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SEMILINEAR SECOND ORDER 
ELLIPTIC OSCILLATION 

BY 

C. A. SWANSON(1) 

1. Introduction. These pages summarize recent progress on the oscillation 
problem for semilinear elliptic partial differential equations of the form 

(1) L(u;x) = t Di[Aii(x)Diu] + B(x,u) = 0 

x G ft, D{ = d/dXi, i = 1 , . . . , n 

in unbounded domains ft in n-dimensional Euclidean space Rn. Our attention 
is restricted to the second order symmetric equation (1), and completeness is 
not attempted; the emphasis is on results obtained in the last five years. 

Points in Rn are denoted by x = ( x l 9 . . . , xn) and the Euclidean length of x is 
written |x|. The following notation will be used throughout: 

Sa={xeRn:\x\ = a}, a > 0 ; 

Ga={xeRn:\x\>a}; 

fta=ftnGa; 

G(a,b) = {xeRn:a<\x\<b}. 

The measure on Sr and St will be denoted by s and <o, respectively: ds = 
rn _ 1 day. Our assumptions below on the functions B and AiJ? i, j = 1 , . . . , n in 
(1) could be relaxed somewhat, but are typical of those in [28-31, 38-41]. 

(A) Each Atj in (1) is a real-valued function of class C^ft), and the matrix 
A = (Aij) is symmetric and positive definite in ft (ellipticity condition); 

(BO B(x, t) is continuous in ft x R1 with B(x, -t) = -B(x, t) for all x e ft, t >0; 
(B2) B(x, t) > p(x)<t>(t) for all x G ft and for all t > 0, where p is continuous in ft 

and <f> is a continuously differentiable function in [0, °°) with <£(*)> 0 in 
(0,oo). 

Assumptions (Bx) and (B2) need to be strengthened or modified for many of 
the theorems stated in §§3-7. 

A function f.ù-^R1 is called oscillatory in ft whenever /(x) has a zero in 
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fta for all a > 0 . An elliptic equation (1) (or inequality uL(u ;x )<0) is called 
oscillatory in ft whenever every solution of the equation (or inequality, 
respectively) is oscillatory in ft. The concept of nodal oscillation (or strong 
oscillation) has frequently been considered [2, 14-16, 22, 33, 34, 38, 40] in the 
special case that (1) has the linear form (2) below, i.e. B(x, t) has the form 
p(x)t A nonempty bounded domain M<=ft is called a nodal domain of a 
nontrivial solution u of (2) if and only if u(x) = 0 for all x e dM. Equation (2) is 
defined to be nodally oscillatory in ft if and only if there exists a nontrivial 
solution ua of (2) with a nodal domain contained in fta for all a > 0. Otherwise 
stated, (2) is nodally oscillatory in ft if and only if the Dirichlet problem 
L(u;x) = 0 in M, u = 0 on dM is not uniquely solvable in some nonempty 
bounded domain M in fta for all a > 0 . If M c f l a is a nodal domain of a 
nontrivial solution ua of (2), then every solution u of (2) has a zero at some 
point in M by the n-dimensional version of Sturm's separation theorem [37]. 
Incidentally, the stronger conclusion that every solution of (2) except a con
stant multiple of ua has a zero at some point in M, without any boundary 
regularity hypotheses whatsoever, was proved in 1978 by Heywood, Noussair, 
and the writer [17]. It follows that a linear equation (2) is oscillatory in an 
unbounded domain ft if it is nodally oscillatory in ft. 

The converse of the last statement also is true provided the coefficients in (2) 
are sufficiently regular; Allegretto [2] proved it in 1974 under the following 
hypotheses: (i) peC3m(M); (ii) Each AfJ e C3 m + 1(M); and (iii) L is uniformly 
elliptic in M for every bounded subdomain M c: ft, where 

--G-F?]] 
and [0] denotes the largest integer not exceeding 0. Allegretto showed how to 
construct a positive solution of (2) in fta+e for any e > 0 if the Dirichlet 
problem for (2) is uniquely solvable in every bounded domain M in fta for 
some a > 0 . This construction implies Allegretto's equivalence theorem: Nodal 
oscillation and (weak) oscillation of sufficiently regular symmetric linear elliptic 
equations are equivalent. We note that the regularity requirements are quite 
severe, but can be weakened according to Allegretto [2] and Piepenbrink [34]; 
the latter states that hypotheses (i) and (ii) can be replaced by p e C2 m and each 
AiieClm+1, respectively, e.g. peC4 if n = 2, 3, 4, or 5. A related theorem 
was stated earlier by Kuks [22, Theorem 3] without proof and with incomplete 
hypotheses. Allegretto [2], Glazman [14], and Piepenbrink [33, 34] have all 
emphasized the relationship between nonoscillation of L and the nature of the 
lower part of the spectrum of the selfadjoint realization of - L . Allegretto [2] 
gives the interesting example 

2 

L ( u ; x ) = X [A(xr2D i M) + 2xr 4u] 
1 = 1 
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in the unit square ft = {x e R2 :0 < Xj < 1 ; i = 1,2} to illustrate that some kind of 
global regularity assumptions are needed, even for a regular bounded domain, 
in order that the existence of a positive solution of (2) in ft implies the unique 
solvability of the Dirichlet problem in every subdomain of ft. In fact, u(x) = x1x2 

is a positive solution in ft while un(x)-(x\ — x1ln)(xi-x-2ln) is a nontrivial 
solution of L(un;x) = 0 in M, u^ — 0 on dM for the subdomain 

M = | x G f t : 0 < x i < - ; i = l , 2 | , n = 2, 3 , . . . , 

and consequently the Dirichlet problem does not have a unique solution in all 
subdomains of ft. 

