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SUMMARY

Currently favoured models postulate that gene conversion is due to
the correction of mis-matches in heteroduplex DNA. If heteroduplex is
formed reciprocally on both chromatids participating in recombination,
the mis-matches due to a heterozygous site will be different on the two
chromatids, and there will be four correction probabilities to be taken
into account. It is shown that, given the frequencies of the five different
kinds of aberrant ascus ratios, it is possible to calculate four alternative
sets of values for the four correction probabilities and the total number of
asci in which heteroduplex is formed. These four solutions reduce in effect
to two when there are no other markers distinguishing the two chromatids.
With the aid of flanking markers and the assumption that heteroduplex
formation is chemically polarized, it is possible, in principle, to choose
one best solution.

The method has been applied to the five one-point crosses in Sordaria
fimicola from which most data are available. The data from four different
mutants crossed to wild type are compatible with a restricted model in
which the correction frequencies, from mutant to wild and from wild to
mutant, are the same on both chromatids. In the case of the fifth mutant
the data are not consistent with this restricted model, and indicate
different correction frequencies in the two chromatids.

1. INTRODUCTION

Gene conversion and post-meiotic segregation, and the relation of these events
to the crossing-over of flanking markers, have been particularly studied in the
eight-spored Ascomycete species Sordaria fimicola (Kitani & Olive, 1967, 1969;
Kitani & Whitehouse, 1974) and Ascobolus immersus (Stadler & Towe, 1971),
mutants with altered ascospore colour being used in each case. The results have
usually been interpreted in terms of the recombination model of Holliday (1964),
a slightly elaborated version of which is shown in Fig. 1. The model proposes that
the recombination events, responsible for both gene conversion and crossing-over,
are initiated by a reciprocal exchange between chromatids of single DNA strands
of like polarity, leading to the formation of duplex DNA of hybrid origin (hetero-
duplex) on both. If the region covered by heteroduplex includes a mutant site in
one of the chromatids, both chromatids will have a wild/mutant mis-match
at this site. This will be a mis-matched base pair, in the case of a base-pair
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substitution mutation, or a structural mis-match in the case of a deletion or frame-
shift. As Fig. 1 shows, and as pointed out by Emerson (1966), the mis-matches
will be different on the two chromatids.

If no correction of mis-matches occurs the result will be an aberrant 4:4 (ab4 : 4)
segregation in the eight-spored ordered ascus, with two meiotic products showing
segregation at the first post-meiotic mitosis. If correction occurs in opposite
directions (wild-to-mutant and mutant-to-wild) on the two chromatids the result
will be a normal 4:4 segregation indistinguishable from the great majority of
asci in which no heteroduplex was formed over the site under observation. Correc-
tion in the same direction on both chromatids will give a 6:2 or 2:6 ascus depending
upon which way the correction goes, while correction on one and no correction on
the other will give either 5:3 or 3:5.

In Holliday's (1964) model the point of half-chromatid (single-stranded DNA)
crossing-over is envisaged as being capable of resolution in either of two ways:
by the cutting and rejoining of the two crossed strands restoring the parental
linkages of flanking markers, and by cutting and rejoining of the ' outer' strands
to make a whole-chromatid cross-over with recombination of flanking markers.
Fig. 1 includes an assumption not included in Holliday's original model: namely,
that the unwinding of DNA single strand from the breakpoint on one chromatid,
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Fig. 1. Model for gene conversion and associated crossing-over. M/m, N/n are
proximal and distal flanking markers. Only two of the four chromatids present at
prophase I of meiosis are shown; the other two do not participate in the recombi-
nation event and retain the parental genotypes. Within each chromatid the opposite
polarities of the DNA single strands are shown by arrows. + / + ' and g/g' are the
complementary bases (or base sequences) of wild-type and mutant sites. It is
assumed that heteroduplex spreads with a constant chemical polarity from its
point of initiation. Correction probabilities: for -f/gr' mismatch, g' -> + ' = p,
-|—> g = q'; for + '/g mismatch, g -> + = r, +' -> g' = s.
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and its assimilation on to the other chromatid, proceeds with a constant chemical
polarity. These seems quite plausible, especially in view of the properties of the
'unwindase' described from meiotic cells by Hotta and Stern (1978). This elabor-
ation of the model has no effect on the reasoning in the following section, in which
we describe the calculation of alternative sets of correction frequencies on the basis
of the numbers of different ratios without taking flanking markers into account,
but it becomes relevant when we consider how it may be possible, with the aid
of flanking markers, to discriminate between the alternative solutions.

