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Abstract

Let F(z) be a polynomial with coefficients in a perfect field k and let K be the normal closure
cfk(z) over k(F). All polynomials for which the genus of K over k is one are determined; they
depend in part on the characteristic of A. Some results for higher genus are given.

Subject classification (Amer. Math. Soc. (MOS) 1970): 12 F 10.

1. Introduction

We are interested in studying the normal closures of a particular class of extensions
of function fields. The extensions we consider are of the form k(z)/k(F(zy), where k
is a perfect field and F is a polynomial in z. The case in which k(z) is normal over
k(F) has been discussed in Bremner and Morton (1978). Here we consider those
polynomials F for which the normal closure K of k(z)/k(F) is larger than k(z), and
we restrict our attention to the situation in which the genus of Kis greater than zero.

Since the isomorphism type of the extension k(z)/k(F) is invariant under the
substitutions

z-+az+b, F-^cF+d, a,b,c,d ink, ac^O,
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386 D. J. Lewis and Patrick Morton [2]

it follows that for two polynomials E,F related by

E(z) = cF(az+b)+d,

the corresponding normal closures are isomorphic. We shall say that polynomials
E, F satisfying this condition are linearly equivalent. We therefore need consider
only one representative of a given equivalence class in order to study K.

The results we prove are as follows. In Section 2 we derive necessary conditions
for AT to be the normal closure of k(z)/k(F), in terms of the automorphism group of
K/k. From these conditions it follows easily that the genus y of AT grows as a power
o f / = degF when y>0 (see Theorem 1).

The rest of the paper is concerned with the case y = 1, when K is an elliptic
function field. In this case we determine the exact classes of polynomials F which
can arise (see Theorems 2, 3). The discussion proceeds differently according to the
characteristic/? of k. In Section 4 we discuss the case/>#2,3; in Section 5 the case
p = 3; and in Section 6, p = 2. In each case we determine the relevant Galois
groups completely; the respective expressions for F are then easily determined.
The complete list of polynomials is contained in Tables 1 and 3 of Section 7. In
particular, the number of classes for which y = 1 is always finite when k is alge-
braically closed.

This raises the following question: if an algebraically closed field k and yQ>2
are given, "how many" classes of polynomials over k are there for which y = yo

r>-
Is the number of classes finite? (By the results of Bremner and Morton (1978) this
is false for y0 = 0; moreover the degrees of possible F's are unbounded.) The key
to this question no doubt lies in the study of the Jacobian of the normal closure K.

2. Preliminary Results

In this and the next four sections we assume that z is an indeterminate over the
perfect field k, and that F{z) is a polynomial in z with coefficients from k.

We are interested in the normal closure K of the extension k(z)/k(F). Note first
that the irreducible equation over k(F) satisfied by z is

(1) F{t)-F(z) = 0.

Thus the degree of z over k(F) is equal to deg/"=/, and AT is the splitting field of
(1) over k(F). Since we are primarily interested in K, we shall assume that the
extension k(z)/k(F) is separable; by (1) this is the same as requiring that Fnot be a
pth power in k[z], where p is the characteristic of k.

It will also be convenient to assume that k is algebraically closed. If & is not
equal to its algebraic closure k, then by virtue of the fact that (1) is the irreducible
equation over fc(F) satisfied by z, the constants extension K= Kk is the normal
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[3] Normal closures related to elliptic curves 387

closure of k(z)/k(F). Moreover the genus of .£ equals the genus of K. (For the basic
facts concerning algebraic function fields in one variable see Hasse (1963).) From
this it is easily seen that the restriction k = k does not affect the results of this
section. For the case y = 1 we shall remove this restriction in Section 7.

We now let G and H be the Galois groups of the extensions K/k(z) and K/k(F).
Then Gs # c A , where A is the automorphism group of K/k, and by Galois theory
we have

(2) h=f-g,

where

(3) h = \H\ = [K:k(F)] and * = |G| = [AT: *<*)].

The following facts are immediate consequences of the assumption that K is the
normal closure of k(z)/k(F):

(4) h divides/! and g divides (/—I)!;

(5) No non-trivial subgroup of G is normal in H. (In particular, if N is a
normal subgroup of H and C is a characteristic subgroup of N, then
C£(? implies C = 1.)

Now let 3 be the denominator of the divisor (z), and let o be a prime divisor of K
(automatically of degree 1) dividing 3. Since 3 is a prime divisor of k{z) we have

3 = no*.

where a runs over certain automorphisms in G. Since the degree of 3 as a divisor
in K is [K: k(z)] = g, and since each o" has degree 1, a must run through all the
automorphisms in G. Thus

(6) 3= no'.

It follows that the power of 0 dividing 3 is |Gn,40|, where Ao is the subgroup of
automorphisms in A which fix 0. We shall denote GnA0 by Go and |Go\ by g0.

The same argument applied to the denominator 3' of the divisor (F(z)) shows that

(7) 3'= no',
<reH

and therefore by (6) that

(no<o>= no*.
creG <reH

It follows that

(8) ho=fgo where ho = \HnAo\ = \HB\.
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If A 0 is a finite group, then by (8) we have that

(9) / is a divisor of | Ao \.

In particular, if K=£ k(z), then (9) implies

(10) \A0\>2.

Otherwise/< 2 and k(z)/k(F) is already normal.
We now draw the following further conclusion from (9).