§2 contains a brief description of oscillation criteria for linear elliptic 
equations, dating back to a result of Glazman [14], thereby extending to jRn 

various one-dimensional criteria of Kneser [37], Leighton [24], Moore [25], 
and others. The existence of positive solutions of (1) in exterior domains is the 
main topic of §3. In the case of the Emden-Fowler equation, for which B(x, 0 
in (1) has the form p(x)ty, Y > 0 , specific criteria for the existence of a positive 
solution are used in §§5 and 6 to generate necessary and sufficient conditions 
for (1) to be oscillatory in both the superlinear case ( Y > 1 ) and the sublinear 
case ( 0 < 7 < 1). These results extend theorems of Atkinson [7] and Belohorec 
[8, 9, 44] for ordinary differential equations to n dimensions, and constitute the 
only known characterizations of oscillatory partial differential equations at this 
date. §3 contains specific upper and lower bounds for positive solutions, and 
also a criterion for the existence of a bounded positive solution as a consequ
ence of Nehari's one-dimensional criterion [26]. Some recent superlinear 
oscillation criteria [29] arise from a Riccati-type transformation (Lemma 11) 
together with a priori lower bounds for positive solutions of (1) (Lemma 9), as 
described in §4. The method of spherical means [28] is used in §5 to generate 
sharp oscillation criteria for Schrôdinger equations; in fact, these are charac
terizations of oscillatory equations in some cases [30, 31]. A brief discussion of 
perturbed linear equations, without sign restrictions on the coefficient func
tions, is given in §7, and some typical oscillation theorems in arbitrary 
unbounded domains are described in §8. 

2. Linear equations. The first oscillation theorems for elliptic equations 
were obtained by Glazman [14], Headley [15, 16], Kreith [19, 20], Kreith and 
Travis [21], and the author [16, 38-41] in the linear case 

n 

(2) L ( u ; x ) = X Di[Aii(x)Diu] + p(x)u = Q, 

where p and (Aiy) are as in assumptions (A) and (B2). Some of these results will 
now be described in the case that the unbounded domain ft is an exterior 
domain, i.e. there exists a positive number a such that Ga c ft. 
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Let \(x) denote the (necessarily positive) largest eigenvalue of the matrix 
(Ay(jc)) and let / be any piecewise C 1 function in (0,°o) satisfying / ( r ) > 
maX|x,=rA(x), 0< r<oo . Also let g(r) = min,x |=rp(x), 0< r<oo . Then [16] equa
tion (2) is nodally oscillatory in an exterior domain ftcj?" if either 

(3) 

or 

(4) 

r^4ô=+o°and r^1^*-^ 
("-^n<°° a n d \°°r"-1K(r)g(r)dr = +co 
•'a ' T\T) •'a f(r) 

for some a > 0 and JX > 1, where 

f°° d> 

If n = 1, the conditions (3) reduce to the Leighton-Wintner oscillation criterion 
for an ordinary linear equation [24, 43] while (4) reduce to Moore's criteria 
[25]. If A(jc) is bounded in ft, additional nodal oscillation criteria [16] are 

(5) rg(r)dr = +™ if n = 2, 
•'a 

(6) [ r1_*g(r) dr =+oo if n > 3 , 
•'a 

for some positive numbers a and 8; and 

(7) lim inf r2g(r) > K0(n - 2)2/4 
r—>oo 

where A0 is an upper bound on A(x) in ft. Condition (7) reduces to Glazman's 
criterion [14] if (A^) in (2) is the identity matrix, and becomes Kneser's 
classical criterion in one dimension. The results (3)-(7) are proved in [16], and 
in fact are extended to unbounded domains which are not necessarily exterior 
domains: it is merely required that ft be large enough at o° to contain a cone 
Ca ={xeRn :xl > |x | cos a} for some i, l < i < n , and some a in (0, ir]. Re
cently Noussair and the author [29] have sharpened and extended (5) and (6) 
as indicated below. For these results, pM(r) denotes the spherical mean of p 
over the sphere Sr: 

(8) PMO) = —77TT pU) da), 
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where <o denotes the measure on Si. The boundedness of the largest eigen
value A(x) of (Aij(x)) is weakened to 

(9) maxA(x)<C[log(logr)]s, r>e, if n = 2; 
\x\ = r 

(10) maxA(x)<C(logr) s , r > l , if n ^ 3 , 
|x | = r 

for some numbers C > 0 and 8, 0 < 6 < 1 . 

