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Unitary Equivalence and Similarity to
Jordan Models for Weak Contractions of
Class C0

Raphaël Clouâtre

Abstract. We obtain results on the unitary equivalence of weak contractions of class C0 to their Jordan
models under an assumption on their commutants. In particular, our work addresses the case of
arbitrary finite multiplicity. The main tool in this paper is the theory of boundary representations due
to Arveson. We also generalize and improve previously known results concerning unitary equivalence
and similarity to Jordan models when the minimal function is a Blaschke product.

1 Introduction

We start with some background concerning operators of class C0 (greater detail can
be found in [4] or [20]). Let H∞ be the algebra of bounded holomorphic functions
on the open unit disc D. Let H be a Hilbert space and T a bounded linear operator
on H, which we indicate by T ∈ B(H). If T ∈ B(H) is a completely non-unitary
contraction, then its associated Sz.-Nagy–Foias H∞ functional calculus is an algebra
homomorphism Φ : H∞ → B(H) with the following properties:

(i) ‖Φ(u)‖ ≤ u for every u ∈ H∞;
(ii) Φ(p) = p(T) for every polynomial p;
(iii) Φ is continuous when H∞ and B(H) are equipped with their respective weak-

star topologies.

We use the notation Φ(u) = u(T) for u ∈ H∞. The contraction T is said to belong
to the class C0 whenever Φ has a nontrivial kernel. It is known in that case that
ker Φ = θH∞ for some inner function θ, called the minimal function of T, which is
uniquely determined up to a scalar factor of absolute value one.

We denote by H2 the Hilbert space of functions

f (z) =
∞∑

n=0
anzn

holomorphic on the open unit disc, equipped with the norm

‖ f ‖H2 =
( ∞∑

n=0
|an|2

) 1/2
.
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Unitary Equivalence and Similarity to Jordan Models 133

For any inner function θ ∈ H∞, the space H(θ) = H2 	 θH2 is closed and invariant
for S∗, the adjoint of the shift operator S on H2. The operator S(θ) defined by S(θ)∗ =
S∗�(H2 	 θH2) is called a Jordan block; it is of class C0 with minimal function θ.

A more general family of operators consists of the so-called Jordan operators. Start
with a collection of inner functions Θ = {θα}α indexed by the ordinal numbers, such
that θα = 1 for α large enough and that θβ divides θα whenever card(β) ≥ card(α)
(recall that a function u ∈ H∞ divides another function v ∈ H∞ if v = u f for some
f ∈ H∞). Let γ be the first ordinal such that θγ = 1. Then the associated Jordan
operator is JΘ =

⊕
α<γ S(θα).

The Jordan operators are of fundamental importance in the study of operators of
class C0, as the following theorem from [5] illustrates. Recall first that a bounded
injective linear operator with dense range is called a quasiaffinity. Two operators
T ∈ B(H) and T ′ ∈ B(H ′) are said to be quasisimilar if there exist quasiaffinities
X : H→ H ′ and Y : H ′ → H such that XT = T ′X and TY = Y T ′.

Theorem 1.1 For any operator T of class C0 there exists a unique Jordan operator J
that is quasisimilar to T.

This theorem is one of the main features of the class C0. Recent investigations
have identified special situations in which the relation of quasisimilarity between a
multiplicity-free operator T of class C0 and its Jordan model can be improved to
similarity. For instance, the work done in [8] was inspired in part by early results of
Apostol [1] (discovered independently in [22]). A link was found between the pos-
sibility of achieving similarity between T and S(θ) and the fact that ϕ(T) has closed
range for every inner divisor ϕ of θ (here θ denotes the minimal function of T). The
same problem was studied in [9], albeit from another point of view. Drawing inspi-
ration from the seminal work of Arveson [2], the main question addressed in that
paper was whether similarity between T and S(θ) could be detected via properties of
the associated algebras

H∞(T) = {u(T) : u ∈ H∞} and H∞(S(θ)).

More precisely, assuming that these algebras are boundedly isomorphic, does it fol-
low that T and S(θ) are similar? Partial results along with estimates on the size of
the similarity were obtained in [9] in the case where the minimal function is a fi-
nite Blaschke product. In both [8] and [9] the considerations also took advantage of
(and perhaps reinforced) a well-known connection with the theory of interpolation
by bounded holomorphic functions on the unit disc and the so-called (generalized)
Carleson condition (see [21] or [15]).

Our work here offers several improvements and generalizations of various results
from [2, 3, 8, 9]. As mentioned above, our focus is to describe a relation between an
operator of class C0 and its Jordan model, and we do so in two different settings: up
to similarity and up to unitary equivalence. We now present the plan of the paper,
state our main results, and explain to what extent those improve upon previous ones.

Section 2 is based on the following result, which is a consequence of the proof of
Theorem 3.6.12 in [2] and of Corollary 1 in [3], both due to Arveson. Recall that a
vector x ∈ H is said to be cyclic for T ∈ B(H) if the smallest closed subspace of H
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134 R. Clouâtre

containing Tnx for every integer n ≥ 0 is the entire space H. An operator having
a cyclic vector is said to be multiplicity-free. We denote by P(T) the smallest norm-
closed algebra containing T and the identity operator.

Theorem 1.2 Let T ∈ B(H) be an irreducible multiplicity-free operator of class C0

with minimal function θ and with the property that its spectrum does not contain the
unit circle. Consider the homomorphism Ψ : P(S(θ))→ P(T) defined by Ψ(p(S(θ))) =
p(T) for every polynomial p. Assume that Ψ is completely isometric. Then T is unitarily
equivalent to S(θ).

Our first main result (Theorem 1.3) addresses the case of higher multiplicities and
removes the condition on the spectrum of T. We denote by {T} ′ the commutant of
the operator T.

Theorem 1.3 Let T1 ∈ B(H1) be an operator of class C0 with the property that
I − T∗1 T1 is of trace class and that {T1} ′ is irreducible. Let T2 ∈ B(H2) be another oper-
ator of class C0 that is quasisimilar to T1 and with the property that {T2} ′ is irreducible.
Assume that there exists a completely isometric isomorphism ϕ : {T1} ′ → {T2} ′ such
that ϕ(T1) = T2. Then T1 and T2 are unitarily equivalent.