THEOREM 1. If the genus y of the normal closure K offc(z)/k(F) is at least 2, then

and
forp^O,

•where f= deg F and p is the characteristic ofk.
Ify=l,then

(11) / | 24.

PROOF. If p = 0 and y>2, then the Hurwitz estimate (see Roquette (1970b)) for
the order of the automorphism group A of K gives

this implies by (9) that/<84(y-1).
If p^O, then it follows from the estimates for \A\ given by Stichtenoth (1973)

thatf
M |

and therefore / < J • 224 • / .
If y = 1, then by Deuring (1947) the order of Ao divides 24; this implies (11).

(See also the remarks in Section 3 for this case.)

3. Fields of genus one

Henceforth we assume that the genus of K is 1. This together with the equations
(2)-(l 1) will impose such stringent conditions on H and G that we will be able to
determine the possible polynomials F exactly. In this section we review the parts
of the theory of elliptic function fields we shall need (we refer the reader to Hasse's
papers (1936); see also Roquette (1970a) and Cassels (1966)), and we prove some
preliminary lemmas.

tStichtenoth proves \A |<16y*, unless y = ipn(p"-l) and \A \ = p8"Cp!IB+l)O»2n-l)
withpn>3. The estimate above follows from the fact that/(x) = 16x3(x3+1) (x*~ l)lx*{x-1)*
(= I A \ly* for x = p") is decreasing for x> 1 and is 224/3 when x = 3.
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[5] Normal closures related to elliptic curves 389

To begin with, the fact y = 1 implies by the Riemann-Roch theorem (see Hasse
(1963)) that for any integral divisor a of AT and the associated vector space (over k)

L\-\ = \u in K; (u) = - with an integral divisor n>,
W I <* )

we have

(12) dimZ,Q=dega.

This implies further that the divisor classes of degree 0 are uniquely represented by
the divisors p/o, where o is a fixed prime divisor of 3 and p runs through all prime
divisors of K. The divisor class group of degree zero thus induces an addition on
the set of primes, denned by

03)

where ~ denotes linear equivalence (that is, a~b if and only if ob"1 = (H) with
uinK).

We denote the group of primes with this addition by Do\ the zero element of
£>„ is 0. We shall need the following result of Hasse (1936), Part I, concerning the
structure of Do: the subgroup Hn of primes p for which «p = 0 is of type

(14) HnzCnxCn ioxpXn,

where Cn denotes a cyclic group of order n; thus | Hn | = n2 for p X n.
As is well known, a generating equation for K can be given using the prime 0,

as follows. Let x be a non-constant element of L(l/o2) and let \,x,y be a basis for
L(l/o3). Then x and y satisfy an equation

(15) f{x,y) = 0

which is quadratic in y and cubic in x. Furthermore, the prime divisors p ̂  0 of K
are in 1-1 correspondence with the solutions (xp,yv) in k of (15), where the corre-
spondence is determined by

(16) xsxp, ysyp (modp).

The point (xp, yp) is the so-called "center" of the prime p. The prime 0 corresponds
to the formal solution (00,00) of (15). Moreover the addition in Da induces an
addition on the solutions (xp,yp) of (15), including (00,00), which agrees with the
well-known "secant-tangent" construction. In particular (see Hasse (1936),
Part II), if Pi,Pt,p3 are distinct from each other and 0, then (13) is equivalent to
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the determinant relation

V V 1

(17) x2 y2 1 = 0 , where (,xity^*-> pt.

xs ys l

We now discuss the automorphism group A of K/k. As Hasse (1936), Part II,
shows, A contains an abelian normal subgroup T, which is isomorphic to Do by
means of the correspondence

(18) T<-+p if q' = q+p (in £>„)

for all prime divisors q of K. The group T is independent of the choice of o, and
an element T in Tis detennined by its action on 0. It is easy to see using this remark
that

(19) r<->p implies o—1T<r«-»p<r for any aeA0,

where Ao is (as in Section 2) the subgroup of A which fixes o.
The subgroup Tn of T consisting of those T with rn = 1 corresponds to the sub-

group Hn of Do, so that by (14) we have

(20) TnzCnxCn ioxpXn.

In addition, the quotient group A/Tis finite, and the cosets are uniquely represented
by the elements of Ao; hence

(21) A/T?A0.

Thus all elements of A are given uniquely in the form or with a in Ao and T in T.
Using these remarks, the action of an automorphism on x and y, and hence on

K, can be determined: if T lies in T and corresponds by (18) to the prime p, then

(22) (xT,yT) = (x,y)~(xv,yp),

where (x,y) is treated as a "generic" point on (15), and the addition is performed
using (17). (For the reader's convenience a proof of this fact is included in the
Appendix.) If a lies in Ao, then

(23)
y* = cy+dx+e

for some constants a, ...,e in k and ac^O. Now (x",)^) may be determined by
applying first (23) and then (22).

The group Ao may be worked out in a particular example by solving for all the
sets of constants in (23) for which ^,y") satisfies (15). Using this approach one
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can verify that Ao has order dividing 24 (see Deuring (1947)), a fact which we used
in Section 2. More precisely, we have by Deuring's results that

'2, 4 or 6 if/>*2,3,

(24) | 4 J = 2 or 12 ifp = 3,

2 or 24 if/» = 2.

We will also need the following lemmas concerning Ao. For the proofs see the
Appendix.

LEMMA 1. The group Ao has a unique element e of order 2. This element lies in the
center of Ao and satisfies

(25) p + p* = O and e~1re = r~1

for all prime divisors p, and all r in T.