2. THE POSSIBILITY OF CALCULATING CORRECTION
PROBABILITIES

The problem of calculating the probabilities of the four different kinds of mis-
match correction in bilaterally formed heteroduplex covering a heterozygous site
was first clearly formulated by Emerson (1966), but he did not arrive at an
algebraic solution to the problem. Recently, Paquette & Rossignol (1978) have
calculated correction probabilities in Ascobolus immersus using the assumption
that the same two probabilities (of wild-to-mutant and mutant-to-wild correction
respectively) applied to both chromatids. This assumption may be approximately
true when wild and mutant sequences differ through deletion or insertion, but it
can hardly be true in general and especially not when the mutation is a base-pair
substitution. In this paper we continue Emerson's analysis and show how explicit
solutions may be obtained.

In the Sordaria fimicola data (Kitani & Olive, 1967; Kitani & Whitehouse, 1974)
on crosses of single ascospore colour mutants to wild type, there are five observed
quantities: the respective numbers of 6:2, 2:6, 5:3, 3:5 and ab4:4 asci. What is
not known is the total number of asci in which, because of hybrid DNA covering
the gene under observation (gray, g), there was opportunity for gene conversion
or post-meiotic segregation. This number would include the unobservable class
of normal 4:4 asci due to conversion in opposite directions on the two chromatids.
There are thus five parameters to be evaluated: the probabilities of correction
from wild to mutant and from mutant to wild on the first chromatid (p and q
respectively), the corresponding probabilities on the second chromatid (r and s
respectively) and the total number of asci in which heteroduplex DNA is formed
in the relevant region (N).

Then the expected and observed numbers of the various classes of aberrant
asci are as shown in the following table:

+ :m Expected Observed
6:2 Correction from mutant to wild on both chromatids Npr A
2:6 Correction from wild to mutant on both chromatids Nqs B
5:3 Correction from mutant to wild on one, no correction N{p(i—r — s)+ C

on the other r(l—p — q)}
3:5 Correction from wild to mutant on one, no correction N{q(l— r — s)+ D

on the other s(l—p — q)}
ab4:4 No correction on either chromatid A (̂l —p — q) x E

(i-r-8)
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It is shown in Appendix (i) that, by equating the expected and observed numbers
of asci, two alternative sets of estimates of the five unknown parameters can be
obtained.

(1) p = Y/(X+ Y + XY), (2) p = Y'/(X+ Y' + XY'),
q = X/(X+ Y + XY), q = X/(X+ Y' + XY'),
r = Y'/(X'+Y' + X'Y'), r = Y/(X'+Y + X'Y),
s = X'/{X'+Y' + X'Y'), s = X'/(X'+Y + X'Y),

where

2A ' X 23

D + <]{D~±BE)
2B '2B ' 2B

Strictly, there are four alternative sets of solutions, but they reduce to two only
when there is no means of distinguishing between the two chromatids. When such
distinction can be made, because of the presence of distinguishing markers other
than the one undergoing conversion, we can assign the values p and q to one
chromatid and r and s to the other. In terms of Fig. 1, which defines p and q
as the frequencies pertaining to the chromatid originally carrying the wild-type
allele at the locus undergoing conversion, the values of (p, q) and (r, s) can be
interchanged within each of the two solutions set out above.

A special problem arises if either A or B is zero. No such case occurs in the data
considered in this paper (although A = 1 in one cross) but a procedure for dealing
with the situation is given in Appendix (ii).

