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We investigate self-excited vortex-acoustic lock-in in a bluff body combustor. The bluff
body not only anchors the flame but also sheds vortices. Mutual interaction between
vortex shedding and the combustor acoustic field leads to lock-in. A lower-order model for
vortex shedding is coupled to the acoustic equations to obtain a set of discrete dynamical
maps, which are then solved numerically. Lock-in is identified when a definite phase
relationship between vortex shedding and acoustic field remains unaltered with time.
The common frequency during (phase) lock-in is either close to the natural acoustic or
vortex shedding frequencies, accordingly termed A- or V-lock-in, respectively. Instability
and amplitude suppression occur with most parts of the A- and V-lock-in regions,
respectively. Furthermore, we relate the lock-in and pre-lock-in regimes observed in our
previous experiments (Singh & Mariappan, Combust. Sci. Technol., 2019, pp. 1–29) to A-
and V-lock-in phenomena, respectively. Among the two lock-in phenomena, combustion
instability is favoured by 1 : 1 A-lock-in, whose boundaries in the parameter space can be
obtained from a forced response of the vortex shedding process. Finally, we discuss the
bifurcations leading to lock-in.

Key words: bifurcation, vortex shedding, aeroacoustics

1. Introduction

Recent combustor designs focus on low-emission and fuel-flexible operations. Large
amplitude self-sustained detrimental oscillations, termed combustion or thermoacoustic
instability, occur during such operations (Lieuwen & Yang 2005; Khalil & Gupta 2013).
Conventional combustors and afterburners employ swirlers (Huang & Yang 2009) and
bluff bodies (Hertzberg, Shepherd & Talbot 1991) to anchor the flame. Both the geometries
support vortex shedding (Schadow & Gutmark 1992). Several experimental (Poinsot et al.
1987; Emerson & Lieuwen 2015) and theoretical (Matveev & Culick 2003) investigations
highlight the role of vortex shedding in thermoacoustic instability. Vortical structures
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in combustors are observed due to two mechanisms: (i) (absolute) wake instability in
an unexcited flow (Monkewitz 1988) and (ii) longitudinal (Poinsot et al. 1987; Candel
1992) and transverse (Rogers & Marble 1956; Kushwaha et al. 2017) acoustic excitations.
In-turn vortices perturb the heat release rate by affecting the flame surface area (Emerson
& Lieuwen 2015), equivalence ratio (Lieuwen & Zinn 1998) etc. Heat release rate
fluctuations generate the acoustic field, thus closing the thermoacoustic feedback.

In vortex shedding combustors two self-excited systems (oscillators) are involved. (i)
Vortex shedding behind flame stabilizers, causing heat release rate fluctuations of the flame
at the frequency of shedding (Poinsot et al. 1987). (ii) Acoustic field of the combustor
can be excited in two ways. The first one is due to the thermoacoustic feedback with
an unsteady flame, irrespective of whether the flow is laminar (for example, Kabiraj &
Sujith 2012) or turbulent (for example, Nair, Thampi & Sujith 2014). In the second way
occurring only in turbulent combustors, the acoustic field can be excited by the turbulent
flow fluctuations, even without an active unsteady flame (p.684 of Pawar et al. 2017).
In general, the two systems oscillate at their own frequency. However, at certain operating
conditions, they interact, leading to lock-in (Poinsot et al. 1987; Singh & Mariappan 2019).
During (phase) lock-in, both the systems oscillate at a common frequency and evolve with
a constant phase difference (Pikovsky, Rosenblum & Kurths 2003; Balanov et al. 2008).
Often, the common frequency is close to the natural duct acoustic frequency (Poinsot et al.
1987). Therefore, many investigations replaced the acoustic feedback with a unidirectional
velocity excitation to study the hydrodynamic behaviour, both in non-reacting (Li &
Juniper 2013a) and reacting (Emerson & Lieuwen 2015) flow configurations.