LEMMA Llfp^ois a prime divisor for which

P" = P f°r some aj= 1 in A,,,

then the order of a is either a power of 2 or a power of 3, and 2p = 0 or 3p = 0
accordingly.

This concludes our review of the theory of elliptic function fields. We now use
this theory to prove several lemmas which will be of use in what follows.

LEMMA 3. Under the assumption that y = 1, we have

(26) [K:k(z)] =

and

(27)

PROOF. Since K has genus 1 and k(z) has genus 0 it is clear that gj= 1. If (26) is
false we must have g = 2. It follows that the degree of %, as a divisor of K, is 2; by
(12) this gives that dimL(l/3) = 2, and that \,z form a basis for L = L(l/j). Now
since Fis fixed by the automorphisms in H, its denominator $ is also fixed. Thus
3 is fixed, so that for all a in H, z" lies in L. But then each z? is of the form cz+d,
with c, d in k, so that k(z") = k{z). Consequently k(z)/k(F) is normal and K = k(z);
hence g=\, contrary to what has been noted. This proves (26).

I f / = 2, then K= k(z). Hence if (27) is false then /= 3, and H is either cyclic
or the symmetric group on 3 letters. In either case g - \h «S 2, which contradicts (26).
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Before proving the next lemma we make several observations. If Jo is the set of
elements a in Aa for which ara lies in H, for some ra in T, and if I'o is defined
similarly for G, then /„ and I'o are subgroups of Ao containing Ho and Go respec-
tively. Furthermore,

(28)

and

(29)

These equations imply

(30) \H\ = \lo\-\HnT\, \G\ = \I'0\-\GnT\,

and division gives

(31) f=\H: G\ = \I0:1'B\-\HnT: GnT\=j-e,

where y = | / 0 :1'o \ , e = \HnT: GnT\. It follows that (HnTf, the subgroup of
H n T of eth powers, lies in G n T s G. By (5) and the fact that (Hn T)e is a char-
acteristic subgroup of Hn T we have

(32) (HnT)*=l,

In particular, if e = 1, then / / n T = GnT= 1 and #and <? are isomorphic to the
subgroups /„ and I'o of Ao.

We now prove

LEMMA 4. Lef ̂  fe a prime number. Ifq\h, then q divides \A0\. Hence the only
prime divisors ofh are 2 and 3.

PROOF. Suppose qX\A0\, and let S be the gr-Sylow subgroup of the abelian group
GnT. By (31) and (9) we have t h a t ^ ^ l ^ n r : GnT\, so that Sis also the^-Sylow
subgroup of Hn T. Thus S is a characteristic subgroup of Hn T, and by (5) it
follows that 5 = 1 . Thus qX\ GnT\. The lemma now follows from (30) and (9).

From Lemma 4 we conclude that

(33) K|#4.

For otherwise/= 4 by (9) and (27), so that g\ 6 by (4). Lemma 4 now implies that
3J{g, so g*S:2, and this contradicts (26).

Before proceeding to the case/>#2,3 we make one final observation. Since we
are only interested in determining the form of the polynomial F (that is, its coeffi-
cients), we may replace the tower K/k(F(z)) by any isomorphic tower K'lk(F(z')).
In particular, if a lies in A we may replace K/k(F(z)) by K/kiF^)); in so doing we
have replaced G and H by the conjugate groups a^Ga and a'1 Ha. This allows
us to consider any conjugate of H (inside A) in place of H.
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[9] Normal closures related to elliptic curves 393

4. Characteristic/^ 2, 3

In this section we consider the case in which the characteristic of k is different
from 2 and 3. By (10), (24) and (33) we see that | Ao\ = 6. The generating equation
(15) may then be taken to be / = x3+b with b^O'mk (see Deuring (1947)). Since
k is algebraically closed we may take b= I; thus

(34) K = k{x,y) w i t h / = ^ + l .

The group Aa is cyclic; a generating element is easily found to be the element >fi
denned by

(35) (x*,y») = (o>x, -y),

where to is a fixed primitive cube root of unity. For the element e of Lemma 1 we
have

(36) e = ^ and (x>,y) = (x, -y).

We note that the three primes of order 2 in Do are given by

(37) pi<-^(-co\0) for /= 0,1,2,

where we use "<->" to denote the correspondence given by (16). The p$ are exactly
the primes p for which pe = p. We denote the corresponding translations of Tby rt.
An easy calculation using (16), (35), (37) and (19) shows that

(38) Plf = Pi+2 and f-1 ^ifi = ri+2,

where the subscripts are to be read modulo 3. Thus the group Ao permutes the T*
transitively.

We also note that the only primes fixed by elements of Ao are the primes p$
(fixed by e), and the primes

(39) q<-»(0,l) and q«<->(0, -1) .

The primes q and qe are fixed by the subgroup < r̂2>, so by Lemma 2 we see that q
and q' are of order 3 in Do.

We now determine the groups G and H. We first note t ha t /= 6 from (9) and
(27). Thus (8) implies h0 = 6 and g0 = 1; hence

I0 = A0^H and GnA0 =

By (30) and (2) we see further that

(40) g = \G\
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Now by (32) we have

(H n T)e = 1 for some divisor e of 6.

We distinguish four cases:

Case (i). If e = 1, then by the remark following (32) the group H is cyclic. But
then G is normal in H, contrary to our assumption.

