetilde{A}=A Q$ and then dropping the tildes so that

$$
A=\left[\begin{array}{cc}
B_{1}+i C_{1} & 0 \\
0 & 0
\end{array}\right]
$$

Set

$$
\begin{equation*}
A_{1}=B_{1}+i C_{1} \tag{15}
\end{equation*}
$$

Note that $A_{1} A_{1}{ }^{*}$ and $A_{1}{ }^{*} A_{1}$ are both real and that

$$
\begin{equation*}
B_{1} B_{1}^{T}=\Delta_{1}, \quad C_{1} C_{1}^{T}=\Delta_{2}, \quad B_{1} C_{1}^{T}=\Delta_{3} \tag{16}
\end{equation*}
$$

Proof of Theorem 1. It is sufficient to prove Theorem 1 for A_{1}, since if

$$
A_{1}=O_{1} D O_{2}
$$

then

$$
A=\left[\begin{array}{ll}
A_{1} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
O_{1} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
O_{2} & 0 \\
0 & I
\end{array}\right]
$$

as required. Since Δ_{1} is a positive definite real diagonal matrix, it has a unique positive definite real diagonal square root, say H. That is,

$$
B_{1} B_{1}{ }^{T}=\Delta_{1}=H^{2},
$$

where H is diagonal. Clearly H is non-singular and hence

$$
\begin{equation*}
H^{-1} B_{1} B_{1}{ }^{T} H^{-1}=I \tag{17}
\end{equation*}
$$

Set $H^{-1} B_{1}=Q$. By (17), Q is a real orthogonal matrix. Multiplying equation (15) on the right by $B_{1}{ }^{T}$ and substituting equations (16) yields

$$
A_{1} B_{1}{ }^{T}=\Delta_{1}+i \Delta_{3}
$$

Then

$$
A_{1}=\left(\Delta_{1}+i \Delta_{3}\right)\left(B_{1}^{T}\right)^{-1}=\left(\Delta_{1}+i \Delta_{3}\right) H^{-1} Q
$$

which is the required equation, with $O_{1}=I, D=\left(\Delta_{1}+i \Delta_{3}\right) H^{-1}$, and $O_{2}=Q$. This completes our proof.

An interesting special case of Theorem 1 is
Corollary 3. Every unitary matrix U can be expressed as

$$
U=O_{1} D O_{2}
$$

where O_{1} and O_{2} are real orthogonal matrices and D is a diagonal unitary matrix.
Clearly D of equation (2) can be chosen so that the real part of each diagonal element of Δ of equation (1) is non-negative and so that each pure imaginary diagonal element of Δ (if any) is a positive multiple of i. This is achieved by multiplying the diagonal elements of Δ by -1 when necessary and absorbing a compensating -1 into either O_{1} or O_{2}. Also, the diagonal elements of Δ can be made to appear in any order. In particular, we may assume

$$
\Delta=\left[\begin{array}{llllll}
\rho_{1} e^{i \theta_{1}} & & & & \\
& \rho_{2} e^{i \theta_{2}} & & & \\
& & \cdot & \cdot & \\
& & & & & \\
& & & & \rho_{r} e^{i \theta_{r}}
\end{array}\right]
$$

where $\rho_{i}>0, \pi / 2 \geqslant \theta_{1} \geqslant \theta_{2} \geqslant \ldots \geqslant \theta_{r}>-\pi / 2$, and $\rho_{i+1} \geqslant \rho_{i}$ whenever $\theta_{i+1}=\theta_{i}$.

Theorem 2. With the restrictions of the above paragraph, D of equation (2) is unique.

Proof. Let $A=O_{1} D O_{2}$. Then

$$
A A^{T}=O_{1} D^{2} O_{1}^{T}
$$

that is, the diagonal elements of Δ are the unique (within the restrictions of the last paragraph) square roots of the characteristic roots of $A A^{T}$.

If A (and hence D) is square and if the diagonal elements of D are distinct, then O_{1} and O_{2} are unique up to a diagonal matrix δ, all of whose elements are ± 1. That is, if

$$
A=O_{1} D O_{2}=Q_{1} D Q_{2}
$$

then $O_{1}=Q_{1} \delta, O_{2}=\delta Q_{2}$.
Corollary 4. If $A A^{*}$ and $A^{*} A$ are real, then $A A^{T}$ and $A^{T} A$ are orthogonally similar to a diagonal matrix and hence are normal.

The normality of $A^{T} A$ and $A A^{T}$ could also have been obtained directly from equations (4), (5), (4'), (5'), and Lemma 2.

Theorem 3. Let A_{1}, A_{2} be $m \times n$ matrices and let $A_{i} A_{i}{ }^{*}$ and $A_{i}{ }^{*} A_{i}$ be real, $i=1,2$. Then a necessary and sufficient condition that there exist orthogonal matrices O_{1} and O_{2} such that

$$
\begin{equation*}
A_{2}=O_{1} A_{1} O_{2} \tag{18}
\end{equation*}
$$

is that the characteristic roots of $A_{1} A_{1}{ }^{T}$ are the same as the characteristic roots of $A_{2} A_{2}{ }^{T}$.

Proof. That the condition is necessary is clear, for it follows immediately from equation (18) that $A_{1} A_{1}{ }^{T}$ is orthogonally similar to $A_{2} A_{2}{ }^{T}$.

On the other hand, if $A_{1} A_{1}{ }^{T}$ and $A_{2} A_{2}{ }^{T}$ have the same characteristic roots, then, by Theorem 2, A_{1} and A_{2} have expressions of the type of equation (2) with the same D and the theorem follows.

We present a simple example to show that the hypothesis in Theorem 3 that $A_{i} A_{i}{ }^{*}$ and $A_{i}{ }^{*} A_{i}$ both be real cannot be dropped. For example, if

$$
A_{1}=\left[\begin{array}{ll}
1 & i
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
0 & 0
\end{array}\right],
$$

then $A_{1} A_{1}{ }^{T}=A_{2} A_{2}{ }^{T}=0$; but A_{1} and A_{2} do not satisfy equation (18) for any orthogonal matrices, O_{1}, O_{2}.

References

1. L. Autonne, Sur les matrices hypohermitiennes et sur les matrices unitaires, Ann. Univ. Lyon (2), 38 (1915), 1-77.
2. R. Bellman, An introduction to matrix analysis (New York, 1960).
3. R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 52 (1955), 406-413.
4. H. Schwerdtfeger, Introduction to linear algebra and the theory of matrices (Groningen, 1950).

The University of Maryland, College Park, Maryland