In practical systems involving a set of can-annular combustors, the mutual interaction
between each of the self-excited thermoacoustic systems (STS) leads to lock-in or
desynchronization depending on the strength and time delay in coupling (Moon et al.
2020). Furthermore, the interaction leads to amplification or amplitude death (Hyodo,
Iwasaki & Biwa 2020) of pressure oscillations even when the individual uncoupled
combustors are stable or unstable, respectively (Jegal et al. 2019). Specifically, if one or
more can-combustors have a weaker thermal power, the interaction leads to new regions
of pressure amplifications (Doranehgard, Gupta & Li 2022) in the weaker combustor.
The above dynamics depend on the individual system parameters, strength and type of
coupling between the combustors. Overall, lock-in is frequently encountered in practical
combustors, reiterating its importance.

A systematic investigation on the effects of external excitation in relation to lock-in
on a low-density (non-reacting) jet experiencing absolute instability at a frequency ( fn)
was investigated by Li & Juniper (2013a). Excitation frequency ( ff ) and amplitude (Af )
were varied. On forcing in the vicinity of frequency ratio f = ff /fn = 1, a V-shaped
lock-in region, stemming at f = 1 occurs in the excitation amplitude–frequency plane.
Inside the lock-in region, the jet oscillates at the forcing frequency. Two bifurcations to
lock-in are observed as the excitation amplitude is increased. (i) Saddle-node bifurcation:
when f is close to 1, fn is pulled towards ff , keeping the response amplitude almost
constant. A theoretical analysis on a physically relevant lower-order model for vortex
shedding does indicate the above bifurcation to lock-in (Britto & Mariappan 2019). (ii)
Inverse Nemark–Sacker bifurcation: when f is farther from 1, the response amplitude at fn
decreases (no movement in fn) and vanishes completely during lock-in.

Apart from the two bifurcations, two kinds of asymmetries are observed in the lock-in
boundary about f = 1. (i) Asymmetry in the geometry of the boundary. Li & Juniper
(2013a) (non-reacting flow) and Li & Juniper (2013b) (reacting flow) reported the
occurrence of lock-in at lower excitation amplitudes in the f < 1 region than in the f > 1
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region and vice versa, respectively. (ii) Asymmetry in the response amplitude of the
system. In the non-reacting case (Li & Juniper 2013a), where the response is measured
as velocity fluctuations, the response is stronger and weaker than the unexcited case at
f < 1 and f > 1 regions, respectively. Heat release rate fluctuations q̇′, measured as the
response in the reacting case (Li & Juniper 2013b), indicated an amplification/reduction
(compared with the unexcited case) in f < 1/f > 1 regions. Therefore, lock-in can be
associated with both amplification and reduction of the response of the system. On a
similar line, investigations by Emerson & Lieuwen (2015) reported a reduction in q̇′ of a
bluff body stabilized flame when excited at the natural (reacting) hydrodynamic frequency.
Furthermore, when a STS is forced far away from its natural frequency, asynchronous
quenching occurs, where suppression in the amplitude of pressure oscillations is observed
(Balusamy et al. 2015; Guan et al. 2019a; Mondal, Pawar & Sujith 2019).

The above investigations focus on the forced synchronization of a thermoacoustic system
whose natural state is periodic self-excited oscillation. However, a thermoacoustic system
exhibits a wide range of dynamics from periodic, quasiperiodic to chaotic oscillations
(Kabiraj, Sujith & Wahi 2012; Kashinath, Waugh & Juniper 2014). In this interest,
forced synchronization of an aperiodic (quasiperiodic and chaotic systems) thermoacoustic
system was first investigated by Kashinath, Li & Juniper (2018). The introduction of
harmonic external forcing on the aperiodic system destroys the aperiodic attractor leading
to the emergence of order in the system (period-1 or higher-periodic oscillations).
A quasiperiodic thermoacoustic system that naturally contains two incommensurate
frequencies first undergoes partial synchronization (Guan et al. 2019b) wherein the weaker
natural mode is locked in with the forcing system before complete synchronization. The
synchronization results in a period-1 limit cycle, where the system oscillates at the forcing
frequency. Furthermore, strong forcing near the weaker natural mode is sufficient for
complete synchronization resulting in the most significant reduction of thermoacoustic
oscillations through asynchronous quenching.