THEOREM 1. The linear inequality uL(u;x)<0 is oscillatory in an exterior 
domain ft in R2, Rn ( n>3 ) if (9), (10) hold, respectively, and there exists a 
positive number a such that 

(11) [[rlogrp^r)-^^]dr = +œ if n = 2; 

(12) J ° ° [ r p M ( r ) - ( n ~ 2 ^ ( r ) ] d r = +œ if n > 3 . 

These criteria are also nodal oscillation criteria if p and the Atj in (2) are 
sufficiently regular because of Allegretto's equivalence theorem [2], as de
scribed in §1. In the case of a constant matrix (Aiy) in (2), conditions (9) and 
(10) hold automatically, and hence (11) and (12) are oscillation criteria if f(r) is 
replaced by the (constant) largest eigenvalue À of (Atj). Another oscillation 
criterion obtained in [29] is 

f f °° r1_n dr 
p(x)dx = +oo and =< 

Jn Ja f(r) 
for some a > 0. Positivity of p(x) throughout ft is not required for any of these 
results. 

The sharpness of (11) and (12) can be seen by considering the special case 
that (2) is a radial Schrôdinger equation Au + pM(r)w = 0; then (11) and (12) 
are known [37] to be sharp one-dimensional criteria for the damped ordinary 
equation arising from separation of variables. Of course (11) and (12) do not 
characterize oscillatory equations (2): No characterizations are known even for 
ordinary linear equations. It is interesting to compare (11) with the characteri
zation (32) in Theorem 19 (§5) of oscillatory superlinear equations (2) of the 
special Emden-Fowler type (14). 

3. Existence of positive solutions. Although the existence theorems below 
are true for the general semilinear elliptic equation (1), by essentially the same 
proofs, we shall state them for the Schrôdinger equation 

(13) L ( K ; X ) = A U + B ( X , M ) = 0 , x e f t 

and in particular the Emden-Fowler equation 

(14) Aw + p(x)iT = 0, x e f t , 7 > 0 
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since the interesting applications are in these special cases. In particular, 
necessary and sufficient conditions for (14) to be oscillatory are generated in 
both the superlinear case ( Y > 1 ) and the sublinear case ( 0 < y < l ) . These are 
the only known characterizations of oscillatory partial differential equations, 
extending well-known theorems of Atkinson [7] and Belohorec [8, 44] to n 
dimensions. 

For a bounded domain M<^Rn, the Holder norms of functions w: M—•R1 

are defined (as usual) by [23] 

„ \u(x)-u(y)\ 
N U M = sup,—] ^7— 

x=Py 

I|W|L+C,M= Z l|Di"IL,M+ I sup|DiM(x)|, 
\i\ = m |i|<m xeM 

0 < c r < l , m = l , 2 , . . . , 

where i denotes a multi-index of length |z|. The Holder space Cm+CL(M) is the 
set of all continuous real-valued functions on M such that ||u||m+«,M is finite, 
0 < c * < l , m = 0 , l , 2 , 

Equation (13) is to be considered in an exterior domain ft in Rn under the 
hypotheses below. 

(R) REGULARITY HYPOTHESIS. BeCa(MxJ), for some a in 0 < a < l , for 
every bounded domain M c f l and for every interval J = [Q, ft], b > 0 . 

(MN) MONOTONY AND NONNEGATIVITY HYPOTHESES. 0 < B ( X , t1)^B(x, t2) for 

all tl9 t2 satisfying 0<t1<t2 and for all xe f t . 

DEFINITION. A solution of L(u; x) = 0 in an exterior domain ft is a function 
ueC 2 + o t (M) for every bounded subdomain M c f t , with a as in hypothesis 
(JR), such that L(u; x) = 0 for all x e ft. A solution of L(u; x) < 0 or L(u ; x) > 0 
is defined similarly. 

THEOREM 2 [30, 31]. Let L, ft and a be as above and suppose a is a positive 
number such that G ac:ft . If there exists a positive (uniformly positive, respec
tively) solution v(x) o / L ( u ; x ) < 0 in G^ then equation (13) has a positive 
(uniformly positive) solution u(x) in Ga. If in addition there exists a positive 
solution of L ( w ; x ) > 0 in Ga such that w(x):<v(x) throughout G a U S a , then 
(13) has a solution u(x) satisfying w(x)<u(x)<v(x) throughout GaUSa. 

An essential part of the proof is the inductive construction of a nonincreasing 
sequence of functions Uj in GaUSa which are solutions of (13) in annular 
subdomains {x e Rn : a < \x\ < a + /} , / = 0 , 1 , 2, This can be done by means 
of the maximum principle [35] and a theorem of Amann [6, p. 142], providing 
conditions for the existence of a solution u, of (12) in a bounded domain which 
is squeezed between a subsolution and a supersolution. Then the sequence is 
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shown [30] to converge to a solution of (13) in Ga by means of Sobolev 
embedding [23], classical Schauder estimates [12, p. 335], and Lp estimates 
developed by Agmon, Douglis, and Nirenberg [1, p. 704]. 