In Section 3, we explore the case where the minimal function is a Blaschke product
and show that in this setting, unitary equivalence between a multiplicity-free opera-
tor of class C0 and its Jordan model can be obtained from assumptions weaker than
those appearing in the statement above. Throughout, we use the notation

bλ(z) =
z − λ

1− λz

for the Blaschke factor with root at λ ∈ D and

b̃λ(z) = − λ

|λ|
bλ(z) = − λ

|λ|
z − λ

1− λz
.

Given a Blaschke product θ, an inner divisor ψ of θ is said to be big if the ratio θ/ψ
is a Blaschke factor. Also, a multiplicity-free contraction of class C0 whose minimal
function is a Blaschke product is said to be maximal if there exists a big divisor ψ of
θ and a unit cyclic vector ξ with the property that ‖ψ(T)ξ‖ = 1. The motivation for
Section 3 is the following result due to Arveson (see [2, Lemma 3.2.6]).

Theorem 1.4 Let T ∈ B(H) be a multiplicity-free operator of class C0 whose minimal
function is a finite Blaschke product θ. Assume that T is maximal. Then T is unitarily
equivalent to S(θ).

The following is our second main result. One improvement that it offers over the
previous theorem is the possibility for θ to be an infinite Blaschke product.

Theorem 1.5 Let T ∈ B(H) be a multiplicity-free operator of class C0 whose minimal
function is a Blaschke product θ. Assume that ‖ψ(T)‖ = 1 for some big inner divisor ψ
of θ. Then T is unitarily equivalent to S(θ).
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Unitary Equivalence and Similarity to Jordan Models 135

Let us also emphasize here that the condition ‖ψ(T)‖ = 1 is formally weaker than
maximality: although cyclic vectors are known to be plentiful (see Theorem 4.7), it is
not immediately clear that an operator must achieve its norm on one of them. That
this is indeed the case follows from the proof of Theorem 1.4, and to the best of our
knowledge it has not been observed before.

Finally, in Section 4 we are concerned with similarity rather than unitary equiva-
lence. The basic idea is to weaken the condition appearing in Theorem 1.5 while still
obtaining similarity between T and its Jordan model. Our results improve upon the
work that was done in [9].

2 Unitary Equivalence and Boundary Representations

In this section, we investigate ∗-representations of C∗-algebras related to C0 opera-
tors and their connection with unitary equivalence of such operators to their Jordan
models. The first result we need is inspired by the discussion found in [2, p. 201]. We
denote by K(H) the ideal of compact operators on a Hilbert space H.

Lemma 2.1 Let T ∈ B(H) be an operator that is not unitary and with the property
that I − TT∗ and I − T∗T are compact and that {T} ′ is irreducible.

(i) If we denote by J the closed ideal of C∗({T} ′) generated by I−T∗T and I−TT∗,
then J = K(H).

(ii) Assume that π is a ∗-representation of C∗({T} ′). Then π(T) is unitarily equiva-
lent to (T ⊗ IH ′)⊕U , where U is a unitary operator with spectrum contained in
the essential spectrum of T and H ′ is another Hilbert space.

Proof The fact that C∗({T} ′) is irreducible immediately implies that the ideal J is
irreducible (see [10, Lemma I.9.15]). By assumption, J is a nonzero C∗-subalgebra
of K(H). Thus K(H) = J by [10, Corollary I.10.4], which proves (i). Moreover,
[2, Lemma 3.4.4] shows that the representation π can be decomposed as

π(x) = π1(x)⊕ π2(x + J)

for every x ∈ C∗({T} ′), where the ∗-representation π1 is the unique extension to
C∗({T} ′) of a ∗-representation of J and π2 is a ∗-representation of C∗({T} ′)/J.
Since J = K(H), it is well known (see [10, Corollary I.10.7]) that π1�J must be
unitarily equivalent to a multiple of the identity representation, and by uniqueness so
must be π1. On the other hand, π2(T) is a unitary operator with spectrum contained
in the essential spectrum of T, which shows (ii) and finishes the proof.

We note that in the statement above we allow for both H ′ and the space on which
U acts to be zero. In other words, one of the pieces U or T ⊗ IH ′ can be absent. This
is the case if we specialize Lemma 2.1 to contractions of class C0.

Lemma 2.2 Let T1 ∈ B(H1) be an operator of class C0 with the property that {T1} ′
is irreducible and I−T∗1 T1, I−T1T∗1 are compact. Let T2 ∈ B(H2) be another operator
of class C0. Assume that there exists a ∗-homomorphism

π : C∗
(
{T1} ′

)
−→ B(H2)

https://doi.org/10.4153/CJM-2013-044-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-044-0


136 R. Clouâtre

such that π(T1) = T2. Then T2 is unitarily equivalent to T1 ⊗ IH ′ for some Hilbert
space H ′.

Proof By virtue of Lemma 2.1, we see that T2 = π(T1) is unitarily equivalent to
(T1 ⊗ IH ′) ⊕ U for some unitary U . Since T2 is of class C0, it must be completely
nonunitary, and thus U acts on the zero space so that T2 is in fact unitarily equivalent
to T1 ⊗ IH ′ .

Next, we need some results of Bercovici and Voiculescu (see [6]). Recall that a
contraction T is said to be weak if I−T∗T belongs to the ideal of trace class operators.

Theorem 2.3 Let T be an operator of class C0 with Jordan model J.

(i) T is a weak contraction if and only if T∗ is a weak contraction.
(ii) T is a weak contraction if and only if J is a weak contraction.

Lemma 2.4 Let T1 and T2 be quasisimilar weak contractions of class C0. If T1 is uni-
tarily equivalent to T2⊗ IH ′ , then H ′ is one dimensional and T1 is unitarily equivalent
to T2.

Proof This follows immediately from a consideration of the determinant functions
of T1 and T2, which must be equal (see [4, section 6.3] for more details).

The next corollary is the link between ∗-representations and unitary equivalence.

Corollary 2.5 Let T1 ∈ B(H1) be a weak contraction of class C0 with the property that
{T1} ′ is irreducible. Let T2 ∈ B(H2) be another operator of class C0 that is quasisimilar
to T1. Assume that there exists a ∗-homomorphism

π : C∗({T1} ′) −→ B(H2)

such that π(T1) = T2. Then T2 is unitarily equivalent to T1.

