

Volume: 30

Number: 1

June 2017

Available online at www.journals.cambridge.org

Nutrition Research Reviews

Volume 30, 2017 ISSN: 0954-4224

Aims and Scope

Nutrition Research Reviews publishes comprehensive and challenging review articles on selected key topics in nutritional science. Authors are encouraged to take a critical approach in appraising the literature while also aiming to advance new concepts and hypotheses. The journal publishes both solicited and unsolicited articles.

Nutrition Research Reviews is published twice a year by Cambridge University Press on behalf of The Nutrition Society.

The contents page of this journal is available on the Internet before publication at www.cambridge.org/nrr

Editor-in-Chief

J V Woodside, Belfast, UK

Deputy Editor Jos Houdijk, Scottish Agricultural College, UK **Editorial Board** M Ashwell, Baldock, UK E Bandera. New Brunswick, USA J L Black, Warrimoo, Australia D Dardevet, Theix, France C Edwards, Glasgow, UK C Haskell-Ramsey, Newcastle, UK J M Hibbert, Atlanta, GA, USA T Hill, Newcastle-upon-Tyne, UK J K Lodge, Newcastle-upon-Tyne, UK C Lowis, Norwich, UK H C Lukaski, Grand Forks, ND, USA N W Solomons, Guatemala City, Guatemala W Stonehouse, Adelaide, Australia C M Weaver, West Lafayette, IN, USA K M Younger, Dublin, Ireland

The Nutrition Society has as its objective the advancement of the scientific study of nutrition and its applications to the maintenance of human and animal health.

Application of membership is invited from anyone whose work has contributed to the scientific knowledge of nutrition, whether such work has been in the laboratory, the field or the clinic, and whether experimental, clinical, agricultural or statistical in nature. There is also a student membership scheme with reduced subscriptions.

Particulars of The Nutrition Society and application forms for membership are available from The Nutrition Society, 10 Cambridge Court, 210 Shepherds Bush Road, London W6 7NJ, UK. Tel: +44 (0)20 7602 0228, Fax: +44 (0)20 7602 1756, Email: office@nutsoc.org.uk

(0)20 7002 0220, 1 ux. 111 (0)20 7002 1750, Email: office c hubbelorg.

The Nutrition Society Home Page is at http://www.nutritionsociety.org

NUTRITION RESEARCH REVIEWS 2017

Volume 30 No. 1 June 2017

Editor-in-Chief

J V Woodside Belfast, UK

Nutrition Research Reviews Volume 30, 2017 ISSN: 0954-4224

Publishing, Production, Marketing, and

Subscription Sales Office: Cambridge University Press University Printing House Shaftesbury Road Cambridge CB2 8BS, UK

For Customers in North America: One Liberty Plaza New York

NY 10006 United States

Publisher: Katy Christomanou

Nutrition Research Reviews is an international journal published biannually (June and December) by Cambridge University Press on behalf of the Nutrition Society.

Subscription information:

Volume 30 2017 (2 issues) Internet/print package: £306/\$598 American only/€467 EU only Internet only: £207/\$384 Americas only/€305 EU only

Back volumes are available. Please contact Cambridge University Press for further information.

Claims for non-receipt of journal issues will be considered on their merit and only if the claim is received within six months of publication. Replacement copies supplied after this date will be chargeable.

US POSTMASTERS: please send address corrections to *Nutrition Research Reviews*, Cambridge University Press, 100 Brook Hill Drive, West Nyack, New York 10994–2133.

Information for Authors: The journal publishes both solicited and unsolicited review articles. For unsolicited material, authors are asked to submit a summary of the article to the Editor-in-chief in the first instance:

Professor Jayne Woodside Centre for Public Health Queen's University Belfast Institute of Clinical Science B Grosvenor Road Belfast, BT12 6BJ UK Tel: 44(0)2890632585 Fax: 44(0)2890235900 Email: j.woodside@qub.ac.uk

Directions to Contributors: are available from the Editor-in-chief.

Offprints: The author (or main author) of an accepted paper will receive a free PDF of their paper and a voucher copy of the issue in which their paper has been published. Additional offprints are available for a fee and should be ordered at proof stage. No page charges are levied by this journal.

Copyright: As of July 2000 the copyright of all articles submitted to *Nutrition Research Reviews* are retained by the authors or their institutions. For articles prior to this date permission for reproduction of any part of the journal (text, figures, tables or other matter) in any form (on paper, microfiche or electronically) should be sought directly from the Society, at: The Publications Office, The Nutrition Society, 10 Cambridge Court, 210 Shepherds Bush Road, London W6 7NJ, UK.