Case (if). If e = 2, then by (32) we have Hn T£ T2. The case H n J = 1 is impos-
sible as in (i), so by the remark following (38), the normality of Hn Tin H, and the
fact A0^H, we have

(41) HnT=T2.

Thus \HnT\ = g = 4 and e = 2, so (30) and (31) imply |GnT| = 2 and | / ; | = 2.
Hence I'B = <e> and by conjugating by an appropriate power of $ we may assume
GnT= <TO>. Also, from (2) we have \H\ = 24, so that

(42) H = A0T2.

(H contains the right-hand side and both sides have the same order.)
Now by (42), (7) and the fact

0"'

we have 3' = (op0 p2 P2)6, whence

(43)

It now follows easily from (6) that

(44) G

= Vi

3 = «

= 0,

for 0 in A

)Po Pi P2-

Case (Hi). If e = 3, then by (20) and (32) either HnT= T3 or HnT= <T>,
where T3 = 1. In the first case (see (40)) g = 9, which is impossible by (4). Thus
| Hn T\ = 3 = g, and from (2), h = 18. Thus

(45) H=A0<T}.

Moreover, since <T> = Hn T is normal in H and A0^Hv/e must have if*'1 nfi = T
or T-1, and therefore I/J~2TIJ)2 = T. Hence (19) implies p^* = p for the prime p
corresponding to r. It follows by (39) that p = q or qe, and we may assume

(46) f<->cj, T2 = T~

As in case (ii) we have 3* = (oqq')6. so

(47) 3 = oqq«.
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[11] Normal closures related to elliptic curves 395

Now by (31) we have |/o| = 3, whence /„ = <^>; consequently G must be equal to
one of the conjugate subgroups

(48) <^r> or <^T*> .

Case (iv). In the last case e = 6. Hence 6\g. Now g must divide 5!, so by (40)
and Hn Ts T6 we must have g = 6 or 12. But the argument leading to (41) shows
that T2^HnT, so g = 12. From (31) it follows that l'o = Ao, and by (30) we have
|GnJ | = 2. Thus GnT= <j^ for some i. Now GnT is normal in G. Since ifir
lies in G for some T in r, we have therefore that (^T) - 1 T ^ T ) = T4. But Tis abelian
and normal in A, so that

This contradicts the fact that p* is only fixed by 1 and e. This case is impossible.

We now work out the polynomial F in case (ii). To do so we first note the
following expressions for xTt and yT*:

(49) for/ = 0,1,2.

These may be verified using (17), (22) and (37), together with the fact that

We claim that the fixed field of G is k(u), where

(50) M = - .

That u is fixed by G is easily computed using (44) and (49). Note further that the
divisor of u is

where a is prime to 3. (We have used (y) = PoPxPz/o3, a fact which is clear from
(37).) It follows that

But M lies in k(z) and [K: k(z)] = 4. Thus k(u) = k(z). Since the denominators of u
and z are equal we have in addition that

(51) u = az+b for some a #0, b in A:.
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To compute the fixed field of H note that

* * - 8 J C

4f

is invariant under the group <e> G = <e, T0, TJ>. It follows that

(52) £(«)

is invariant under H. Since the denominator of E(u) is 36 we have by the same
argument which led to (51) that

F(z) = cE(u)+d= cE(az+b)+d for some c^0,din k.

Hence Fis linearly equivalent to the polynomial (z2—I)3.
Conversely, our analysis shows that any polynomial equivalent to (z2— I)3 has a

normal closure with y = 1. For if K is defined by (34) and z is given by (50), then
K is the normal closure of k(z)/k((z2-lf). This follows from the fact that the
groups G and H defined by (44) and (42) satisfy the condition (5) and are the
Galois groups of K/(k(z)) and K/k((z2-1)3).

In case (iii) we find similarly that F{z) is equivalent to the polynomial (z*+1)2.
We omit the details. For the reader's convenience the information corresponding
to the equations (42), (44), (49)-(50) and (52) has been listed in Tables 1 and 2 of
Section 7. As the crucial part of the argument is the determination of the fixed
field of G, that is, the determination of z in terms of x and y, we indicate briefly
how this may be done.

First find a basis rjx,...,T}g for £(1/3). Since z lies in £(1/3) we must have

z = iLoi^i for some constants a< in A:.

The condition that z be fixed by G gives a set of g2—g linear conditions on the au

which in our case determine a suitable expression for z. The expression will not be
unique; this corresponds to the fact that z may be replaced by az+b for any
constants a¥=0 and b in k.

5. Characteristic p = 3

In the case p = 3 we may take the equation (15) to be of the form

y2 = x3+ax2+bx where b^O and a lie in k.

If a#0, a simple computation shows that \A0\ = 2, which is excluded by (10).
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[13] Normal closures related to elliptic curves 397

Hence a = 0. Since k is algebraically closed we may assume b = — 1, so that
(see Deuring (1941a))

(53) K = k(x,y) mthyi = x3-x.

From (53) it is easily found that Ao has order 12 and is generated by the elements
>p and K defined by

(54) (*t,/r) = (x+l,-y), (**,/•) = (-*.»»,

where i is a primitive fourth root of unity. We have i[P = K2 = s and K"1 IJJK = ^~x.
Thus <̂ r> is normal in Ao, and <^> is the unique 3-Sylow subgroup in Ao. More-
over the elements of the coset <̂ <>*c all have order 4.

The primes of order 2 in Dg are given by

Vi*-+(i,0) for i = 0,1,2.