Proof Since T2 and T1 are quasisimilar, they share the same Jordan model. By The-
orem 2.3, we see that I − T∗i Ti and I − TiT∗i are of trace class for i = 1, 2. In light of
Lemma 2.2, we know that T2 is unitarily equivalent to T1 ⊗ IH ′ , and an application
of Lemma 2.4 shows that T1 and T2 are unitarily equivalent.

It is typically quite difficult to construct ∗ -representations of C∗({T} ′) in order
to apply this result. We follow here one method to obtain such representations that
is originally due to Arveson [2]. Recall that given a unital (nonself-adjoint) subal-
gebra A ⊂ B(H1), we say that an irreducible ∗-representation π : C∗(A) → B(H)
is a boundary representation for A if the only unital completely positive extension
of π�A to C∗(A) is π itself (we refer the reader to [2] or [16] for further details
and definitions). Our next goal is to establish that for weak contractions of class C0

with irreducible commutant, the identity representation of C∗({T} ′) is a boundary
representation for {T} ′. The main tool is the following result, known as Arveson’s
boundary theorem (see [3, Theorem 2.1.1]).
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Theorem 2.6 Let A ⊂ B(H) be an irreducible unital subalgebra with the property
that C∗(A) contains K(H) and that the quotient map

q : B(H) −→ B(H)/K(H)

is not completely isometric on A. Then the identity representation of C∗(A) is a bound-
ary representation for A.

In order to apply this theorem, we also require the following fact from [13].

Theorem 2.7 If T ∈ B(H) is an operator of class C0 with the property that I − T∗T
and I − TT∗ are compact, then there exists a function u ∈ H∞ with the property that
u(T) is a nonzero compact operator.

We now achieve the desired result. In fact, we only require I − T∗T and I − TT∗

to be compact, as opposed to trace class.

Corollary 2.8 If T ∈ B(H) is an operator of class C0 such that I − T∗T and I − TT∗

are compact and {T} ′ is irreducible, then the identity representation of C∗({T} ′) is a
boundary representation for {T} ′.

Proof First, we see that C∗({T} ′) contains K(H) by virtue of Lemma 2.1 (i). More-
over, by Theorem 2.7 there exists a nonzero compact operator of the form u(T) for
some u ∈ H∞. This operator necessarily commutes with T and q(u(T)) = 0, and
thus Theorem 2.6 completes the proof.

The following result is Theorem 1.2 of [2]. It is the key to obtaining ∗-representa-
tions of C∗({T} ′).

Theorem 2.9 Let A ⊂ B(H1),B ⊂ B(H2) be unital subalgebras and let ϕ : A→ B

be a unital completely isometric algebra isomorphism. Let πB be a ∗-representation of
C∗(B) that is a boundary representation for B. Then there exists a ∗-representation πA
of C∗(A) that is a boundary representation for A and such that πB ◦ ϕ = πA on A.

Finally, we come to the main result of this section.

Theorem 2.10 Let T1 ∈ B(H1) be a weak contraction of class C0 with the property
that {T1} ′ is irreducible. Let T2 ∈ B(H2) be another operator of class C0 that is qua-
sisimilar to T1 and with the property that {T2} ′ is irreducible. Assume that there exists
a completely isometric isomorphism ϕ : {T1} ′ → {T2} ′ such that ϕ(T1) = T2. Then
T1 and T2 are unitarily equivalent.

Proof By Theorem 2.3, we see that I − T∗i Ti and I − TiT∗i are of trace class for
each i = 1, 2. In light of Corollary 2.8, the identity representation of C∗({T2} ′) is a
boundary representation for {T2} ′. Therefore, we may apply Theorem 2.9 to obtain a
∗-representation π : C∗({T1} ′)→ B(H2) that satisfies π�{T1} ′ = ϕ. An application
of Corollary 2.5 finishes the proof.

We close this section by examining more closely the irreducibility assumption ap-
pearing above. Obviously, the main interest of Theorem 2.10 lies in the case where
T2 is the Jordan model of T1. In that case, the irreducibility assumption on {T1} ′ is
necessary to obtain unitary equivalence in view of the following fact.
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Proposition 2.11 If J =
⊕

α S(θα) is a Jordan operator, then { J} ′ is irreducible.

Proof Set H =
⊕

α H(θα). Let M ⊂ H be a proper reducing subspace for { J} ′.
Let Pα denote the orthogonal projection of H onto the H(θα) component. Since Pα
commutes with J for every α, we see that M is reducing for each Pα and hence it can
be written as M =

⊕
α Mα. Now, the operator Pα JPα also commutes with J, whence

each Mα is reducing for Pα JPα. Since this operator is unitarily equivalent to S(θα)
and Jordan blocks are known to be irreducible, we must have either Mα = PαH or
Mα = 0. We proceed to show that each Mα must be equal to 0. For the rest of the
proof, for each α we identify PαH with H(θα).

Since we assume that M 6= H, we must have Mα0 = 0 for some α0. Now, any
operator X acting on H may be written as X = (Xαβ)α,β , where

Xαβ : H(θβ) −→ H(θα).

If γ < α0, consider the operator Y (γ) defined by Y (γ)α0γ = PH(θα0 )�H(θγ) and
Y (γ)αβ = 0 otherwise. It is easily verified that Y (γ) commutes with J and thus
Y (γ)M ⊂ M, which in turn implies that

PH(θα0 )Mγ ⊂ Mα0 = 0.

This forces Mγ to be equal to 0, since the other case, Mγ = H(θγ), is impossible:

PH(θα0 )H(θγ) = H(θα0 ) 6= 0.

Therefore, Mγ = 0 whenever γ < α0. Assume now that γ > α0 and consider the
operator Z(γ) defined by

Z(γ)α0γ = PH(θα0 )(θα0/θγ)(S)�H(θγ)

and Z(γ)αβ = 0 otherwise. It is easily verified that Z(γ) commutes with J and thus
Z(γ)M ⊂ M, which in turn implies that

PH(θα0 )(θα0/θγ)(S)Mγ ⊂ Mα0 = 0.