In summary, the investigations in the literature can be categorized into two baskets.
(i) Study of unidirectional forcing on a self-excited system (oscillator). The system
can be a hydrodynamic (Li & Juniper 2013a; Emerson & Lieuwen 2015) or a
thermoacoustic (Balusamy et al. 2015; Kashinath et al. 2018) system. Extensive studies
on the characterization of lock-in boundary (Li & Juniper 2013a,b,c), exploration of
an open-loop control strategy through asynchronous quenching were performed (Guan
et al. 2019a; Mondal et al. 2019; Kushwaha et al. 2022). (ii) Study of lock-in due to the
interaction between two self-excited systems. Self-excited thermoacoustic interaction in a
vortex shedding combustor falls into this category. Combustor acoustic field and vortex
shedding process form the systems. Existing literature (for example, Poinsot et al. 1987;
Chakravarthy et al. 2007; Singh & Mariappan 2019) dealing with the mutual interaction
of two self-excited systems shows that vortex-acoustic lock-in is accompanied by large
amplitude oscillations.

The following questions arise concerning vortex shedding combustors. (1) It is unclear
whether suppression of instability (similar to unidirectionally forced oscillators) exists in
thermoacoustic systems involving two coupled self-excited oscillators. Recently, mutual
synchronization between two STS has been studied using experiments, and a comparison
is presented with two coupled Van der Pol oscillators (Guan et al. 2021). They have
reported that the coupled model exhibits several behaviours observed in the experiments:
quasiperiodicity, lock-in, amplitude death, etc. Although they have considered swirling
flow that can exhibit vortex shedding, they did not explicitly address the existence and
influence of vortex shedding in their systematic study. (2) Is the common frequency during
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lock-in always close to the combustor acoustic mode?. We make an attempt to address
the above questions through theoretical analysis and performing comparisons with our
experimental results (Singh & Mariappan 2019). Furthermore, dynamical bifurcations
leading to lock-in are identified.

We consider a Rijke tube combustor with the flame stabilized by a bluff body: a
geometry experimentally investigated in Singh & Mariappan (2019). The bluff body
supports vortex shedding, modulating the heat release rate of the flame. Pressure time
series show frequency peaks associated with acoustic field and vortex shedding modes. As
the reactant flow rate varies, the modes interact and vortex-acoustic lock-in is observed. In
theory, the acoustic field is modelled by a wave equation, with the heat source appearing
from the vortex shedding process. The lower-order model for vortex shedding from
Matveev & Culick (2003) is used. The continuous-time domain equation is converted to
discrete maps, following the procedure discussed in our earlier papers (Britto & Mariappan
2019, 2021). Lock-in is identified as a phase synchronization between vortex shedding
events and acoustic velocity fluctuations. For the parameter range associated with the
experiments, we predict the occurrence of two lock-in orders: 1 : 1 and 2 : 1. We show
that the former and latter lead to combustion instability and amplitude suppression,
respectively. Furthermore, the common frequency during lock-in is close to natural
acoustic and vortex shedding modes for 1 : 1 and 2 : 1 lock-in, respectively.

The rest of this paper is divided into three sections. Governing equations for vortex
shedding and the acoustic field, followed by the construction of the dynamical map, are
discussed in § 2. Section 3 describes the numerical results, identifying the occurrence
of phase lock-in and the associated bifurcations. An interpretation of instability and
suppression of vortex-driven thermoacoustic oscillations, in relation to the experimental
results, are presented § 4. Section 5 ends the paper with the salient conclusions.