As in (38) we find

Vt = Pi+2» f"1 T< 0 = Ti+2'
(55)

where the subscripts are to be read modulo 3, and rt is the element of T corre-
sponding to Pi by (18). It follows easily using Lemma 2, (16), (54) and (55) that a
prime p is fixed by an element a in Ao if and only if

(56) for some /, p = p4 and CTG<^-i/c>.

In fact, there are no primes of order 3 in Do since the Hasse invariant is 0 (see
Hasse (1934, 1936)), but we shall not use this fact.

The method of determining G and H in the present case differs slightly from the
method of Section 4. Here we consider the divisor

(57) 3 = n
<reO

where £0 = |Gn.40| and l + r = |G: GnA0\. Since H0 = HnA0 leaves 3 and 0
fixed, the group Ho permutes the r primes q̂ . In our argument we consider the
orbits of the q̂  under this permutation group. Note that the primes in a single
orbit all have the same order in Do since elements of Ho are automorphisms of Da.
Note also that the length of the orbit containing q3- is

is the number of elements of Ho which fix q̂ . By (56) we see that fy = 1 unless
q> = ^ for some i.
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We also observe from (8) and (27) that

(58)

from/|Ao and Ao| 12 we see that/and h0 are even.
We now distinguish four cases according to the number of primes pt which

divide 3.

Case (i). If no p* divides 3, then each orbit has length h0 =fg0- If«is the number
of orbits we have by (7) and (57) that

h = ho(l+r) = ho(l+nfgo).

By Lemma 4 and the fact that/ is even, this implies that 1 +nfg0 is a power of 3.
B u t / | 12 and from (58),/= 4, 6 or 12. T h u s / = 4 , Now (l+4ngo)\g, and (4)
implies that g\3\ so that n = 0. Thus 3 = 0", G = Go and H=H0^A0. If 3\g,
then G contains the normal subgroup <^2> of Ao, contrary to (5). But otherwise the
inequality #<2 contradicts (26). Case (i) is therefore impossible.

Case (H). Suppose exactly one of the p4 divides 3. By conjugating H by some
power of >fi we may assume that p013. Since p0 is the only prime of order 2 dividing
3, it must be left fixed by Ho. Thus (56) and (58) imply

#„ = <*>> /»„=/= 4, *. = 1.

If n represents the number of orbits distinct from the orbit {p0}, then as in case (i)
we have

h = ho(l +r) = 4(2+4n) = 8(1 +2n).

It follows from (30) and the fact that 4 is the exact power of 2 dividing |/0| that
I Hn T\ = 2 (mod4). Thus Hn T contains a unique element T of order 2; it follows
that <T> is normal in H. From (2) and (26) we have also that g = 2(1 +2n)>2.
Thus (4) implies that g = 6,h = 24 and Hs St, where S4 is the symmetric group on
4 letters. But 54 contains no normal subgroup of order 2. This rules out case (ii).

Case (HI). Suppose exactly two of the primes pt divide 3. By conjugating by
appropriate powers of tft and K we may assume that p0 and px divide 3. If both p0

and Pi are fixed by HB, then by (56) we have Ho = <e>, which is impossible by (58).
Thus {p0, p j forms one of the orbits and Ho = <^~2 *c> (since p2 must be fixed by
Ho). Thus f=ho = 4. If n is the number of remaining orbits then we see that
h = 4(3+4M) must divide / ! = 24. This implies that n = 0, h = 12 and g = 3.
This gives further that 2/)'|/i|) and since 4 divides |/0| we have by (31) that e = 1.
Hence H^A0. But then G corresponds to the subgroup <̂ *> of Ao and is normal
in H; contradiction.
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Case (iv). Hence all three of the p4 divide 3. As in case (iii) at most one pt can be
fixed by Ho. If some p* is fixed, then (56) implies h0 = 4 and h = 4(4+An) = 16(1 + n),
where n is the number of orbits not containing any p{. But then /= 4 and by (4)
h is not divisible by 16. Thus no pt is fixed, and {po,Pi,P2} is one of the orbits.
This implies further that 2>\h0. Since h0 is even we have the two possibilities:
h0 = 6 or 12.

(a). Suppose h0 = 6. Then by (8) and (58) we have/= 6 and g0 = 1. Therefore

6«) = 12(2+3n).

Since A|6! we see from Lemma 4 that (2+3n)|22-3, whence n = 0, h = 24 and
£ = 4. By (30) and (31) we have e|2, so HnT^T2. We cannot have HnT=l;
otherwise H would be isomorphic to a subgroup of Ao, which is contrary to
|H| = 24> 12 = \AB\. Hence e - 2, and by the same argument as in Section 4,
case (ii) we have Hn T=T2, H= <^> T2, /„ = <e> and G = {1, T0, ei^, er j .

(b). If Ao = 12, then 4 0 s

h = 12(4+ 12«) = 24-3(l + 3n).

By (58) and (4) we have tha t /= 6 or 12. In either case g is by Lemma 4 a power
of 2, and Ao is a proper subgroup of H. Thus HnT^l. Since /0 = ^l0 we see that 3
divides \l0:1'o\, so (31) impliese = 2 or 4. ThusffnrgT4, #£4 0 T 4 and n = 0 or 1.