This forces Mγ to be equal to 0, since the other possibility Mγ = H(θγ) is impossible:

PH(θα0 )(θα0/θγ)(S)H(θγ) = (θα0/θγ)(S)H(θγ) 6= 0.

Thus, Mγ = 0 for every γ > α0, and the proof is complete.

We obtain a simpler version of Theorem 2.10 that applies to Jordan operators.

Corollary 2.12 Let T ∈ B(H) be a weak contraction of class C0 with the property
that {T} ′ is irreducible. Let J be the Jordan model of T. Assume that there exists a
completely isometric isomorphism ϕ : {T} ′ → { J} ′ such that ϕ(T) = J. Then T and
J are unitarily equivalent.
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Proof Simply combine Theorem 2.10 and Proposition 2.11.

Finally, we show that for certain minimal functions, the irreducibility of {T} ′
is automatic. We first need two preliminary facts. The first one is from [5]. We
recall that the double commutant of T, denoted by {T} ′ ′, is defined as the algebra of
operators that commute with the commutant,

{T} ′ ′ = ({T} ′) ′ = {A ∈ B(H) : AX = XA for every X ∈ {T} ′}.

Theorem 2.13 Let T be an operator of class C0 with minimal function θ and let
X ∈ {T} ′ ′. Then there exists a function v ∈ H∞ with the property that v has no
nonconstant common inner divisor with θ and that Xv(T) = u(T) for some function
u ∈ H∞.

The following lemma is [4, Proposition 2.4.9].

Lemma 2.14 Let u ∈ H∞ and T ∈ B(H) be an operator of class C0 with minimal
function θ. Then u(T) is a quasiaffinity if and only if u and θ have no nonconstant
common inner divisor.

We now show that if the inner divisors of the minimal function θ satisfy a certain
property, then the commutant {T} ′ is always irreducible.

Proposition 2.15 Let θ ∈ H∞ be an inner function with the property that for every
inner divisor ϕ of θ, we have that ϕ and θ/ϕ have a nonconstant common inner divisor,
unless ϕ = 1 or ϕ = θ. Let T be an operator of class C0 with minimal function θ. Then
{T} ′ ′ contains no idempotents besides 0 and I, and {T} ′ is irreducible.

Proof The second statement clearly follows from the first, so it suffices to show that
if E ∈ {T} ′ ′ satisfies E2 = E, then E = I or E = 0. By Theorem 2.13, we see that there
Ev(T) = u(T) for some functions u, v ∈ H∞, where v and θ have no nonconstant
common inner divisor. We compute

u(T)2 = E2v(T)2 = Ev(T)2 = u(T)v(T),

whence u2 − uv = θ f for some f ∈ H∞. If we define ϕ ∈ H∞ to be the greatest
common inner divisor of u and θ, we can write u = ϕg where g and θ have no
nonconstant common inner divisor. Now, we see that

ϕg2 − gv =
θ

ϕ
f ,

which implies that the greatest common inner divisor of ϕ and θ/ϕ divides gv. By
choice of g and v and by assumption on θ, we see that ϕ = 1 or ϕ = θ. If ϕ = θ,
then u(T) = 0 and the equation

0 = u(T) = Ev(T)
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along with Lemma 2.14 implies that E = 0. If ϕ = 1, then by Lemma 2.14, u(T) is a
quasiaffinity, which forces E to be a quasiaffinity as well, by virtue of the equation

Ev(T) = v(T)E = u(T).

But E has closed range (being idempotent), and thus it must be invertible. The equa-
tion E2 = E then yields E = I, and the proof is complete.

A moment’s thought reveals that an inner function θ satisfying the condition of
the previous proposition must be of one of two types: either a power of a Blaschke
factor θ(z) = (bλ(z))n or a singular inner function associated with a point mass
measure on the unit circle

θ(z) = exp
(

t
z + ζ

z − ζ

)
,

where t > 0 and |ζ| = 1. In fact, these are the inner functions whose inner divisors
are completely ordered by divisibility (see [4, Proposition 4.2.6]). Moreover, Propo-
sition 2.15 extends a recent result of Jiang and Yang (see [12]) that deals with the case
of T being a Jordan block S(θ). In this special case, the result holds under the weaker
condition that the function θ does not admit a so-called corona decomposition. We
now formulate another corollary of the main result of this section.

Corollary 2.16 Let T1 ∈ B(H1) be a weak contraction of class C0 with minimal
function θ. Assume that the inner divisors of θ are completely ordered by divisibility. Let
T2 ∈ B(H2) be another operator of class C0 which is quasisimilar to T1. Assume that
there exists a completely isometric isomorphism ϕ : {T1} ′ → {T2} ′ such that ϕ(T1) =
T2. Then T1 and T2 are unitarily equivalent.

Proof This is a mere restatement of Theorem 2.10 using Proposition 2.15 and the
discussion that follows its proof.

3 Unitary Equivalence and Maximality for Blaschke Products

In this section, we show that in the case where the minimal function θ of a
multiplicity-free operator is a Blaschke product, we may replace the assumption on
the existence of a completely isometric isomorphism appearing in the previous sec-
tion by a condition on the norm of a single operator. In fact, we investigate the maxi-
mality condition appearing in Theorem 1.4 and set out to prove Theorem 1.5, which
improves it significantly. The first step is an estimate which, although completely el-
ementary, is very useful (the reader might want to compare it with [9, Lemma 3.7]).

Lemma 3.1 Let T ∈ B(H) be a contraction and let h ∈ H such that ‖Th‖ ≥ δ‖h‖
for some δ > 0. Then ∥∥bµ(T)h

∥∥ ≥ δ − |µ|
1 + |µ|

‖h‖

for every µ ∈ D.
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Proof We have that bµ(T)(1− µT) = T − µ so that∥∥bµ(T)(1− µT)h
∥∥ ≥ (δ − |µ|)‖h‖.

Thus,

‖bµ(T)h‖ ≥ 1

‖1− µT‖
∥∥bµ(T)(1− µT)h

∥∥ ≥ δ − |µ|
1 + |µ|

‖h‖.

We also require the following fact (see [18]).

Theorem 3.2 Let T ∈ B(H) be a multiplicity-free operator of class C0 with minimal
function θ. Then every closed invariant subspace M ⊂ H of T is of the form

M = kerϕ(T) = (θ/ϕ)(T)H

for some inner divisor ϕ of θ. Conversely, if ϕ is an inner divisor of θ, then

M = kerϕ(T) = (θ/ϕ)(T)H

is an invariant subspace for T, and the minimal function of T�M is equal to ϕ.