3. APPLICATION TO SORDARIA DATA
Table 1 shows data from Kitani & Olive (1967) and Kitani & Whitehouse

(1974) for five of the most fully analysed one-point crosses of g mutants. The
numbers of each type of aberrant segregation at the g locus are shown, and the
asci are also classified with respect to segregation of the flanking markers. The
flanking marker information becomes relevant in the following section.

Table 2 shows the values of the expressions C2 — ±AE and D2 — 4JBE, the square
roots of which are required for the calculation of the correction probabilities. A
difficulty is at once apparent. In four of the five crosses the value of at least one
of these expressions turns out to be negative, so that the equations for the calcu-
lation of correction probabilities have no real solutions. If these negative values
were statistically significant they would have interesting implications. The obvious
explanation would be that the assumption of independent correction on the two
chromatids was false. If correction on one chromatid were correlated with correc-
tion on the other, so that correction tended to occur either on both or on neither,
the values of A, B and E would obviously be inflated in comparison with C and D.
Complete correlation would, in fact, reduce C and D to zero. Any substantial
deficiency in ascus classes C and D due to correlated correction would tend to
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result in C2 — 4AE and D2 — ABE becoming negative. If the assumption of inde-
pendent correction holds, however, there is no way these expressions could become
negative other than by sampling error. A situation where negative values could
readily occur would be if there were the same correction frequencies on each
chromosome, i.e. p = r and q = s. The expected values of C2 — 4AE and D2 — 4JSE
would both then be zero, so negative values of one or both of these quantities
would happen in many samples by chance.

To test whether the negative values shown in Table 2 were significant and to
enable estimation of the correction frequencies for these crosses, models with
fewer than four parameters were fitted by maximum likelihood. Details are given
in Appendix 3. The important model is that in which both r and s are constrained
so that p = r and q = s. The fit of the restricted models to the data was tested by
comparing doubled log likelihoods to x2- Results are shown in Table 3, together
with the expected numbers of each type of aberrant ascus, summing to the same
total as the expected numbers.

For the two crosses, + x h2 and + x g7, where both C2 < AAE and D2 < ABE,
the restricted model with p = q and r = s fit the data very well. Furthermore,
both crosses, + x q& and + x h3, which gave real solutions on the general model
are easily compatible with the restricted model. We may thus conclude that the
results from four out of the five crosses here analysed are consistent with the
same two frequencies of correction (from mutant to wild and from wild to mutant
respectively) on both chromatids. Paquette & Rossignol (1978) found that their
data from Ascobolus immersus were consistent with this restricted model. To the
extent that it is found to be applicable it suggests that the mutations under study
are recognized by the correction mechanism(s) as physical features (such as small
deletions or insertions) which will be the same on the two chromatids, rather than
as specific mis-matches of single base pairs, which, on the basis of the currently
accepted models of the Holliday type (Fig. 1), are not expected to be the same on
the two chromatids.

On the other hand, cross + x gx from which the largest number of asci was ana-
lysed and in which D2 < ABE, gave results which were not compatible with p = r
and q = s (P < 0-01). The data were, however, well fitted by a less restricted model
constructed such that the expected value of D2 — ABE, but not that of C2 — AAE,
was zero. This implies only one set of solutions (or two if the 'mirror image'
solutions obtained by interchanging p and r and q and s are counted) with the
restriction s = q{\ — r)/(l— p). This restriction has no apparent implications as
regards correction mechanism or mode of recognition of mis-matches; the four
correction frequencies are still all different from each other as in the general model.
The data fit this restricted model very well, consistent with independent correction.
But when the further restriction of p = r and q = s is tried we find that the results
from + x qx are not compatible with correction frequencies being the same on the
two chromatids. This could be explained if qx were a single base-pair substitution
and if different mis-matched base pairs in a Holliday structure were recognized
with different efficiencies by a correction enzyme.

13-2
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It is not clear to what extent the fit of the data from the other four crosses to the
model with p = q and r = s was due just to small numbers of observations. We
do not present standard errors of the estimates of correction frequencies because
they are not very useful. The estimates of the parameters, p, q, r and s are so
highly correlated that, providing they are changed together rather than singly,
a good fit to the data can be obtained over a wide range of values.