If n = 1, then the remaining orbit has length 12; by (7), (20) and T^HnT^T^
this implies that HnT = T4. Hence e = 4 and |GnT\ = 4. Since GnTis not equal
to the characteristic subgroup T2 of /f nT we know that GnTis cyclic, generated
by T, say; furthermore, <T> = GnTis normal in G. Now by (31), \I'0\ = 4, so there
is an element a in Ao of order 4 and an element T' in T for which CTT' lies in G.
It follows that

(OT')-1T(OT') = T or T"1;

as in Section 4, case (iv) the left-hand side equals a'1 TO. In either case we have
a^ro2 = T, that is, e-^-re = T; but this is impossible by (19) and (56), since r has
order 4.

Hence n = 0, HnT = T2, A = 48 and # = AoT2. I f / = 6, then by (8) we have
g0 = 2 and Go = <e>. But by Lemma 1 and (55) the element e commutes with all
the elements of H; this contradicts (5). Hence/= 12, g0 = 1 and g = 4. There are
two possibilities for G according as e = 2 or 4. If e = 2 then as in (a) we may take
G = {1, T0, £7-!, £T2}. If e = 4 then G n T = 1 and | I'o \ = 4. By considering an appro-
priate conjugate of G we may assume that G = (KT} for some r in T2. Note that
T^T0 since (KT0)

2 = e lies in J40. By conjugating by K we may also assume that
T = Tlf so that finally G
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This completes the discussion of the four cases. By the method of Section 4 we
find for the three pairs of groups (G, H) that F is linearly equivalent respectively
to the polynomials

z2(z4-l),z4(z4-!)2 and z2(z4-l)(z2+l)3.

6. Characteristicp=2

We turn now to the case/? = 2. We may take the equation (15) to be

jp+axy+by = x3+cxi+dx where one of o,

then |^40| = 2. Hence we may take a = 0 and b = 1. It is now easy to see
that we may assume c = d = 0, by replacing x and y by

x+a and y+fix + 8

for suitable constants a, /? and 8. Thus

(59) K = k(x,y) with f+y = x3.

(See also Deuring (1941b).)
For the field K given by (59), the group Ao has order 24 and is generated by the

elements tf>, #q defined by

(60)

(x*;^') = (x+<o\y+u>2ix+a>) for i = 0,1,2,

where w is a primitive cube root of unity. We have

(61) ^3 = ,c2 = e for /= 0,1,2 and (x',y>) = (x,y+l).
The group Bo = <K0,iq, /c2> is isomorphic to the quaternion group, and is normal
in Ao by virtue of the relations

tft~r Kt >fi = Ki+i for i = 0 , 1 , 2 .

Moreover Ao contains four distinct subgroups conjugate to <^>. It is easily seen
that Ao contains no subgroup of order 12.

We note that Do contains no primes of order 2. For by Lemma 1 such a prime
would satisfy p« = p; by (16) and (61) this is equivalent to yp+l = yv, which is
impossible. Hence the group T contains no elements of even order.

The 8 primes of order 3 in Do are given by

(62)
r*-K0,0),

Pi <-> (a1, co2), pj«-»(w1, <JS) for i = 0 ,1 ,2 .
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From (60) we see that

(63) r*' = Pi for /= 0,1,2,

so the 8 primes are all conjugate under Bo. That they are of order 3 follows from
(13), (y) = rVo3, and (63).

By Lemma 2, (60) and (63) it also follows that a prime p is fixed by an element
a of Ao if and only if

ft.r
(64) p = | and a lies in

We let p and rt be the elements of T corresponding to the primes r and pf.
As in Section 5 we shall consider the action of Ho on the primes q} dividing 3.

Before considering the various cases we make several observations. It follows from
(58), as in Section 5, that/and ha are even. Lemma 1 implies that Ho contains e.
Hence if the prime q} divides 3 so does qj and both belong to the same orbit under
Ho. Thus the length of the orbit containing q̂  is even, and is equal to hjhj, where
hf = \HBnAqj\ as in Section 5.

Since there are no points of order 2 in Do we see that e = \Hc\T: GnT\ is
always odd. Since/| 24 it follows from (31) and (32) that

(65) e = l o r 3 and

We also claim that

(66) H = H0(HnT) and I0 = H0.

For, suppose or lies in H, where a lies in Ao and T lies in T. Then the element

e ^ ) " 1 e(ar) = er~x{a~x so) T = er"1 er = T2

is contained in H. Since the order of T is odd it follows that r lies in H, whence
a lies in H. This proves (66).

Now (7), (65) and (66) imply that the only primes p ^ 0 dividing 3 are of order
3 in Z)o. Moreover by (20) there are 0, 2 or 8 such primes.

Case (/). If none of the primes in (62) divide 3, then 3 = 0" and
The order of G cannot be even, for otherwise G contains the normal subgroup <e>
of H. The only remaining possibility is that g = 3 and G is conjugate to <^2>; thus
we may assume G = < r̂2>. By (2), (58) and the fact that Ao contains no subgroup
of order 12 it follows tha t /= 8 and H = Ao.

Case (ii). Suppose exactly 2 of the primes in (62) divide 3, which by an appro-
priate conjugation we may take to be r and r". Then {r, Xs} forms the single orbit
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distinct from {o}. Thus by (64) we have Ho = <^2, e> = < r̂>; from (7) and (66) we
see that HnT= </>> and H= < ,̂/>>. Hence e = 3. As in Section 4, case (iii) it
follows that G is equal to one of the conjugate subgroups < ^ />> or <#2 p2>.