COROLLARY 3. A necessary and sufficient condition for the existence of a 
positive solution of (13) in an exterior domain Ga is the existence of a positive 
supersolution of (13) in Ga. 

COROLLARY 4. For arbitrary e in (0, n - 2 ) , n > 3 , (13) has a solution u(x) in 
Ga^Rn, for some a > 0 , satisfying the inequalities 

|x |2-n<w(x)<|x|2-n + e , xeGa 

if 

(15) l imsupr n - e maxB(x , | x | 2 - n + e )<6 (n -2 -6 ) . 
r-*°° \x\ = r 

For the Emden-Fowler equation (14), condition (15) reduces to 

limsup r b P ( r ) < e ( n - 2 - e ) , n > 3 , 
r—x» 

where 

P(r) = max p(x), b = n-(n-2)y + (y-l)e. 

COROLLARY 5. For arbitrary e>0 and Kl9 K2 with 0<K1<K2, if 

(16) lim sup r2+e max B (x, K2) < e 2, 

then there exists a>0 such that (13) has a solution u(x) in Ga c R 2 satisfying 

Kx^u(x)^K2-r-e. 

In particular (13) has a positive bounded solution in Ga if (15) or (16) is 
satisfied. A stronger result is obtained for (14) on the basis of a one-dimensional 
criterion of Nehari [26, p. 103]; this is stated as the next Corollary. 

COROLLARY 6. For y > 0 , the Emden-Fowler equation (14) has a bounded 
positive solution in an exterior domain in Rn if p is a nonnegative function in 
Ca(M), 0 < a < l , for every bounded subdomain M<^Rn, and if 

(17) [ r log rP(r)dr< », n = 2 
•'c 

(18) I r<rP(r)dr< », n > 3 , 
•'c 

for some c > 0, where a = (n — 1) — y(n - 2). 

2 
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It is shown in [30] that nonoscillation criteria for (13) or (14) follow easily 
from Theorem 2. We illustrate the procedure below by proving that (17), (18) 
are nonoscillation criteria for (14) in the superlinear case Y > 1 . 

LEMMA 7. In (14) suppose that Y > 0 , that p(x) is nonnegative in an exterior 
domain £l<^Rn with peCa(M) for every bounded domain M c f t , and that 
P 6 Ca[a, b] for all b > a, 0 < a < 1, where P(r) = max p(x) on \x\ = r, as before. 
Then a sufficient condition for (14) to be nonoscillatory in CI is the existence of a 
positive solution peC2+OL[a,b] of the ordinary differential equation (19) below 
for some number a >0 and for all b>a: 

(19) 4~ ( r n _ 1 ^r) + rn-xP{r)p^(r) = 0, r > 0. 
dr \ dr/ 

Proof. The function v in Ga defined by v(x) = p(r), r = \x\>a satisfies (in 
the case that (13) reduces to (14)) 

r^Liv;x) = 4- (r^1 ^r) + rn~1p(x)py(r) 
dr \ dr) 

- | ( r n " 1 f ) + rn~1P(r)pT(r)' 
and hence L(v; x ) < 0 for all x e Ga by (19). Then Theorem 2 shows that (14) 
has a positive solution u(x) in Ga. 

THEOREM 8. Under the hypotheses on p and P in Lemma 7, (17) and (18) are 
sufficient conditions for the superlinear (i.e. y > 1) Emden-Fowler equation (14) 
to be nonoscillatory in an exterior domain ft in R2 and Rn, n > 3 , respectively. 

Proof. For n = 2, Liouville's change of variables r = e\ h(s) = p(es) trans
forms (19) into 

h"(s) + e2sP(es)hy(s) = 0, 7 > 1, 

which has a positive solution h(s) for sufficiently large s if there is a positive 
number s0 such that 

(20) [ se2sP(es)ds <°o 

by Atkinson's theorem [7]. Since (20) is equivalent to (17), it follows that (17) 
is sufficient for (19) (when y > 1, n = 2) to have a positive solution p(r) in [a, °°) 
for some a > 0 . Since PeCa[a, b] for all b>a, 0 < a < l , standard regularity 
theorems [23] show that p G C2+ot[a, b] for all b > a. The conclusion in the case 
n = 2 then follows from Lemma 7. The case n > 3 is quite similar and is 
described in [30]. 
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4. Superlinear equations. We now return our attention to the general 
semilinear elliptic equation (1) under the assumptions stated in §1. The 
following additional notation will be required: 

n 

L0(u;x)= X AlAMD.u]; 

p(r) = sup|L0(|x|;x) £ A^OOA |x| D, |x|l ; 
|x|=r Lj . j J 

S(r;b)= exp -p(s)ds\dt, a<r<b; 

R(r;b) = S(r;b)/S(a;b); 

R(r)=limR(r;b); 
b—x» 

U(a)= inf u(x). 
|x|=a 

LEMMA 9. Every positive solution u of Lo(w;x)<0 for | x |>a satisfies the 
inequality u{x)> U(a)R(\x\) for |x |>a. 