2. Theoretical formulation

Theoretical analysis is performed on the experimental configuration of Singh & Mariappan
(2019). A premixed flame (liquefied petroleum gas and air) anchored behind a circular
disc bluff body shedding vortices is confined in a Rijke tube (refer to figure 1a). The
confinement sustains the acoustic field. At low air flow rates, frequency peaks associated
with vortex shedding and acoustic modes are observed. The peaks are wide apart, with the
frequency of the vortex shedding mode lower than that of the acoustic mode. As the flow
rate increases, the frequency of the vortex shedding mode approaches the acoustic mode,
eventually culminating at vortex-acoustic lock-in (figure 8a). A sequence of well-defined
regimes was identified during the above dynamic transition (discussed in § 4).

A schematic of the experimental geometry and our theoretical representation are
illustrated in figure 1. As said earlier, vortex shedding combustors have two individual
oscillators: vortex shedding and the acoustic field. The following subsections discuss their
modelling. The presented modelling framework is similar to Matveev & Culick (2003)
and the bifurcation analysis follows our previous investigation (Singaravelu & Mariappan
2016).

2.1. Modelling vortex shedding process
The boundary layer flowing over a sharp corner (separation edge) creates a linearly
unstable shear layer, which transitions (Bénard von-Kármán instability) to large coherent
vortical structures. Such structures are observed behind the wake of the bluff body. The
separation edge of the bluff body is located at xsep (figure 1a). The evolution of the

975 A16-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

84
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.845


Vortex-acoustic lock-in in a combustor

Acoustic

waves
Combustor

wallVortex

Shear

layer Bluff body (d̃ )

x̃

q̇̃

l̃a

l̃c

x̃c

x̃sep

ū̃
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Figure 1. Schematic of vortex shedding behind a circular disc bluff body, placed in a Rijke type combustor of
length l̃a. (a) Vortex shedding/convection process and steady-state CH∗ chemiluminescence (representative
of flame heat release rate) are illustrated in the left and right half of the bluff body, respectively.
Chemiluminescence contours are from our earlier experimental investigation (Singh & Mariappan 2019). Here
x̃sep represents the axial location of vortex shedding. (b) The axial variation of transversely integrated heat
release rate shows a peak at x̃c. The vortex convection distance, l̃c = x̃c − x̃sep. (c) Schematic representation
of shedding (blue dots) and burning (red dots) time instances of vortices. Subscripts in t indicate the vortex
number, while the superscripts s and c specify shedding and burning events, respectively.

shedding process is described by an integrate-and-fire type model for the vortex circulation
Γ̃m as follows (Matveev & Culick 2003):

dΓ̃m

dt̃
= 1

2
ũ2

sep, (2.1a)

Γ̃sep = d̃
2St

ũsep. (2.1b)

Here (·)sep = (·)(xsep, t) and ũsep = ũ(x̃sep, t̃) = ¯̃u + ũ′
sep is the total flow velocity just

upstream of the separation edge. Here d̃ represents the characteristic length of the
bluff body: in this case its diameter. Strouhal number of the flow configuration is St.
Furthermore, ˜, ¯ and ′ indicate dimensional, steady and fluctuating quantities, respectively.
Subscript m is associated with the mth vortex. At the beginning (t = 0), Γ̃ is set to zero. It
increases according to (2.1a), till its numerical value equals Γ̃sep (2.1b). At this moment,
the mth vortex is shed with the circulation Γ̃sep and Γ̃m+1 is reset to zero for the evolution
of the next (m + 1)th vortex. In the absence of acoustic perturbations (ũ′

sep = 0), (2.1a)
and (2.1b) are solved to obtain the steady-state vortex shedding frequency, f̃s0 = ¯̃uSt/d̃.
The presence of acoustic fluctuations (ũ′

sep) alters the instantaneous shedding frequency.
The unsteady component, ũ′

sep(t), appears from the solution of the acoustic wave equation
(discussed in § 2.2).