The next lemma is used to prove the main result of this section, but it is also of
independent interest. The very basic Lemma 3.1 first comes into play here.

Lemma 3.3 Let T ∈ B(H) be a multiplicity-free operator of class C0 whose minimal
function is a Blaschke product θ. Let ξ ∈ H be a unit vector satisfying ‖ψ(T)ξ‖ = 1 for
some big inner divisor ψ of θ. Then ξ is cyclic.

Proof Let M ⊂ H be the smallest closed invariant subspace for T that contains
ξ. By Theorem 3.2, there must exist an inner divisor ϕ of θ with the property that
M = kerϕ(T). The desired conclusion will follow if we show that ϕ = θ, because
then M = H. Assume on the contrary that ϕ is a proper divisor of θ. Then there
exists a big divisor ω of θ with the property that ω(T)ξ = 0. Note that ψ(T)ξ 6= 0 by
assumption so that ψ 6= ω. Now, there exists λ, µ ∈ D distinct zeros of θ such that
ψ = θ/bλ and ω = θ/bµ. Choose z ∈ D with the property that bz ◦ bµ = bλ. Using
Lemma 3.1 and the fact that

1 = ‖ψ(T)ξ‖ =
∥∥∥bµ(T)

( θ

bλbµ

)
(T)ξ

∥∥∥ ,
we find that

0 = ‖ω(T)ξ‖ =
∥∥∥bλ(T)

( θ

bλbµ

)
(T)ξ

∥∥∥
=
∥∥∥ (bz ◦ bµ)(T)

( θ

bλbµ

)
(T)ξ

∥∥∥
≥ 1− |z|

1 + |z|

∥∥∥( θ

bλbµ

)
(T)ξ

∥∥∥ ≥ 1− |z|
1 + |z|

‖ψ(T)ξ‖,

which is a contradiction, since ψ(T)ξ 6= 0.
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Before moving on to the next step towards the main result of this section, we recall
an elementary fact (see [9]).

Lemma 3.4 Let T ∈ B(H) be a multiplicity-free operator of class C0 with minimal
function θ = bλ1 · · · bλN . Let ξ ∈ H be a cyclic vector for T. Then the vectors

ξ, bλ1 (T)ξ, (bλ1 bλ2 )(T)ξ, . . . , (bλ1 · · · bλN−1 )(T)ξ

form a basis for H.

We require an infinite-dimensional version of Lemma 3.4. First, we need another
basic fact (see [4, Theorem 2.4.6]).

Lemma 3.5 Let T ∈ B(H) be an operator of class C0 with minimal function θ. Given
a family {θn}n of inner divisors of θ with least common inner multiple ϕ, we have that
kerϕ(T) is the smallest closed subspace containing ker θn(T) for every n.

We now proceed to establish a more general version of Lemma 3.4.

Lemma 3.6 Let T ∈ B(H) be a multiplicity-free operator of class C0 whose minimal
function is a Blaschke product θ. Let ξ ∈ H be a unit vector which is also cyclic for
T. Then for every big divisor ψ of θ, we have that H is the smallest closed subspace
containing ϕ(T)ξ for every inner divisor ϕ of ψ.

Proof We can write θ =
∏∞

n=0 θn, where each θn is a power of a Blaschke factor with
the property that θn and θm have no nonconstant common inner divisor if n 6= m.

For each n ≥ 0, put θn = b̃dn
λn

for some λn ∈ D and some positive integer dn. Without
loss of generality, we may assume that ψ = θ/bλ0 .

By Lemma 3.4, we see that for each n ≥ 1 the set{
(bk
λn

)(T)h | 0 ≤ k ≤ dn

}
is a basis for ker(bλ0θn)(T) whenever h is a cyclic vector for T� ker(bλ0θn)(T).
Since ξ is cyclic for T, we get from Theorem 3.2 that (θ/(bλ0θn))(T)ξ is cyclic for
T� ker(bλ0θn)(T) and thus

{( θ

bλ0θn
bk
λn

)
(T)ξ : 0 ≤ k ≤ dn

}
is a basis for ker(bλ0θn)(T) for every n ≥ 1. Note in addition that θ

bλ0 θn
bk
λn

divides
ψ = θ/bλ0 for every k. A similar argument shows that

{( θ

θ0
bk
λ0

)
(T)ξ : 0 ≤ k ≤ d0 − 1

}
is a basis for ker θ0(T). Note once again that θ

θ0
bk
λ0

divides ψ = θ/bλ0 for every
0 ≤ k ≤ d0 − 1.
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Therefore, the smallest closed subspace containing all the vectors of the form
ϕ(T)ξ where ϕ is an inner divisor of ψ contains

ker θ0(T) ∪
∞⋃

n=1
ker(bλ0θn)(T).

Since the least common inner multiple of θ0 and the family {bλ0θn}n is θ, the conclu-
sion follows from Lemma 3.5.

We now come to the main result of this section. In light of Lemmas 3.6 and 3.3, it
is a consequence of [2, Theorem 3.2.9] and the surrounding circle of ideas. However,
we feel that the following proof (which is an adaptation of that of [2, Lemma 3.2.6])
is instructive and more direct, so we provide it nonetheless.

Theorem 3.7 Let T ∈ B(H) be a multiplicity-free operator of class C0 whose minimal
function is a Blaschke product θ. Assume that ‖ψ(T)‖ = 1 for some big inner divisor ψ
of θ. Then T is unitarily equivalent to S(θ).

Proof Set ψ = θ/bλ. By Theorem 3.2, we know that N = ψ(T)H is an invariant
subspace for T with the property that T�N has minimal function equal to bλ. Thus,
T�N must be quasisimilar to S(bλ) by Theorem 1.1, and we conclude that N is one-
dimensional. In other words, ψ(T) has rank 1 and there exists a unit vector ξ ∈
H with the property that ‖ψ(T)ξ‖ = 1. It is easily verified that this implies that
‖ϕ(T)ξ‖ = 1 for every inner divisor ϕ of ψ. Note also that the vector ξ is cyclic for
T by Lemma 3.3.