If B(x, u) in (1) is nonnegative for all x e fl and for all u > 0, Lemma 9 gives 
an a priori lower bound U(a)R(\x\) on any positive solution u(x) of L(w; x ) < 0 
in ft, and enables us to deduce superlinear oscillation criteria from linear 
criteria. Lemma 9 is proved in [29] as a consequence of the Hopf maximum 
principle [35]. Related results have been derived and exploited by Allegretto 
[3]. In the superlinear case, assumptions (A), (B^, and (B2) will be augmented 
by the following additional ones: 

SUPERLINEAR ASSUMPTIONS 

(SLi) p in assumption (B2) is everywhere nonnegative in ft; 
(SL2) ij/(t) = <f>(t)lt is nondecreasing for all f>0 . 

COMPARISON THEOREM 10. Under assumptions (A), (B^, (B2), (SL^, and 

(SLJ, the superlinear inequality uL(u; x ) < 0 is oscillatory in an exterior domain 
ft in Rn if the linear inequality 

(21) Lo(M;jc) + p(x)i/f(eK(|x|))M<0 

has no eventually positive solution in ft for any positive number e. 

Proof. If u(x) were a positive solution of wL(w;x)<0 throughout Ga for 
some a > 0 (chosen large enough so that Ga <= ft, without loss of generality), 
then 

0>Lo(u(x);x) + B(x, u(x)) 

>L0(u(x); x) + p(x)il/(u(x))u(x) 

>L0(u(x);x) + p(x)^([/(a)R(|x|))M(x) 

https://doi.org/10.4153/CMB-1979-021-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1979-021-0


148 C. A. SWANSON [June 

by Lemma 9, (B2), (SLt), and the nondecreasing hypothesis (SL^) on i/f. Thus 
u(x) satisfies (21) with e = U(a)>0, and cannot be eventually positive by 
hypothesis. Similarly a solution of L ( u ; x ) > 0 cannot be everywhere negative 
in Ga. 

In [29] Noussair and the writer utilized a generalized Riccati-type transfor
mation [36] defined in terms of an arbitrary positive absolutely continuous 
function a in [0, oo). This transformation maps positive C 1 scalar functions u in 
ft into n -vector functions w defined by 

(22) w(x) = -a(|x|)[<fr(u(x))r1(A Vu)(x) 

Matrix notation is used in (22) and below: In particular A - 1 denotes the 
inverse of the matrix A = (AiJ) and * denotes the transpose. 

LEMMA 11. 1/ M is a positive-valued solution of L ( u ; x ) < 0 in ft, under 
assumptions (A), (B^, and (B2), then the n-vector function w given by (22) 
satisfies the Riccati inequality 

(23) divw(x) ^a( r )p(x) + ^ ^ 
<*(r) a(r) 

where v(x) = x/r, is the outward unit normal to Sr, r = |x|. 
The proof is given in [29]. In the case of the linear inequality (21), the 

Riccati inequality (23) reduces to 

(24) d i v w ( x ) > a ( r ) p ( x ) i K s # « ^ 
a(r) a(r) 

By the choice a(r) = log r ( r > l ) for n = 2 and a(r) = r2~n ( r>0) for n > 3 in 
(24), the following results are obtained in [29] by a modification of Coles' 
one-dimensional procedure [10]. 

THEOREM 12. Under the assumptions of Theorem 10, the superlinear inequal-
tiy wL(w;x)<0 is oscillatory in an exterior domain ft of R2 if (9) holds and 
there exists a positive number a such that 

(25) H r l o g r ^eRfr))^)--&$-] dr = +™ 
ia 4 r log r J 

for all e > 0 , where pM(r) is given by (8) and f(r) is defined in §2. 

THEOREM 13. Under the assumptions of Theorem 10, the superlinear inequal
ity uL(u; x ) < 0 is oscillatory in an exterior domain ft of Rn, n > 3 , if (10) holds 
and there exists a positive number a such that 

(26) | "[nMei* (r))pM(r) - iHz2£M^ dr = + 0 0 

for all e>0. 
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In the special case of the Emden-Fowler equation (14), L0(u;x) = (Au)(x), 
and one can check that R(r) in Lemma 9 is given by R(r) = (a/r)n~2, n >2. In 
the superlinear case, y > 1 in (14) and we assume as usual that 7 is a quotient 
of odd positive integers in order to have <f>(-t) = (-t)y = -<f>(t) for all f > 0 , as 
required in assumption (Bx). Then i/f(0 = <M0/* = ty~x, and for f(r) = 1, n = 2, 
and i/f(e1JR(r)) = 8Î~1 = e, (25) specializes to 

(27) J J [ e r l o g r p M W - ^ ] d r = +=o 

for all e > 0 . Similarly for /(r) = l, n > 3 , and iKeiKW) = er(2~n)(*~1), where 
e = ( e^"" 2 ) 7 " 1 , (26) specializes to 

(28) { ^ [ ^ P M W - ^ - ^ ] dr = +* 

for all e > 0 , where a = (n -1) — y(n — 2), n > 3 . It can be seen that (27) and 
(28) are quite sharp oscillation criteria by comparison with the necessary and 
sufficient conditions for oscillation in the next section. 