The bluff body anchoring the flame is enclosed in a Rijke-type combustor of length (l̃a)
that facilitates acoustic feedback. The length l̃a is kept a constant value (1 m) in Singh
& Mariappan (2019). We therefore use the acoustic length (l̃a) and time (l̃a/ ¯̃c) scales to
non-dimensionalize (2.1a) and (2.1b). Steady-state flow velocity ( ¯̃u), which is assumed to
be spatially constant, is taken as the reference scale for velocity fluctuations. Therefore, we

975 A16-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

84
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.845


A.B. Britto and S. Mariappan

have the following:

Γm = Γ̃m
¯̃ul̃a

; Γsep = Γ̃sep

¯̃ul̃a
; u′ = ũ′

¯̃u ; t = t̃ ¯̃c
l̃a

; d = d̃

l̃a
. (2.2a–e)

Consequently, the non-dimensional governing equations for vortex shedding become

dΓm(t)
dt

= M
1
2

[
1 + u′

sep(t)
]2
, (2.3a)

Γsep(t) = d
2St

[
1 + u′

sep(t)
]
, (2.3b)

where M is the steady-state flow Mach number. In the absence of acoustic perturbations
(u′ = 0), vortices are shed at the natural frequency, fs0 = MSt/d. Hence, the vortex
shedding model represents a self-sustained oscillator. The shed vortex is assumed to travel
at a constant velocity: a fraction (α) of the steady-state velocity (α = 0.4 − 0.6, Dotson,
Koshigoe & Pace 1997). The assumption greatly simplifies the analytical expressions (refer
(2.11)). The next step is to model the acoustic fluctuations and their source.

2.2. Modelling acoustic field of the combustor
The non-dimensional acoustic momentum and energy equations (at low Mach number
and constant steady-state density) in the presence of unsteady heat release fluctuations are
(Juniper & Sujith 2018)

∂u′

∂t
+ ∂p′

∂x
= 0, (2.4a)

∂p′

∂t
+ ∂u′

∂x
= γ − 1

γM
q̇′(x, t), (2.4b)

where p′(x, t) = p̃′/γM ¯̃p, u′(x, t) = ũ′/ ¯̃u and q̇′(x̃, t) = ˙̃q′/ ¯̃p ¯̃c are the pressure, velocity
and heat release rate fluctuations per unit length, respectively. Furthermore, γ is the
specific heat capacity ratio and ¯̃p is the spatially uniform steady-state pressure. In the
present paper, q̇′(x, t) occurs due to perturbations in the flame caused by the movement of
vortices.

In diffusion flames, the mixing rate of fuel and oxidizer linearly depends on the
circulation of the vortex (Cetegen & Sirignano 1990). The interaction of vortices with
flames enhances reaction rate (Cetegen & Basu 2006). The enhancement is proportional to
the circulation of the vortex (Peters & Williams 1989). Therefore, we assume that the heat
release rate fluctuation q̇′(x, t) is directly proportional to the circulation of the shed vortex
Γsep. Furthermore, as the vortex travels over the flame, q̇′(x, t) occurs non-locally both in
space and time (figure 1b). Modelling it significantly complicates the analysis. Therefore,
we assume that q̇′ occurs instantly in space and time when the vortex reaches the location
(xc) of the maximum steady-state heat release rate. Such a spatially compact assumption
is accepted as the ratio of the flame zone to acoustic length is ∼10−3 as reported in Singh
& Mariappan (2019).
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Given the above arguments, the heat release rate fluctuation q̇′(x, t) is modelled by

q̇′(x, t) = β
∑

m

Γmδ(t − tcm)δ(x − xc), (2.5)

where β is a proportionality factor, termed the heat release rate coefficient; δ is the
Dirac-delta function, representing the compactness of heat release rate fluctuations both
in space and time; tcm is the time instant, when the mth vortex reaches xc.