Disclaimer: The information contained herein, including any expression of opinion and any projection or forecast, has been obtained from or is based upon sources believed by us to be reliable, but is not guaranteed as to accuracy or completeness. The information is supplied without obligation and on the understanding that any person who acts upon it or otherwise changes his/her position in reliance thereon does so entirely at his/her own risk. Neither the Society nor Cambridge University Press accepts responsibility for any trade advertisement included in this publication.

This journal is printed on acid-free paper from renewable sources. Printed in the UK by Bell & Bain Ltd., Glasgow.

This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the world's forests. Please see www.fsc.org for information.

Subscribers may register for free access to the electronic version of *Nutrition Research Reviews*. For more information visit the website at: journals.cambridge.org

Nutrition Research Reviews is covered by the Science Citation Index[®], Current Contents[®] / Agriculture, Biology & Environmental Sciences, SciSearch[®], Research Alert[®], Index to Scientific Reviews[®], EMBASE/Excerpta Medica, Chemical Abstracts Services, CINAHL[®] Database, CAB ABSTRACTS[®], Global Health, BIOSIS[®] Database, SIIC Databases

Vol. 30 No. 1 June 2017

Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries:	
a neglected food group	
Aristea Baschali, Effie Tsakalidou, Adamantini Kyriacou, Nena Karavasiloglou	
& Antonia-Leda Matalas	
Introduction	1
Diversity of traditional low-alcoholic and non-alcoholic fermented beverages	2
Traditional fermented low-alcoholic and non-alcoholic milk-based beverages	2
Kefir	2
Ayran	5
Buttermilk	5
Traditional fermented non-alcoholic or low-alcoholic cereal-based beverages	6
Boza	6
Kvass	6
Traditional fermented non-alcoholic or low-alcoholic fruit-based beverages	8
Hardaliye	8
Gilaburu juice	8
Traditional fermented non-alcoholic or low-alcoholic vegetable-based beverages	8
Sauerkraut juice	8
Şalgam juice	8
Traditional fermented non-alcoholic or low-alcoholic herb, spice and aromatic plant-based beverages	8
Kombucha	8
Ginger beer	10
Traditional fermented non-alcoholic or low-alcoholic sucrose-based beverages	12
Sima	12
Water <i>kefir</i>	12
Health benefits of traditional low-alcoholic and non-alcoholic fermented beverages	12
Traditional fermented low-alcoholic and non-alcoholic milk-based beverages	13
Traditional fermented non-alcoholic or low-alcoholic cereal-based beverages	14
Traditional fermented non-alcoholic or low-alcoholic fruit-based beverages	14
Traditional fermented non-alcoholic or low-alcoholic vegetable-based beverages	14
Traditional fermented non-alcoholic or low-alcoholic herb, spice and aromatic plant-based beverages	14
Traditional fermented non-alcoholic or low-alcoholic sucrose-based beverages	15
Potential health risks of traditional non-alcoholic or low-alcoholic fermented beverages	15
Commercialisation of indigenous non-alcoholic or low-alcoholic fermented beverages	15
Traditional non-alcoholic or low-alcoholic fermented beverages and their place in the market	15
Innovations and perspectives of traditional non-alcoholic or low-alcoholic fermented beverages	16
Discussion	17
Conclusion	19
Acknowledgements	19
Kelerences	19

The progression of coeliac disease: its neurological and psychiatric implications *Giovanna Campagna, Mirko Pesce, Raffaella Tatangelo, Alessia Rizzuto, Irene La Fratta & Alfredo Grilli* Introduction Pathogenesis Genetics Environment Immunopathogenesis

25

26

26

26

26

27
29
31
32
32
32

Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics	
S. A. Reis, L. L. Conceição, D. D. Rosa, N. P. Siqueira & M. C. G. Peluzio	
Introduction	36
Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotic bacteria	38
Deconjugation of bile salts	38
Decreased absorption of intestinal lipids	40
Co-precipitation of cholesterol with the deconjugated bile salts	40
Assimilation and incorporation of cholesterol into the cell membrane of the probiotics	41
Conversion of cholesterol to coprostanol	42
Inhibition of the expression of intestinal cholesterol transporter Niemann-Pick C1 like 1 in the enterocytes	43
Modulation of lipid metabolism	43
Inhibition of hepatic synthesis of cholesterol	43
Reduction of body fatness	44
Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotic yeasts	44
Conclusion	46
Acknowledgements	46
References	47

Nutrition, infection and stunting: the roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children

D. Joe Millward	
Introduction	50
A stunting syndrome	51
Physiology, cellular biologyand endocrinology of linear bone-growth regulation	51
Endochondral ossification	52
Endocrine regulation	52
Paracrine signalling within the growth plate	53
Direct anabolic influences of amino acids and zinc	54
Inflammation and endochondral ossification	54
Nutrition and linear growth	55
Type 1 nutrients	55
Type 2 nutrients	55
Multiple nutrient deficiencies and growth	56
Linear growth regulation as observed in animal models	56
Protein and energy deficiency	56
Zinc deficiency	56
Iodine deficiency	57
Human studies of nutrition and linear growth	57
Energy intake	57
Protein and amino acid intake	58
Zinc intake	59
Iodine intake	59
Multiple micronutrient intakes	60
Animal-source foods and linear growth	60