4. POSSIBILITIES OF DISCRIMINATING BETWEEN
ALTERNATIVE SOLUTIONS

Although the existing Sordaria data are not adequate for the evaluation of
meaningful correction probabilities, it is still perhaps of some interest to consider
whether, given larger numbers, one might be able to choose between the alter-
native sets of solutions derived in Appendix 1. In fact, on the basis of the model
shown in Fig. 1, it is possible to deduce the correct set, provided that closely placed
flanking markers are scored. It has been pointed out to us by Dr Sterling Emerson
that the model predicts that whichever side - whether proximal or distal - the
DNA crossed-strands lie in relation to the site at which conversion is observed,
completion of crossing-over will always associate a particular flanking marker
recombinant type with a particular mis-match in the heteroduplex. Thus, in terms
of the conventions of Fig. 1, Mn recombinant chromatids will carry the mis-match
+ /g' and mN recombinant chromatids the mis-match + '/g. This is a necessary
consequence of the assumption, embodied in the Figure, that heteroduplex spreads
with a constant chemical polarity. The cases where heteroduplex formation is
not associated with crossing-over do not give comparable information. The MN
products, for example, will carry the + fg' mis-match when the crossed strands
are distal and the + '/g mis-match when they are proximal. There is no way of
resolving the distal/proximal ambiguity in the case of those conversion asci
which are not recombined for the flanking markers, and so only the cross-over
asci are used in the following argument.

From inspection of Fig. 1 it can be seen that 5:3 asci can arise in two ways:

(R2) No correction on the Mn chromatid and correction g-++ on the mN
chromatid. The frequency will be proportional to (1— p — q) r.

(Rl) No correction on the mN chromatid and correction g'-> + ' on the Mn
chromatid. The frequency will be proportional to (1 — r — s) p.

3:5 asci will arise from:

(R2) No correction on Mn, correction H—>g on Mn; frequency proportional
to (1 — r — s) q.

(Rl) No correction on mN, correction +'-*•& on Mn; frequency proportional
t o (1— p — q) s.

Thus
5:3(R1) _ p 5:3(R2) _ r
3:5(R2) ~ q 3:5(Rl) ~ s'
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With the aid of these relationships it is possible, in prinieple, to choose the best
values for the four correction probabilities and also to determine which pair of
values pertains to which chromatid.

To illustrate the reasoning we will take the data for the cross of wild type x h3,
ignoring for the moment the small numbers of observations and the unreliability
of the estimates.

From Table 2 we obtain:

(Solution 1) ^ = 0-27, - = 0-37
q s

(Solution 2) ^j = 0-053, ^ = 1-89.
q s

In each solution the two ratios may equally well be reversed since, without using
the flanking marker information, we can not distinguish one chromatid from the
other.

From Table 1 we obtain:
P 5:3(111) [1
q ~ 3T5IR2) = 12 = ° ° 8 3

Solution 2 agrees rather better with the observed ratios in the odd-numbered
conversion asci than solution 1. Accepting the ratios of solution 2, the indications
from the flanking marker analysis (p/q <̂  1, r/s ~ 1) suggest that the assign-
ment of the ratios to chromatids was correct as first written. We thus arrive at
best estimates:

p = 0-03, q = 0-49, r = 0-24 and s = 0-13.

In fact, due to the small numbers, the data are not inconsistent with p = r and
q = s (Table 3).

As we noted above, the subclasses Pi and P2 of the 5:3 and 3:5 asci are more
complex in origin (if the model of Fig. 1 is accepted) since a given type of correc-
tion can have different consequences depending on whether the crosses strands
are proximal or distal. However, having determined the best values of p, q, r and s
on the basis of the Rl and R2 asci, we can apply these to the interpretation of the
PI and P2 asci and draw conclusions about the relative frequencies of proximal
and distal crossed strands (potential crossover positions).