5. Oscillation criteria by spherical means. Sharper criteria than (27) and 
(28) were obtained in [28], under the slightly stronger hypotheses (SL) below: 

(SL) B(x, r)>P1(|x|)<^(f) for all xeil, f>0 , 

where Px is continuous and nonnegative in [0, <»), and <j> is a continuously 
differentiate convex function in [0,00) with <f>(t) > 0 and <f>'(t) > 0 in (0,00). This 
requires slightly more than the union of (B2), (SI^), and (SL2), and actually 
could be weakened somewhat [28]. The method in [28] associates every 
solution u(x) of (13) (or (14)) with its spherical mean uM{r) over the sphere Sr 

of radius r, as defined by (8): 

WMW = -77TT u(x)ds= —— u(x)d(o. 
s(Sr) JSr (oiSi) JSi 

LEMMA 14. If / :Ga—»1?1 is a ^(Ga) function for some number a > 0 , 
then 

I (Dif)(x)ds=-%-\ f{x)-lds 
Jsr dr JSr r 

for i = l , 2 , . . . , n, a<r<°°. 

LEMMA 15. Under assumptions (B^ and (SL), the spherical mean uM(r) of a 
positive-valued solution ueC2(Ga) of (13) satisfies the ordinary differential 
inequality 

(29) Lr^uUr) ]' + r ^ P ^ r M M r ) ] < 0 

/or a < r < o o . 
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The idea of the proof of Lemma 15 [28] is to use Lemma 14 twice to verify 
by direct calculation that uM(r) satisfies 

(30) [r^uUr)! = ^ r f B(x, u(x)) ds. 
«nSi) j S r 

Then (29) follows upon application of Jensen's inequality for convex functions 
[32, p. 160] to <fr[w(x)] on Sr: 

ls(Sr) JSr J s ($ ) JSr 

J B(x, u(x)) ds>Px(r) J 4>[u(x)] ds 

>P1(r)S(Sr)<^[WM(r)] 

= co(S1)rn-1P1(r)*[iiM(r)] 

where (SL) has been used, and hence (30) implies (29). 

THEOREM 16. Under assumptions (Bx) and (SL) the Schrôdinger equation 
(13) is oscillatory in an exterior domain ft in Rn if the ordinary differential 
inequality (29) has no solution uM(r) which is positive throughout [r0, oo) for any 
positive number r0. 

This is an easy consequence of Lemma 15, and reduces the oscillation 
problem for (13) to an analogous problem for the ordinary differential inequal-
tiy (29). This constitutes considerable progress since (29) is much easier to 
analyse directly than (13), and in fact special cases of (29) have been studied in 
detail for some time, see e.g. [13, 42, 44] for extensive bibliographies. Various 
sufficient conditions for (29) to have no eventually positive solution as r —> oo 
also are developed in [28], and applied via Theorem 16 to yield the following 
oscillation theorems for (13) and (14). 

THEOREM 17. Under hypotheses (Bt) and (SL), the Schrôdinger equation (13) 
is oscillatory in an exterior domain ft in R2 if there exists a positive number c 
such that both 

and 

(32) r log rP^r) dr = +œ. I r log rPx( 
•'c 

THEOREM 18. In the Emden-Fowler equation (14) suppose that y > 1, that y is 
a quotient of odd positive integers, and that P^r) is continuous and nonnegative 
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in [0, oo), where Px(r) = min p(x) on the sphere \x\ = r. Then a sufficient condition 
for (14) to be oscillatory in an exterior domain ft in Rn, n > 3 , is 

(33) f 
•'c 

r^P^r) dr = +oo 

for some c > 0, where cr = n — 1 — y(n — 2), y > 1. 

Modifications of Theorem 18 given in [28] apply to the Schrôdinger equation 
(13). 

Examination of the sufficient conditions (17) and (18) (of Theorem 8) for 
(14) to be nonoscillatory shows that (32) and (33) are very close to characteri
zations of oscillatory equations (14) in JR2 and Rn, n > 3 , respectively. In fact, 
(32) and (33) are characterizations of oscillatory equations (14) under the 
additional hypothesis 

(34) liminfP1(r)/P(r)>0. 

This condition merely restricts p(x) from oscillating too severely on the sphere 
Sr of radius r for all sufficiently large r. 

THEOREM 19. Suppose that p(x) in (14) is nonnegative in an exterior domain 
ft <= Kn, p <= C*(M) for every bounded domain M<=ft, p e Ca[a, b] for all b>a, 
a > 0 , 0 < a < l , and (34) is satisfied. Then (32) or (33) is necessary and 
sufficient for a superlinear equation (14) to be oscillatory in ft according as n = 2 
or n > 3, respectively. 

Since the hypotheses of Theorem 19 certainly imply those of Theorem 17 
(specialized to the Emden-Fowler case (14)) and Theorem 18, the sufficiency 
of (32) and (33) follow from those theorems. 

Conversely, if (14) is oscillatory in ft, then Theorem 8 shows that the 
integrals on the left sides of (17) and (18) diverge to +°°. By (34) there exist 
positive numbers r0 and s such that Pt(r) > sP(r) whenever r > r0, and conse
quently 

I r log rP^r) dr > e r log rP(r) dr = +<*>, 

proving the necessity of (32), and similarly the necessity of (33). 