Let us now denote by U : K→ K the minimal unitary dilation of T. The operator
ϕ(U ) is unitary for every inner divisor ϕ of ψ, whence

‖ϕ(U )ξ‖ = 1 = ‖ϕ(T)ξ‖.

These equalities coupled with the relation ϕ(T) = PHϕ(U )|H force ϕ(T)ξ =
ϕ(U )ξ for every inner divisor ϕ of ψ. Consequently, for integers n,m such that
n > m, we have〈

bn
λ(U )ξ, bm

λ (U )ξ
〉

=
〈

bn−m
λ (U )ξ, ξ

〉
=
〈
ψ(U )bn−m

λ (U )ξ, ψ(U )ξ
〉

=
〈
ψ(U )bn−m

λ (U )ξ, ψ(T)ξ
〉

=
〈

(ψbn−m
λ )(T)ξ, ψ(T)ξ

〉
= 0,

whence {bn
λ(U )ξ}n∈Z is an orthonormal set that generates a Hilbert space K0 ⊂ K.

Now define an operator Λ : K0 → L2 such that Λbn
λ(U )ξ = bn

λkλ for every integer n,
where kλ ∈ H∞ is defined as

kλ(z) =
1− |λ|2

1− λz
.

It is easily verified that Λ is unitary and Λbλ(U ) = bλ(Mz)Λ, where Mz denotes the
unitary operator of multiplication by z on L2. Since Blaschke factors can be uniformly
approximated on D by polynomials and

b−λ ◦ bλ(z) = z = bλ ◦ b−λ(z),
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we see that

ΛU = MzΛ,
∞∨

n=0
bn
λ(U )ξ =

∞∨
n=0

U nξ and
∞∨

n=0
bn
λkλ =

∞∨
n=0

znkλ.

If we put H0 =
∨∞

n=0 bn
λ(U )ξ, then clearly H0 is invariant under U and

ΛH0 =
∞∨

n=0
znkλ = H2,

since a straightforward calculation shows that kλ is an outer function. Moreover, we
find

Λϕ(T)ξ = Λϕ(U )ξ = ϕ(Mz)kλ = ϕkλ = ϕ(S(θ))kλ

for every inner divisor ϕ of ψ, and thus ΛH = H(θ) by Lemma 3.6 (here we used
the well-known fact that kλ is cyclic for S(θ)). In particular, we see that

H = Λ∗H(θ) ⊂ Λ∗H2 = H0 .

If we set W = Λ|H, then we obtain another unitary operator W : H→ H(θ). Using
ΛH = H(θ) along with Λ(H0	H) = θH2, we conclude that

PH(θ)Λ�H0 = ΛPH�H0 .

Since U H0 ⊂ H0, we have U H ⊂ H0 and

W T = (Λ�H)T = ΛPHU�H = (ΛPH�H0)U�H

= (PH(θ)Λ�H0)U�H = PH(θ)ΛU�H = PH(θ)MzΛ�H

= (PH(θ)Mz�H(θ))Λ�H = S(θ)(Λ�H) = S(θ)W,

so that T is unitarily equivalent to S(θ).

Recall now the following well-known consequence of the commutant lifting the-
orem (see [17]).

Theorem 3.8 The map u + θH∞ 7→ u(S(θ)) establishes an isometric algebra isomor-
phism between H∞/θH∞ and {S(θ)} ′. In particular,

‖u(S(θ))‖ = inf{‖u + θ f ‖H∞ : f ∈ H∞}

for every u ∈ H∞.

We close this section by stating a simpler version of Theorem 3.7.

Corollary 3.9 Let T ∈ B(H) be a multiplicity-free operator of class C0 whose mini-
mal function is a Blaschke product θ. Assume that the map Ψ : H∞(T) → H∞(S(θ))
defined by Ψ(u(T)) = u(S(θ)) is contractive. Then T is unitarily equivalent to S(θ).
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Proof This follows directly from Theorem 3.7. Indeed, if λ is a zero of θ, then∥∥∥( θ

bλ

)
(T)
∥∥∥ ≥ ∥∥∥Ψ

(( θ

bλ

)
(T)
)∥∥∥ =

∥∥∥( θ

bλ

)
(S(θ))

∥∥∥
= inf

{∥∥∥ θ
bλ

+ θ f
∥∥∥ : f ∈ H∞

}
= inf

{
‖1 + bλ f ‖ : f ∈ H∞

}
= 1,

where we used Theorem 3.8.

Note that in the setting of that corollary, we do not need to assume the irreducibil-
ity of the commutant (compare with Theorem 2.12).

4 Similarity and Lower Bounds for Big Divisors of Finite Blaschke
Products

The focus of this section shifts from unitary equivalence to similarity. Let T be a
multiplicity-free operator of class C0 whose minimal function θ is a Blaschke product.
We saw in Section 3 (Theorem 3.7) that under, the assumption that ‖ψ(T)‖ = 1 for
some big divisor ψ of θ, T and S(θ) must be unitarily equivalent. In this final section,
we investigate the possibility of obtaining a weaker conclusion, namely similarity,
from a weaker assumption on the norm of ψ(T). This problem was studied in [9]
where the following partial result was obtained.

Theorem 4.1 Let T1 ∈ B(H1),T2 ∈ B(H2) be multiplicity-free operators of class C0

with minimal function θ = bλ1 · · · bλN . Define

η = sup
1≤ j,k≤N

|bλ j (λk)|1/2

(1−max{|λ j |, |λk|}2)1/2
.

Assume that∥∥ (θ/bλN )(T1)
∥∥ > β + 5

√
2η. and

∥∥ (θ/bλN )(T2)
∥∥ > β + 5

√
2η

for some constant β satisfying(
1− 1

(N − 1)2

) 1/2
< β < 1.

Then there exists an invertible operator X : H1 → H2 such that XT1 = T2X and

max
{
‖X‖, ‖X−1‖

}
≤ C(β,N),

where C(β,N) > 0 is a constant depending only on β and N.

We should remark at this point that in the above setting the spaces H1 and H2

are finite dimensional, and thus Theorem 1.1 implies that T1 and T2 must be similar.
Thus, the relevance of Theorem 4.1 lies in the control over the norm of the similarity
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rather than in the existence of the similarity. This control allows one to obtain sim-
ilarity results for infinite Blaschke products having certain nice properties. We refer
the curious reader to [9] for such applications related to interpolation by bounded
holomorphic functions on the unit disc.