With the assumption of constant convection velocity, all the shed vortices take the same
travel time (τt) to move from xsep to xc, given by τt = lc/Mα, where lc = xc − xsep. The
location of xc is obtained from the experiments (Singh & Mariappan 2019) as the axial
location of maximum transversely integrated steady-state heat release (figure 1a,b). Later
from § 2.3, we show that τt determines the order of the dynamical map formed by coupling
the evolution equation for vortex shedding and the acoustic field.

We use the Galerkin technique to transform the set of partial differential equations,
(2.4a) and (2.4b), to a second-order ordinary differential equation, by using the following
mode shapes for u′ and p′:

u′(x, t) = Un(t)
nπ

dσn(x)
dx

, p′(x, t) = Pn(t)σn(x). (2.6a,b)

Here, σn(x) is the nth mode shape, satisfying the boundary conditions of the duct. Since
the Rijke tube employed in Singh & Mariappan (2019) is open to the atmosphere, we
choose an acoustically open-open boundary condition: σn(x) = sin(nπx), where n is a
positive integer representing the acoustic mode number. Motivated by the experimental
observation, where the first acoustic mode is dominant, we choose a one-mode
approximation by setting n = 1 in the current study. The one-mode approximation also
promotes analytical tractability. Although we set n = 1, for the simulations in this paper,
we derive the dynamical equations for a general n. On substitution of (2.6a,b) in (2.4a)
and (2.4b), a second-order differential equation for Un is obtained,

Ün + 2ζnωnU̇n + (nπ)2Un = −2nπ
(γ − 1)
γM

β sin(nπxc)
∑

m

Γmδ(t − tcm). (2.7)

The above non-dimensional equation represents a kicked harmonic oscillator (Matveev
& Culick 2003; Tuwankotta & Ihsan 2019). The Galerkin coefficients for pressure
are obtained as Pn = −U̇n/nπ. Furthermore, a linear damping term (ζnωn) has been
introduced in (2.7). The damping coefficient ζn is dependent on the frequency: ζn =
(c1n + c2

√
1/n)/2π, where c1 and c2 correspond to the end and boundary layer losses,

respectively (Sterling & Zukoski 1991; Matveev & Culick 2003).
Due to the damping term (ζn), the acoustic velocity and pressure fluctuations vanish

when the heat release rate due to vortex shedding is absent in the combustor. Hence, the
model for the acoustic field does not represent a self-sustained oscillator. As mentioned in
the introduction (§ 1), acoustic modes are excited in turbulent combustors, which can be
modelled as an additional noise term in the above (2.7) (Sujith & Unni 2020). However,
the addition leads to the loss of analytical tractability (§ 2.3) and interpretation (§ 2.5)
of instability and amplitude during lock-in. Therefore, we avoid including a noise term
in (2.7). Given the above, the theory of mutual synchronization to study lock-in in the
present thermoacoustic system cannot be applied in a strict sense. However, we still borrow
the concept of phase synchronization to define lock-in in the current case. The reason is
as follows. Acoustic fluctuations follow the equation of a (damped) harmonic oscillator,
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indicating a definite centre of rotation in the phase space (u′–p′ plane, refer to figure 3a).
Therefore, a generalized phase (ψA) can be defined using one of the dynamical variables:
Un. In turn, a definite relationship between ψA and the phase of vortex shedding events
allows us to identify lock-in (details in § 3). In the present formulation, acoustic fluctuation
continues to exist (although damped) at its natural frequency all through the simulation,
as it is generated by the kicks of the (self-sustained) vortex shedding process.

In the following section we convert the continuous-time dynamical system to a discrete
dynamical map connecting Un, Pn between two successive burning and earlier shedding
events. The map allows us to identify and study the bifurcation characteristics of lock-in.