5. THE CONTRIBUTION OF UNILATERAL HETERODUPLEX
A very serious limitation of the model shown in Fig. 1 is its assumption that

heteroduplex is always formed symmetrically on both chromatids (bilaterally).
In fact there are strong indications that heteroduplex may be formed unilaterally
on one chromatid only. In such a case the donor chromatid, which must be pre-
sumed to have contributed a single DNA strand to the chromatid with the hetero-
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duplex, must be repaired not by reciprocal DNA transfer but by complementary
copying of its own remaining strand. In Saccharomyces, indeed, the extremely
low frequency ofab4:4 asci (Fogel & Mortimer, 1978) suggests strongly that nearly
all gene conversion and post-meiotic segregation in this organism is due to unilateral
heteroduplex. In the eight-spored Ascomycetes that have been studied the indi-
cations are that heteroduplex formation is sometimes unilateral and sometimes
bilateral. Paquette & Rossignol (1978) have recently presented evidence that in
Ascobolus immersus the relative contributions of the two modes may change
systematically from one side of the gene map to the other. Whitehouse (1974)
suggested a substantial contribution from unilateral heteroduplex in Sordaria
fimicola on the basis of the consistent excess of PI over P2 odd-numbered conver-
sion asci (termed by him tritype and tetratype asci respectively). As he pointed
out (and the same point was made in the case of Ascobolus immersus by Stadler &
Towe, 1971), bilateral heteroduplex formation would be expected, overall, to
yield Pi and P2 asci in equal numbers; unilateral heteroduplex, on the other
hand, can only lead to PI and never to P2.

In Sordaria fimicola data reviewed by Whitehouse there were 453 Pi and 226
P2 5:3 and 3:5 asci in data pooled from a number of crosses involving different
mutants of the gray series. As he pointed out, the excess of 227 PI asci suggested
that about one third of the odd-numbered conversion asci arose from unilateral
heteroduplex (all Pi) and about two-thirds from bilateral (equal numbers of PI
and P2). This is an uncertain line of argument applied to a cross of any one mutant
to wild type, since in a single case the heteroduplex correction probabilities could
easily happen to be such as to tend to restore one or both of the original chromatid
genotypes, a situation indistinguishable from heteroduplex not always being
formed at all. In other words, in a particular case, the relationships p > r and
s > q might well hold. Over a number of mutant x wild crosses, however, there is
no reason on the basis of the model of Fig. 1 why these inequalities should apply
consistently; yet the excess of P i over P2 does seem to be consistent over all
mutants. The estimate of one third of 5:3 and 3:5 asci arising from unilateral
heteroduplex thus seems very plausible.

These considerations do not prevent the calculation of values for p,q,r and s,
but they do call into question the interpretation of these parameters. If unilateral
heteroduplex is significant, then a part of p and of s will be due to restoration
of parental chromatid constitution in cases where no heteroduplex was ever
formed. Only where there is independent evidence that heteroduplex is nearly
always bilateral can the values obtained be taken as good estimates of mis-match
correction probabilities.

We are indebted to Sterling Emerson, whose ideas initiated this study and with whom we
have had many useful discussions.
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APPENDIX: ESTIMATION OF CORRECTION PROBABILITIES

(i) General case

The observed numbers (A-E) and their total (M) of the five classes of abnormal
asci in terms of the four correction probabilities (p, q, r, s) and the number of asci
at risk (N) are:

Class Observed Expected
(6:2) A Npr
(2:6) B Nqs
(5:3) C N[r(i-p-q)+p{l-r-s)]
(3:5) D N[s(l-p-q) + q(l-r-s)]

(ab4:4) E N(l—p-q)(l-r-s)
Total M N(l-ps-qr)

The numbers in each class are multinomially distributed, so the log-likelihood,
conditional on the numbers observed, is

L = constants+ ̂ 4 hi (pr) + ... + E]n[(l -p-q)(l-r — s)] — M ]n(l—ps-qr).
Since there are only five classes and four parameters to be estimated, the maximum-
likelihood estimates of the correction probabilities are obtained by equating the
observed to expected numbers. Thus
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B~ qs •