Case (iii). Now suppose all the primes in (62) divide 3. Then from (66),
HnT=Tz, e = 3 and \GnT\ = 3. From (31) we see that 3 (and therefore 6)
divides/and h0. We distinguish four subcases according to the nature of the orbits
of the q̂  under Hc.

(a). If there are at least two orbits of length 2, then Ho must contain at least
two of the four conjugate subgroups of order 3 listed in (64); but in that case
neither orbit can have length 2.

(b). If there is exactly one orbit of length 2, then the single remaining orbit has
length 6, and by (64) and (66) h0 = 6 and h = 54. But in this case / = 6; since
54/f 6! this case is impossible.

(c). If there are two orbits of length 4 it is easy to see that h0 = 4. For all the
primes in (62) are conjugate under Ba and Ao, and there is no subgroup of Ao of
order 12. But this contradicts the remark above, according to which Ao>6.

(d). The remaining possibility is that all the primes are in one orbit; hence
B0<=H0. Since 3|h0 we must have Ho = Ao, h = 9-24 and H = AOTZ. Also by (4)
we have/= 12 or 24. I f /= 12 then#0 = 2 and Go = <e>. By the same computation
which led to (66) we have that G = G0(GnT), whence £ = 2-3 = 6; but then
fgjLh. Hence/= 24, gB = 1 and g = 9. From (31) we see that |/'0| = 3, and by an
appropriate conjugation we may assume /„ = <^*>. Now let GnT= <T>, where
T = /> or T( for some 1. Then G = <T,^I*T'>, where T'£<T>. Since g = 9, G is
abelian. Therefore

and it follows that T and ^* commute. By (19) and (64) we see that T = p. By
conjugating by some power of >p we may also assume T' = T0. Hence G = <p, ^*TO>.

The polynomials corresponding to the three pairs of groups we have found in
this section are listed in Section 7, Table 1. Since the last case involves a somewhat
more elaborate computation, we sketch the details.

To find the fixed field of G we first find the fixed field of </>>. We note

)•
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so that

and

y*+y+l
x*

are fixed by p. Since [K: k(Q] = 6 and [K: k(rj)\ = 9 it follows that [K: k($, T?)] = 3,
so that k(g, 7j) is the fixed field of <p>.

Next we observe that

, , 1 1
v +v =r+y+-jR^—;

I —

Hence k(g,rj) is isomorphic to K=k(x,y) by means of the meromorphism
v: (x,y)^-($,rj). (See Deuring (1941a) and Hasse (1936), Part II.) We denote the
image of an object a in AT by v(a).

Now from the factorizations

A = , v _ /O+^ a ) 3 \ _ (P0P1P2)3

Ki) (orq)2 ' W \ y*+y } (orq)3

(we have set q = xe and qt = p | for short), it follows that

v(o) = orq = oop opi = iVo,
(67)

K = PoPi Pa = PoPS P^ = #

where TV denotes the norm from AT to k(i;,TJ). Furthermore, {^,tf) = (w|,ij +
shows that ip induces the automorphism v(>p) on k(£, rj).

Next we determine the automorphism of k(£, -q) induced by T0 : since

for all primes x of K, we have by (13) that

o ~ o2
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whence (noting that p and T0 commute)

(Nx)To Nx-Np0

No ~ (No? '

Thus from (13) and (67)

Since Nx runs through all the primes of k(£, rj) as x runs through primes of K,
this shows that T0 induces the automorphism v(p) «-> v(r) on k(£, rj).

Now let K' be the fixed field of G. By Galois theory the Galois group of k(g,rj)
over K' is isomorphic to

By the above remarks it follows that K' is the fixed field of the automorphism group
<v(i/r)4 • v(/>)> = <v(#)2 • v(p)2>. But this is one of the conjugate groups which appears
in case (ii). From Table 1 (or an easy computation) we see that the fixed field of

£(«)» where

u = •
X

TABLE 1

k algebraically closed

K=k(x,y) H G z F(z)

x2+2x—2
A0Tt <T0,eT{> — (z 2 - ! ) 8

y* = x*-x <</i>T2 <T0, eTi)

Ao Ts < T 0 , i

Ao Tt <KT1> £("
* * - / * - 1

X

ABTt <P,pT0> x°y+**+1 zs(za+l)(z«+z8+l)!>

x*+x

(«» = 1, V-3 = co-w», i* = 1, p = i). ~
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Thus K' = k(v(u)) = k(u'), where

, _ T)+u>2 _ xsy+x3+l

As in Section 4 we have

(u') = ^ where (n, 3) = 1,
3

so we may assume without loss of generality that«' = z; it now follows after some
calculation that F{z) is equivalent to

E(z) = II ** = z3(z3+1) (z6+z3 +1)3.

7. Summary

We sum up the results of Section 4-6 in

THEOREM l.Ifk is an algebraically closed field, and y is the genus of the normal
closure K of the separable extension k(z)/k(F(z)), then y—\ if and only if F is
linearly equivalent to one of the polynomials listed in Table 1.

We note that the 'if part of the theorem follows in each case just as in the
example worked out in Section 4. With each of the polynomials in Table 1 are
listed the particular generating equation for K, the Galois groups G and H, and
the element z in terms of x and y. The expressions for the automorphisms occurring
in the groups G and H are listed in Table 2. For convenience in working out the
expressions for F we note that in the last six cases

where N denotes the norm form k(z) to k(F), and a runs through a set of coset
representatives of G in H. In case 6 we may take the representatives to lie in Bo; in
the other cases we may take Ao as a set of coset representatives. Note that F is
always defined over the prime field of &.