On the other hand, the presence of the quantity η in the previous statement is
unexpected and seems artificial. Moreover, it has the unpleasant consequence of re-
stricting the minimal functions to which the theorem applies, since clearly η must be
smaller than (5

√
2)−1. The main result of this section removes η completely at the

cost of a slightly stronger assumption on the operators (which is automatically satis-
fied by Jordan blocks, however). In particular, it applies to arbitrary finite Blaschke
products.

The main technical tool we require is the following fact, which can be inferred
from the work done in [9].

Theorem 4.2 Let T1 ∈ B(H1),T2 ∈ B(H2) be multiplicity-free operators of class C0

whose minimal function is a finite Blaschke product θ with N roots. Assume that there
exist unit cyclic vectors ξ1 ∈ H1, ξ2 ∈ H2 and a constant β with the property that

‖ϕ(T1)ξ1‖ ≥ β >
(

1− 1

(N − 1)2

) 1/2

and

‖ϕ(T2)ξ2‖ ≥ β >
(

1− 1

(N − 1)2

) 1/2

for every inner divisor ϕ of θ. Then there exists an invertible operator X : H1 → H2

such that XT1 = T2X and

max
{
‖X‖, ‖X−1‖

}
≤ C(β,N),

where C(β,N) > 0 is a constant depending only on β and N.

Before we proceed, we establish some auxiliary results. The first one is well known,
but we provide the proof for the reader’s convenience.

Lemma 4.3 Let θ1, θ2 ∈ H∞ be inner functions such that there exist u1, u2 ∈ H∞

with the property that θ1u1 + θ2u2 = 1. Let T ∈ B(H) be an operator of class C0 with
minimal function θ1θ2. Then there exists an invertible operator X such that

XTX−1 = T| ker θ1(T)⊕ T| ker θ2(T),

‖X‖ ≤
(
‖u1‖2

H∞ + ‖u2‖2
H∞
) 1/2

and ‖X−1‖ ≤
√

2.

Proof Define

X : H −→ ker θ1(T)⊕ ker θ2(T) as X f = (θ2u2)(T) f ⊕ (θ1u1)(T) f

for every f ∈ H. If X f = 0, then

f = (θ1u1 + θ2u2)(T) f = 0,
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and thus X is injective. Given g1 ∈ ker θ1(T) and g2 ∈ ker θ2(T), we see that

Xg1 = (θ2u2)(T)g1 ⊕ 0 = (1− θ1u1)(T)g1 ⊕ 0 = g1 ⊕ 0

and

Xg2 = 0⊕ (θ1u1)(T)g2 = 0⊕ (1− θ2u2)(T)g2 = 0⊕ g2,

which shows that X is surjective. Notice also that XT = (T ⊕ T)X. Therefore, we see
that T is similar to

T| ker θ1(T)⊕ T| ker θ2(T).

It remains only to estimate the norm of X and X−1. For f ∈ H, we have

‖X f ‖ = ‖(θ2u2)(T) f ⊕ (θ1u1)(T) f ‖

=
(
‖(θ1u1)(T) f ‖2 + ‖(θ2u2)(T) f ‖2

) 1/2

≤
(
‖(θ1u1)(T)‖2 + ‖(θ2u2)(T)‖2

) 1/2‖ f ‖

≤
(
‖u1‖2

H∞ + ‖u2‖2
H∞
) 1/2‖ f ‖

and

‖ f ‖ = ‖(θ1u1 + θ2u2)(T) f ‖

≤ ‖(θ1u1)(T) f ‖ + ‖(θ2u2)(T) f ‖

≤
√

2(‖(θ1u1)(T) f ‖2 + ‖(θ2u2)(T) f ‖2)1/2

=
√

2‖X f ‖

by the Cauchy–Schwarz inequality. This completes the proof.

Lemma 4.4 Let θ1, θ2 ∈ H∞ be inner functions such that

inf
z∈D

{
|θ1(z)| + |θ2(z)|

}
= δ > 0.

Let T ∈ B(H) be an operator of class C0 with minimal function θ1θ2. Then there exists
an invertible operator X such that

XTX−1 = T� ker θ1(T)⊕ T� ker θ2(T), ‖X−1‖ ≤
√

2, and ‖X‖ ≤ C(δ),

where C(δ) > 0 is a constant depending only on δ.

Proof This is an easy consequence of Lemma 4.3 and the estimates associated with
Carleson’s corona theorem (see [7] or [14, Theorem 3.2.10]).

In applying that lemma, the following estimate will prove to be useful.
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Lemma 4.5 Let E, F ⊂ D be two finite subsets of cardinality at most N, and let
θE, θF ∈ H∞ be the associated Blaschke products. Assume that there exists r > 0 such
that |e− f | ≥ r for every e ∈ E, f ∈ F. Then

inf
z∈D

{
|θE(z)| + |θF(z)|

}
> (r/4)N .

Proof Throughout the proof we put

d(A,B) = inf
{
|a− b| : a ∈ A, b ∈ B

}
whenever A,B ⊂ C.

First note that

|bλ(z)| =
∣∣∣ z − λ

1− λz

∣∣∣ ≥ |z − λ|
2

for every z ∈ D. In particular, we see that |θE(z)| ≥ (r/4)N for every z ∈ D such
that d(z, E) ≥ r/2. Now if d(z, E) < r/2, then d(z, F) ≥ r/2 in view of the triangle
inequality and of our assumption on the sets E and F. Thus, we conclude that

|θF(z)| ≥ (r/4)N

if d(z, E) < r/2. Combining these inequalities yields

|θE(z)| + |θF(z)| ≥ (r/4)N

for every z ∈ D.

Next, we need an elementary combinatorial lemma.

Lemma 4.6 Let ε > 0 and λ1, . . . , λN ∈ C. Then there exists an integer 1 ≤ k ≤ N
with the property that the set {λ1, . . . , λN} can be written as the disjoint union of

Ek = {λ j : |λ j − λ1| < ε 2−(N+1−k)}

and

Fk = {λ j : |λ j − µ| ≥ ε 2−(N+1−k) for every µ ∈ Ek}.