6. Sublinear equations. Oscillation and nonoscillation criteria for (13) and 
(14) will be described under assumptions (Ba), (B2), and the sublinear 
hypothesis below: 

(SB) <f>(t) in (B2) satisfies <f>'(t)>0 and <&(f)<°° for all f > 0 , where 
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In particular the Emden-Fowler equation (14) satisfies (SB) in the case 
0 < y < l . 

THEOREM 20. If (B^, (B2), and (SB) are satisfied, a sufficient condition for the 
sublinear inequality uL(u;x)<0 (given by (13)) to be oscillatory in an exterior 
domain ft<=JRn ( n > 2 ) is 

(35) \~rpM(r)dr = +™ 

for some c > 0 , where the spherical mean pM(r) ofp(x) over Sr is defined by (8). 

The proof given by Kitamura andKusano [18] for the special case L(u; x) = 
Au + p(x)<f>(u) can be extended to (13). A different proof for n = 2 was given in 
[29], based on the Riccati inequality (23). Neither B(x, t) nor p(x) is required 
to be everywhere positive for Theorem 20 to be true. 

Sharp nonoscillation criteria for (14) in the sublinear case 0 < y < l are 
obtained on the basis of Lemma 7; these are stated in the theorem below. 

THEOREM 21 [31]. Under the hypotheses on p and P in Lemma 7, a sufficient 
condition for the sublinear (i.e. 0 < y < l ) Emden-Fowler equation (14) to be 
nonoscillatory in an exterior domain CI in Rn is 

1 (36) r(logr)yP(r)dr«* if n = 2, 

(37) 

for some c > 0. 

rP(r)dr<oo if n > 3 

It is interesting to compare (36) and (37) with the corresponding criteria (17) 
and (18) in the superlinear case ( y > 1), as stated in Theorem 8. The proof is 
very similar to that of Theorem 8, except that Atkinson's criterion (20) is 
replaced by Belohorec's criterion [8, 44] 

(38) sye2sP(es)ds<™, s=logr 
"'so 

(when n = 2), which is equivalent to (36). The argument (for n = 2) in Theorem 
8 is then essentially unchanged. 

Combination of Theorems 20 and 21 yields a necessary and sufficient 
condition for the sublinear equation (14) to be oscillatory in fl^Rn, n > 3 
provided hypothesis (34) is added, thereby extending Belohorec's one-
dimensional characterization of sublinear oscillation to dimensions n > 3. How
ever, the case n = 2 is still unresolved. 

THEOREM 22. If p and P satisfy the hypotheses of Theorem 19 and if (34) 
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holds, then a necessary and sufficient condition for the sublinear (i.e. 0 < y < l ) 
Emden-Fowler equation (14) to be oscillatory in an exterior domain ftcjR

n, 
n > 3 is 

(39) [ rP(r)dr = +oo 
•'c 

for some positive number c. 

The oscillation criteria (32), (33), (39), etc. for (14) have the form (where y 
is a quotient of odd positive integers) 

m(r)Px(r)dr =+oo 
•'c 

for some radial function m and some number c>0 , where P1(r) = minp(x) on 
the sphere |JC| = r. Under the hypotheses associated with Theorems 19, 22, etc., 
some of these criteria are characterizations of oscillatory equations (14). A 
summary of the known results is tabulated below according to dimension n and 
semilinear exponent y. All the nonlinear entries correspond to necessary and 
sufficient conditions for oscillation, except the entry for n = 2, 0 < 7 < 1 . 

TABLE OF MULTIPLIERS m(r) FOR OSCILLATION OF (14) 

Dimension 

1 

2 

n > 3 

Sublinear ( 0 < 7 < 1 ) 

ry 

NASC, 1961 
Belohorec [8] 

r 
(35), 1979 
Kitamura and Kusano [18] 

r 
NASC, (39), 1979 
Noussair and I [31] 

Linear (7 = 1) 

r b , 6 < l 
1955 
Moore [25] 

r ( logr ) b , 6< l 
(11), 1975 
Noussair and I [28] 

r b , b < l 
(6), 1968 
Headley and I [16] 

Superlinear (7 > 1) 

r 
NASC, 1955 
Atkinson [7] 

r log r 
NASC (32), 1979 
Noussair and I [30] 

r°;or = n - l - 7 ( n - 2 ) 
NASC (33), 1979 
Noussair and I [30] 

7. Perturbed linear equations. The elliptic equation (1) is called a perturbed 
linear equation when B(x, u) in (1) has the form 

J 

(40) B(x, u) = q1(x)u+ £ q,-(x)^(M), xeil 
j = 2 

under the assumptions (PLj) and (PL2) below: 

(PLx) Each qi is a continuous real-valued function in ft, j = 1, 2 , . . . , J; 
(PLjt) Each ty is an odd C1 function in (-00,00) with ife(f)>0 for all t>0. 