Squaring (1), subtracting (4) x (3) and taking the square root:

1-p-q l-r-8
—p~ 7~ = A

Taking the positive root and adding (1) and (0):

1-p-q

Similarly, from (2) and (4),

1-p-q
q 2B ~ *• K '

From (6) (l — q)/p = 1 + X, and from (7), (l—p)/q = 1 + Y, so the estimates are

Y X
dP= X+

Subtracting (5) from (1)

1-r-s
—7- = 2l

and subtracting (7) from (2):

1-r-s D
8 ~ 2B { '

From (8), (1 -s)/r = 1 + X', andfrom (9), (l-r)/s = 1 + Y', to give the estimates

7' X'
X'+Y' + X'Y' X'+Y'+X'Y''

Finally, from Npr = A, the estimate of N is

A{X+Y + XY)(X'+Y' + X'Y')
YY'

Alternative solution(s). If, instead of taking the positive roots in both (5) and
(7), we take the positive root in (5) and the negative in (7) we obtain from (6),
(l — q)/p = 1 + X, and from (7), (l—p)/q = 1+Y. Hence alternative estimates
are:

Y'
P X+Y' + XY" r X'+Y + X'Y"

- X - X>

9 ~ X+Y + XY" S ~ X' + Y + XY'
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Or, if we take the negative root in (5) and the positive in (7) we obtain from (6)
(l-q)/p = 1 + X', and from (7), (l-p)/q = 1 + Y. Hence

P V i V i V V' **

Y'
X'+Y + X'Y' X+Y' + XY"

X _ X'
q ~ X' + Y + X'Y' S ~ X+Y' + XY"

i.e. we obtain the same four expressions, but with p and q converted into r and s,
respectively and vice versa. Taking negative roots in both (5) and (7) clearly
gives the same four expressions as obtained with both roots positive, but with
p, q and r, s again interchanged. Hence, unless we have some independent means
of distinguishing between the 'p,q' and 'r,s' chromatids, there are two dis-
tinguishable sets of estimates:

(1) p = Y/(X+ Y + XY), (2) p = Y'/(X+ Y' + XY')

q = X/(X+ Y + XY), q = X/(X+ Y'+XY'),

r= Y'/(X'+Y' + X'Y'), r= Y/(X' + Y + X'Y),

s = X'/(X'+ Y' + X'Y'). s = X'/(X'+Y+X'Y).
where

2A

_ D + JjDlBE) _
2B '2B ' 2B

(ii) Solutions when A = 0 or B = 0
If no individuals are observed in either the A (6:2) or B (2:6) classes, the above

solutions cannot be used since equations (6) and (8) or (7) and (9) involve division
by zero. Note that in cross + x h3, where B = 1, this nearly happened. The
solutions are now obtained by setting the estimate of one of the correction prob-
abilities to zero, for example, if A = 0 either p = 0 or r = 0.

4̂ = 0. Settings = 0, from (7), (i-q)/q = Y, and

r G

Thus W is used instead of X' in (8). Using (9) and previous results the solution
follows, as do the alternative distinguishable solutions.

(1) p = 0, [2)p = 0,

q=l/(l+T), g= 1/(1+7'),

r = Y'/(W+ Y'+WY'), r = Y/(W+ Y+ WY),

s = W/(W+Y' + WY'). s = W/(W+Y+WY).

Two other solutions are obtained by converting p and q to r and s, respectively.
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B = 0. Similarly, the two alternative distinguishable solutions are given by

(l)p = 1/(1+ X), (2)p = 1/(1 +X'),
2 = 0, q = 0,
r = Z/(Z' + Z + X'Z), r = Z/(X + Z + XZ),
s = X'/{X' + Z + X'Z). s = X/(X + Z + XZ).

where E/D = Z.
A = 0 and B = 0. In this pathological case, the distinguishable solutions are

p = 0, q = 0, r = C/(C + D + E), s = D/{C + D + E), and^ = 0, q = D/(D + E),
r = C/(C + E),s = 0.