Infection and poor linear growth in children	62
Environmental enteric dysfunction	63
Conclusions	64
Acknowledgements	65
References	65

Improving selection of markers in nutrition research: evaluation of the criteria proposed by the ILSI Europe Marker	
Validation Initiative	
Philip C. Calder, Alan Boobis, Deborah Braun, Claire L. Champ, Louise Dye, Suzanne Einöther, Arno Greyling,	
Christophe Matthys, Peter Putz, Suzan Wopereis, Jayne V. Woodside & Jean-Michel Antoine	
Introduction	73
Testing the proposed criteria	74
Refining the criteria and developing a new evaluation template	75
Towards developing a marker scoring system	79
Summary and conclusions	80
Acknowledgements	81
Supplementary material	81
References	81

Milk <i>kefir</i> : nutritional, microbiological and health benefits	
Damiana D. Rosa, Manoela M. S. Dias, Łukasz M. Grześkowiak, Sandra A. Reis, Lisiane	L. Conceição
& Maria do Carmo G. Peluzio	
Introduction	82
Characteristics of kefir grains	82
Production of kefir	83
Nutritional composition of <i>kefir</i>	83
Microbiological composition of kefir	84
Kefir consumption	86
Health effects of kefir	86
Effect of kefir on lactose intolerance	86
Antimicrobial properties of kefir	86
Hypocholesterolaemic effect of kefir	89
Control of plasma glucose by <i>kefir</i>	90
Anti-hypertensive effect of <i>kefir</i>	90
Anti-inflammatory properties of kefir	91
Antioxidative activity of <i>kefir</i>	91
Anticarcinogenic activity of kefir	91
Healing action of <i>kefir</i>	92
Conclusion	92
Acknowledgements	93
References	93

Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges *Yvonne M. Jeanes & Sue Reeves* Introduction Obesity and polycystic ovary syndrome Insulin resistance in polycystic ovary syndrome Impaired glucose tolerance and type 2 diabetes mellitus

97

98

99

100

Metabolic syndrome and non-alcoholic liver disease in polycystic ovary syndrome	100
Dietary influences of the metabolic aspects of polycystic ovary syndrome	101
Conclusion	101
Acknowledgements	102
References	102

Genetics of fat intake in the determination of body mass	
Agata Chmurzynska & Monika A. Mlodzik	
Introduction	106
Genetic determination of fat intake: linkage and genome-wide association studies and candidate genes	106
Heritability of fat intake	106
Genome-wide approach	107
Genome-wide association studies on fat intake	107
Functional candidate genes	107
FTO is the gene with the greatest effect on body mass	108
Food intake as environmental exposure in gene-environment association studies of body mass	108
Role of fat content in the diet and gene polymorphism in weight-loss strategies	111
Fat sensitivity, fat intake and gene polymorphism	112
Taste as a component of fat preference and fat intake	112
Fat taste	112
Determination of fat sensitivity and its relation to body mass	113
Conclusions	113
Acknowledgements	113
References	113

An update on diet and nutritional factors in systemic lupus erythematosus management
Marina Aparicio-Soto, Marina Sánchez-Hidalgo & Catalina Alarcón-de-la-Lastra
Introduction
Systemic lupus erythematosus aetiology
Aim of systemic lupus erythematosus treatment
Diet therapy and nutrients in systemic lupus erythematosus
Methods: literature search strategy
Macronutrients in systemic lupus erythematosus
Lipids
Proteins
Fibre
Micronutrients
Vitamins
Mineral elements
Dietary phenols in systemic lupus erythematosus
Polyphenols
Flavonoids: flavones
Flavonoids: flavonols
Flavonoids: flavanols
Flavonoids: isoflavones
Lignans
Diarylheptanoids and arylalkanones
Stilbenes
Indole-3-carbinol
Melatonin
Conclusion

Acknowledgements	3
References	

Nutritional aspects of commercially prepared infant foods in developed countries: a narrative review *Kate Maslin & Carina Venter*

Kule Muslin & Carina venier	
Introduction	138
Usage of commercial infant foods internationally	139
Perceptions of commercial infant foods	140
Taste and variety of ingredients used in commercial infant foods	141
Meat and fish content of commercial infant foods	141
Nutritional content of commercial infant foods	142
Sugar, salt and fat content	142
Micronutrient content and adequacy	145
Mineral and trace element content	145
Vitamin content	145
Limitations of the review	145
Conclusion and future research needs	146
Acknowledgements	146
References	146