The functions qi are not required to be everywhere positive, precluding the 
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deduction of oscillation criteria via comparison theorems for (1) [37, 41]. We 
define functions p and <f> by 

(41) p(x) = min|>h(x), . . . , %(*)], x e ft 

J 

<l>(u) = U+ X ^-(M), - O O < M < O O . 
1=2 

Then B(x, u)>p(x)<j)(u) for all x e f t and for all u > 0 , and hence (B^ and (B2) 
in §1 are implied by (PI^) and (PL2). The following oscillation criteria for a 
perturbed linear equation (1) or inequality uL(u; x ) < 0 are proved in [29] by 
methods similar to those described in §4 above. 

THEOREM 23. The perturbed linear inequality wL(w;x)<0 (given by (1) and 
(40)) is oscillatory in an exterior domain ft of R2 (Rn, n>3, respectively) under 
hypotheses (A), (PLX) and (PL2) if (9) and (11) ((10 and (12), respectively) are 
satisfied, where p(x) is given by (41). 

For example, if (A^) in (1) is a constant matrix with largest eigenvalue À, 
oscillation criteria for (1), (40) are 

for some a > 0 , where pM(r) is given by (8), (41). 

8. Oscillation in general domains. The foregoing theory applies essentially 
only to unbounded domains fl of the exterior type. In the case of the linear 
equation (2), sufficient conditions for (nodal) oscillation were obtained in [40] 
without special hypotheses on the geometry of ft. These results are written in 
terms of the functional 

(42) F[u;M]=\ \ J A iJ-(x)D iuD jM-p(x)w2l dx 

on a nonempty regular bounded domain M c ft, where the admissible functions 
u in (42) are supposed to be real-valued piecewise C 1 functions on M. 

THEOREM 24. Equation (2) is nodally oscillatory in an unbounded domain 
ftc=i^n if ft contains a sequence of nonempty regular bounded domains Mk, 
k = 1, 2 , . . . , with piecewise C 1 boundaries, having the following properties: 

(i) For arbitrary r>0 there exists an integer k0(r) such that Mkc:ft r for all 
k >fc0(r); and 

(ii) There exists a nontrivial piecewise C1 function uk on each Mk such that 

n = 2, 

n > 3 , 
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uk(x) = 0 for all xedMk and F [ u k ; M k ] < 0 whenever k>K for some positive 
integer K. 

This is proved in [40] by Courant's minimum principle for eigenvalues [11, p. 
399]. We can prove, furthermore, under the same hypotheses, that the linear 
inequality vL(v;x)<0 is oscillatory in fl by appealing to Picone's identity [39, 
41]. In fact, if v is a positive or negative solution of the inequality throughout 
Mk for k>max(k0(r), K), integration of Picone's identity over Mk yields the 
contradiction 

[ ^L(v;x)dx+F[uk;Mk]>0 
W v(x) 

unless v is a constant multiple of uk in Mk. Therefore every solution v of 
vL(v; x ) < 0 has a zero in ftr for all r > 0 . Nodal oscillation of (2) follows from 
Allegretto's equivalence theorem [2] (see §1) if peCa and each Aj,- G C a + 1 , 
where 

THEOREM 25. Equation (2) is nodally oscillatory in an unbounded domain 
CI c: Rn if fl contains a sequence of disks Mk (xk; ak) = {x : \x - xk \ < ak} with the 
following properties: 

(i) l i m ^ J K \ - a k ) = +oo; 

(ii) (Aijix)) is bounded in \JkMk(xk;ak); and 

(iii) l i m , ^ ak~n p(x) dx = +oo. 

This is deduced from Theorem 24 if uk is selected to be the piecewise linear 
function of r = | x - x k | which is 1 in 0 < r < a k / 2 and 0 for r>ak. Various 
specializations of Theorem 25 lead to nodal oscillation criteria for (2) in 
domains il which are quasiconical, quasicylindrical, or even of the "spiral" type 
containing no infinite ray. These results also have been extended by Noussair 
[27] and Allegretto [5] to certain elliptic operators of arbitrary even order. 

Allegretto [4] has obtained results of similar type for semilinear equations (1) 
under the following geometric assumptions: (i) As in Theorem 24, there exists 
an integer k0 such that Mk<^Q,r for all k>k0; (ii) As in Theorem 25, Mk is 
specialized to an n-disk Mk(xk; ak) of radius ak and centre xk; and (iii) For 
each integer k = 1, 2 , . . . , xk+1 e Mk, M k + 1 <£ Mk, and xk ^ x,- if k ^ j . Allegretto 
defines a function gk in Mk(xk; \ak), k = 1, 2 , . . . , depending on the geometry 
and the coefficient functions in (1) in a complicated way; then, if (A^x)) is 
bounded (as a form) in H, a sufficient condition for (1) to be oscillatory in Q, is 
that 

l i m ( a r n f F(x; egk(x)) dx} = +«> 
k^°°L JMk[xk;(l/2)ak] J 
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for every positive number e, where F(x,t) = t~1B(x,t). Illustrations of this 
criterion are given in [4] when (1) reduces to the Emden-Fowler equation (14) 
in unbounded domains of various specific types. 
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