Proof Put SN = {λ1, . . . , λN}. It is clear that Ek and Fk are disjoint and that λ1 ∈ Ek

for every 1 ≤ k ≤ N. Consider the set Gk = SN \ (Ek ∪ Fk) for every 1 ≤ k ≤ N.
An element λ j lies in Gk if it does not belong to Ek, but there exists µ ∈ Ek with the
property that

|λ j − µ| <
ε

2N+1−k
.

By the triangle inequality, we see that Gk ∪ Ek ⊂ Ek+1. If Gk is nonempty for each
1 ≤ k ≤ N−1, this last inclusion implies that Ek contains at least k elements for each
1 ≤ k ≤ N, so that EN = SN and GN is empty, and the lemma follows.

One last bit of preparation is necessary. The next fact is found in [19] (it was
independently discovered by Herrero; see [11]).
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Theorem 4.7 Let T ∈ B(H) be a multiplicity-free operator of class C0. Then the set
of cyclic vectors for T is a dense Gδ in H.

Finally, we come to our similarity result, which improves Theorem 4.1 in the sense
that it removes any restriction on the roots of the minimal function θ.

Theorem 4.8 Let T1 ∈ B(H1),T2 ∈ B(H2) be multiplicity-free operators of class C0

whose minimal function is a finite Blaschke product θ with N roots. Assume that there
exist constants β ′, β such that

‖ϕ(T1)| kerψ(T1)‖ > β ′ > β >
(

1− 1

(N − 1)2

) 1/4
,

‖ϕ(T2)| kerψ(T2)‖ > β ′ > β >
(

1− 1

(N − 1)2

) 1/4
,

whenever ψ is a nonconstant inner divisor of θ and ϕ is a proper inner divisor of ψ.
Then there exists an invertible operator X with the property that XT1 = T2X and

max
{
‖X‖, ‖X−1‖

}
≤ C(N, β, β ′),

where C(N, β, β ′) > 0 is a constant depending only on N, β, and β ′.

Proof Put θ = bλ1 · · · bλN . We proceed by induction on N. The case N = 1 is trivial,
since the equations

bλ1 (T1) = bλ1 (T2) = 0

then imply that T1 and T2 are equal to the same multiple of the identity operator.
Assume that the conclusion holds for Blaschke products with at most N − 1 roots.
For each 1 ≤ k ≤ N we set ψk = θ/bλk . Since ‖ψN (Ti)‖ > β ′, by Theorem 4.7 we
can find a unit cyclic vector ξi ∈ H such that ‖ψN (Ti)ξi‖ > β ′ for i = 1, 2. For
1 ≤ k < N we see that

ψk(Ti)ξi = bλN (Ti)
( θ

bλk bλN

)
(Ti)ξi ,

while

ψN (Ti)ξi = bλk (Ti)
( θ

bλk bλN

)
(Ti)ξi ,

and thus by Lemma 3.1 we find

‖ψk(Ti)ξi‖ =
∥∥∥bλN (Ti)

( θ

bλk bλN

)
(Ti)ξi

∥∥∥
=
∥∥∥ (bµ ◦ bλk )(Ti)

( θ

bλk bλN

)
(Ti)ξi

∥∥∥
≥ β ′ − |µ|

1 + |µ|

∥∥∥( θ

bλk bλN

)
(Ti)ξi

∥∥∥
≥ β ′ − |µ|

1 + |µ|
‖ψN (Ti)ξi‖ ≥

( β ′ − |µ|
1 + |µ|

)
β ′,
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where µ = −bλN (λk). Now choose r > 0 such that( β ′ − |µ|
1 + |µ|

)
β ′ > β2

if |λk − λN | < r. Clearly, r depends only on β and β ′, and if |λk − λN | < r, then
‖ψk(Ti)ξi‖ > β2. Thus, the desired conclusion follows from Theorem 4.2 in case
where sup1≤k≤N |λk−λN | < r. Assume therefore that this supremum is at least r. In
that case, Lemma 4.6 allows us to write

{λ1, . . . , λN} = E ∪ F

where E and F are disjoint and nonempty, |λ − λN | < r for every λ ∈ E, and
|λ − µ| > r2−N for every λ ∈ E, µ ∈ F. Let θE (resp. θF) be the Blaschke product
associated with the elements of E (respectively F). By Lemmas 4.4 and 4.5, for each
i = 1, 2 there exists an invertible operator Yi with the property that

YiTY−1
i = Ti | ker θE(Ti)⊕ Ti | ker θF(Ti) and max

{
‖Yi‖, ‖Y−1

i ‖
}
≤ C1,

where C1 > 0 depends only on N, β and β ′. Note now that the minimal function of
Ti | ker θE(Ti) (resp. Ti | ker θF(Ti)) is θE (resp. θF) by virtue of Theorem 3.2. Since E
and F have cardinality strictly less than N, we are done by induction.

In the case where one of the operators is a Jordan block, we obtain a simpler ver-
sion of the previous result by making use of another property of Jordan blocks, found
in [4, Proposition 3.1.10].

Lemma 4.9 Let ϕ be an inner divisor of the inner function θ. Then the operator
S(θ)| kerϕ(S(θ)) is unitarily equivalent to S(ϕ).

Corollary 4.10 Let T ∈ B(H) be a multiplicity-free operator of class C0 whose mini-
mal function is a finite Blaschke product θ with at most N roots. Assume that there exist
constants β, β ′ such that

‖ϕ(T)| kerψ(T)‖ > β ′ > β >
(

1− 1

(N − 1)2

) 1/4

whenever ψ is an inner divisor of θ and ϕ is an inner divisor of ψ. Then there exists an
invertible operator X with the property that XT = S(θ)X and

max
{
‖X‖, ‖X−1‖

}
≤ C(N, β, β ′),

where C(N, β, β ′) > 0 is a constant depending only on N, β, and β ′.

Proof This follows directly from Lemma 4.9 and Theorems 3.8 and 4.8.

As was done in [9], this corollary can be applied to obtain similarity results for
some infinite Blaschke products. Pursuing those applications here would lead us
outside of the intended scope of the paper, so let us simply mention that the proofs
follow the same lines as those from [9].
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