(iii) Solutions when C2 < AAE or D2 < ABE: reduced models
If the observations are such that C2 < 4AE or D2 < ABE the estimation pro-

cedure given in (i) cannot be used since negative roots are obtained. This occurred
in three of the five sets of data. To obtain real solutions, the parameter estimates
have to be constrained in some way, and it seemed reasonable that when, for
example, C2 < 4AE, the parameters should be constrained such that the expected
value of this quantity is exactly zero, to give three independent parameters.

C2 < 4AE, Z>2 ̂  ABE. Setting the expected values of C2 = AAE gives, from
Appendix 1:

[r(l— p — q)+p(l-r-s)]2 = 4pr(l—p —

which reduces to r(l — q) = p(l — s), so s can be replaced by s = l — r(l — q)/p in
each of the numbers of A-E expected. Since there is now one less parameter than
observation, the likelihood cannot be maximized by equating observation to
expectation. No analytic expressions for the parameter values at the maximum
has been obtained, so a numerical' hill-climbing' procedure on the likelihood shown
in Appendix 1 was used. The number of equivalent maxima (solutions) has not
been deduced analytically, but numerical checks suggest that there are two when
C2 < 4AE. The computer program was set to find these two by taking as initial
values the solutions from Appendix 1 obtained by assuming C2 = 4AE, i.e.
X = X' = C/2A.

Since only three rather than four parameters are fitted, a goodness-of-fit test
of the reduced model to the data can be practised. This was done by comparing
twice the difference in log likelihood from fitting observed frequencies equal to
expectation (i.e. assuming expected frequency of class A (6:2) is A/M and so
on) and the log likelihood fitting the model with s = l — r(l — q)/p. If the model
fits, the doubled difference in log likelihood has an approximate chi-square
distribution with one degree of freedom.

D2 < ABE, C2 > 4AE. The same procedure is used, but the restraint on the
parameters, obtained by setting expectations of D2 = ABE, is

s = q(l-r)/(l-p).

The initial values used for the hill climbing were obtained by setting Y = Y' = D/2B.
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C2 < 4AE, D* < 4JSF. Setting both expectations C2 = 4AE and D2 = ±BE
implies p = r and q = s. The maximum likelihood parameter estimates can now
be obtained explicitly. From Appendix (i), the log likelihood is now:

L = consta,nts + Ahi(p2) + B]n(q2) + Gln[2p(l-p-q)]

+ Dln[2q(l-p-q)] + Eln[(l-p-q)*]-Mln{l-2pq).

It is convenient to set

F = 2A + G, G = 2B + C, H = C + D+2E.

The log likelihood now becomes

L = constants + Flnp + G]nq + Hln(l-p-q)-M]n(l-2pq).

Differentiating L with respect to p and q, and setting the derivatives to zero gives
the following solution for p:

P ~ 2(F-

and for q by substituting the solutions for p into

a F-p{F-G)'

Although there are two solutions to the quadratic equations, in all examples
checked so far there has only been one solution in which both p and q lie in the
acceptable range 0 ̂  p, q J% 1.

Fit of this reduced model to the data can also be checked using a likelihood
ratio test, i.e. computing the difference in doubled log likelihood and comparing
to chi-square. Since there are now only two parameters fitted, there are 2 DJF.
for chi-square against the full model with p, q, r and s fitted, or 1 D.F. for chi-
square against the reduced models where s was constrained to take account of
either C2 < 4AE or D2 < 4BE. Notice that these likelihood ratio tests can be
conducted whether or not these inequalities are satisfied; so, for example, the
simple two parameter model with p and q only can be examined directly.

(iv) Sampling errors of estimates
Because the estimates of the correction probabilities involve ratios and square

roots of the observations or, in the case of some of the reduced models, no explicit
solution at all, exact formulae for variances of the estimates cannot be obtained.
Since these are maximum likelihood estimates, Cramer-Rao lower bounds for the
variances can be obtained (see, for example, Elandt-Johnson, 1971).
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