2.3. Construction of a dynamical map
The kick event (right-hand side of (2.7)) occurs at the vortex burning instant (tcm). It
adds acoustic energy instantly, leading to a sudden increase (kick) in pressure fluctuations
(velocity fluctuations are continuous), i.e. (Matveev & Culick 2003)

Un(tcm+) = Un(tcm−), (2.8a)

Pn(tcm+) = Pn(tcm−)+ Pkick,m, (2.8b)

Pkick,m =
(
γ − 1
γ

)
β

fs0
sin(nπxc)

[
1 + cos(nπxsep)Un(tsm)

]
, (2.8c)

where subscripts m− and m+ indicate the time instants just before and after the mth kick,
respectively. The amplitude of the mth kick (Pkick) depends on the circulation strength
of the mth vortex through the term Un(tsm), the heat release coefficient β and the natural
shedding frequency fs0.

Between the two successive kicking instances (tcm and tcm+1), the right-hand side of
(2.7) is zero, forming a damped harmonic oscillator. Therefore, in between the kicks, the
solution of (2.7) is given by

Un(t) = exp(−nπζnτ
c
m)
[
r sin

(
ωdτ

c
m + α1

)]
, tcm+ < t < tc(m+1)−, (2.9a)

Pn(t) = exp(−nπζnτ
c
m)
[
r sin

(
ωdτ

c
m + α2

)]
, tcm+ < t < tc(m+1)−, (2.9b)

where ωd = nπ
√

1 − ζ 2
n . τ c

m = t − tcm+ indicates the elapsed time, since the burning of the
mth vortex. The above expression for Un and Pn is valid till the burning of the (m + 1)th
vortex. An mth kick event characterized by the jump in Pn(tcm), governs the subsequent
evolution of Un and Pn till the (m + 1)th kick event. Here α1, α2 and r represent the initial
phases and amplitude of Un and Pn, respectively. They are determined by the Galerkin
coefficients at the end of the mth kick. They serve as an initial condition for the evolution
of Un and Pn after the mth kick. We have

r =
√

A2
1 + B2

1, α1,2 = arctan
A1,2

B1,2
, (2.10a)

A1 = Un(tcm+), B1 = ζnUn(tcm+)− Pn(tcm+)√
1 − ζ 2

n
, (2.10b)

A2 = Pn(tcm+), B2 = Un(tcm+)− ζnPn(tcm+)√
1 − ζ 2

n
. (2.10c)

Combining the expressions for the evolution of Un, Pn in between ((2.9a) and (2.9b)) and
across ((2.8a)–(2.8c)) the kicks, a map relating the Galerkin co-coefficients just after the
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Vortex-acoustic lock-in in a combustor

burning of the (m − 1)th and mth vortices are obtained as

Un(tcm+) = exp(−nπζntcm)

×
[

Un(tc(m−1)+) cos(ωdtcm)+
ζnUn(tc(m−1)+)− Pn(tc(m−1)+)√

1 − ζ 2
n

sin(ωdtcm)

]
, (2.11a)

Pn(tcm+) = exp(−nπζntcm)

×
[

Pn(tc(m−1)+) cos(ωdtcm)+
Un(tc(m−1)+)− ζnPn(tc(m−1)+)√

1 − ζ 2
n

sin(ωdtcm)

]

+ Pkick,m, (2.11b)

where tcm = tcm − tcm−1 is the time period between the mth and (m − 1)th vortex burning
events. Since the vortex convection velocity is assumed to be constant (§ 2.1),tcm = tsm,
indicating that the burning and shedding time periods are the same for an mth vortex. Here
tsm is calculated by solving (2.3), using the expression for u′

sep from (2.9a) (details are in
next subsection).