If k is not algebraically closed, we have

THEOREM 3.1fk is a perfect field, and y is the genus of the normal closure K of
the separable extension k(z)/k(F(z)), then y = 1 if and only ifF is linearly equivalent
over k to one of the polynomials listed in Table 3.
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TABLE 2

J*2,3

Ao = <#>

e = tlfi

Ta = <T0, Tj>

T< Jx-2co'\

yT« _

XT =

yT —

(CO3:

(x+co*)2

= 1,11 = 1.)

P = 3

(*",yo = (-*,«»
7i=<T0,T1>

/x+1 y \
(x >y } \x-i'(x-iy)

TABLE 3
k perfect

2, 3 p = 3

(^

(*"

yr.

p

p = 2

\ y ) = (JC+1, y+x+co)

= <P, T0>

x^xlylco

(x+iy

= 2

F(z) (z*+a)3 z\2*+a) (z*+z+b*+b) (z2+z+6)2

z^+a)

(z<+az*)(z»+az*+cPf

PROOF. Let k be the algebraic closure of k. Then the genus of the field R=Kk
equals y. By Theorem 2 and the remarks at the beginning of Section 2 it follows
that y = 1 if and only if F is linearly equivalent over k to one of the eight poly-
nomials listed in Table 1.

Suppose that F is linearly equivalent to the third polynomial of Table 1, so that
the characteristic of k is 3, and

F(z) = c(az+b)%(az+by- \)+d

for some constants a, b, c,d'mk with ac^ 0. Then setting ax = — I/a4, u = ccfi and
v = b/a we see that

F{z) = u
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Since the left-hand side has coefficients in k we see that u lies in k. Moreover the
coefficients of z3 and z2 on the right-hand side are — u\? and uav Hence i? and ax

lie in k. But k is perfect, so that v lies in k. Finally it is clear that d lies in k. Hence
Fi& equivalent over k to the polynomial zX^+aJ, where a ^ O lies in k. This is
the third case listed in Table 3.

Similar arguments hold for the other cases.

8. Appendix

We now give the proofs of (22) and Lemmas 1 and 2. In doing so we avail our-
selves freely of the concepts, notation and results of Hasse's papers (Hasse (1936),
Parts II and III). We shall refer to these papers simply by II and III.

(a). We begin by proving Lemma 2. Let p ^ o be some prime divisor for which
p" = p, for some a^ 1 in Ao, and let n be the order of a. We first show that wp = o
in A>.

Let Ka be the fixed field of <<r>. Then

It follows that K\Ka is a ramified extension. By the relative genus formula

(68) \

where ga is the genus of Ka and da is the degree of the different of K\Ka. By the
ramification of p we have da^\, and by (68) this implies that ga = 0. Now
NK/KJp/o) = pn/o", so pn/on is a divisor of degree zero of the field Ka, whence
pn/on~ 1 in Ka and therefore in K. Thus np = o in Do.

Now let m be any divisor of n. If we apply what we have just proved to p and
the automorphism anlm, we see that mp = o. If n is composite this implies p = 0.
If n = q* is a prime power, then letting m = q shows that qip = o. Since the order
of Ao divides 24 we can only have q — 2 or 3, and this proves Lemma 2.

(b). We now prove Lemma 1. The existence of an element e (a0 in Hasse's
notation) with the properties stated in Lemma 1 is proved in II. The uniqueness
follows easily from the theory of the ring M of meromorphisms of AT. The following
proof is independent of this theory. Suppose a is an element of Ao of order 2.
For each prime p let ap = p + p*. Note that aj = ap, so that Lemma 2 implies
2op = o. Since H2 (see (14)) has order 4, this implies that ap takes on some value
(in i/a) infinitely often: hence for some fixed prime q and infinitely many primes p
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we have

(p-q)+(p-q)* = o.

Since p - q takes on infinitely many values in Do this implies by (25) that p ' = p«
for infinitely many primes p. By II, p. 75, this gives that a = s.

(c). We turn now to the proof of (22). Let Tp be the automorphism in T corre-
sponding to the prime p by means of (18). Let i and A be the meromorphisms of K
defined by

(69) i*,y) = {xty)t (x\ / ) = (xp,yp),

and let T and p be the meromorphisms

T = I—A and p =

(For the definition of the addition of meromorphisms see II.) If N denotes the
norm of a meromorphism as defined in II, then N(i) = 1 and N(\) = 0 and so by
HI, equation (1) we have

(70) N(r) + N(P) = 2N(i)+2N(X) = 2.

If N(T) = 0, then T is 'uneigentlich' (see II), so the meromorphism T+2A = p is
also 'uneigentlich', whence N(p) = 0. But this contradicts (70). It follows from
(70) that iV(T) = N(p) = 1 and so T and p are automorphisms of K.

We claim that T = rp. For by II, p. 73 and the Addition theorem (II, p. 79)
we have

qT~x = rq = (i-A)q = tq-Aq = q - p

for all primes q. It follows that T - 1 = T"1 and so r = rp. Finally, by (69), the
definition of t—A and the fact that T^ — i = e we have (see II, p. 79)

: (xl-\yl-x) = (xl,yt)—(xx,yx)

= (x,y)-(xp,yp),

where the addition is performed using (17). This completes the proof of (22).
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