It should be noted that the amplitude of the mth kick (Pkick,m) depends on Un(tsm) (refer
to (2.8c)). A (constant) time lag between the burning (tcm) and shedding (tsm) instances of
the mth vortex occurs due to the vortex convection time (τt). Considering km vortices are
shed in the time interval τt, the initial condition (2.10) for Un(tsm) (during the evolution
of the mth vortex) depends on the burning of the (m − km)th vortex. Here km is the
greatest integer that satisfies the condition

∑km
j=0(tm−j) ≤ τt. Therefore, Pkick,m depends

on the velocity fluctuations determined by the burning of the (m − km)th vortex. Therefore,
(2.11a) and (2.11b) form a kmth order coupled dynamic map, where km depends on the mth
vortex. An expression for Un(tsm) is given as

Un(tsm+) = exp(−nπζntsm−km
)[

Un(tc(m−km)+) cos(ωdtsm−km
)+

ζnUn(tc(m−km)+)− Pn(tc(m−km)+)√
1 − ζ 2

n
sin(ωdtsm−km

)

]
,

(2.12)

where tm−km = tsm − tcm−km
is the time interval between the shedding of the mth vortex

and burning of the (m − km)th vortex. To summarize, (2.8c), (2.11) and (2.12) form a
coupled kmth order map. Here km depends on the shedding time periods of vortices
between the (m − km)th and mth vortices. The unknown shedding time periodstms (and,
therefore, km) are found by solving another map, discussed in the next subsection.

2.4. Dynamical map to determine shedding instances
Acoustic velocity fluctuations at the separation edge, u′

sep = Un(t) cos(nπxsep), determines
the vortex shedding time instance tsm (therefore, the instantaneous shedding period, tsm)
and its circulation Γsep. We substitute the expression for u′

sep in (2.3), evaluating the
integral to obtain a map relating successive vortex shedding instances tsm−1 and tsm,∫ tsm

tsm−1

[
1 + Un(t) cos(nπxsep)

]2 dt − 1
fs0

[
1 + Un(tsm) cos(nπxsep)

] = 0. (2.13)
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Figure 2. Evolution of circulation strength Γm and circulation threshold Γsep. Blue solid circle and red cross
symbols represent vortex shedding and burning events, respectively. Arrows indicate the evolution and reset of
Γm as the vortices are formed and shed. Burning (shown as a dashed red vertical line) of the first vortex (tc1)
occurs during the evolution of the fourth vortex (k4 = 3). Therefore, Γm shows a slope discontinuity at tc1.

The above integral must be evaluated in chunks, as r and α1 in the expression for Un
(refer to (2.9a) and (2.10a)) changes after a burning event. Consider b number of burning
events occur between tsm−1 and tsm. The integral is divided into b + 2 chunks as∫ tsm

tsm−1

[
1 + Un(t) cos(nπxsep)

]2 dt =
∫ tcm−km

tsm−1

[
1 + Un(t) cos(nπxsep)

]2 dt

+
m−km+b∑
j=m−km

(∫ tcj+1

tcj

[
1 + Un(t) cos(nπxsep)

]2 dt

)

+
∫ tsm

tcm−km+b

[
1 + Un(t) cos(nπxsep)

]2 dt, (2.14)

where j = m − km,m − km + 1, . . . (m − km + b) is an integer, with 0 ≤ b ≤ (km − 1).
The value of b is the greatest integer that satisfies the condition

∑km−1
b=1 (tcm−km+b) ≤

tsm, wheretcm−km+b = tcm−km+b − tcm−km+b−1 andtsm = tsm − tsm−1 are the burning and
shedding time periods of the (m − km + b)th and mth vortices, respectively. Now in
each individual chunk, α1 (in Un) remains the same, allowing us to perform the integral
analytically. The expression for the implicit map (2.14) is given in (B1).

Figure 2 shows the shedding and burning instances, indicating the extraction of the
instantaneous vortex shedding time period tsm, when there is no burning event or
the presence of a single burning event between two successive shedding instances.
The evolution/reset of Γm (black curve) and shedding circulation Γsep (blue curve) are
illustrated. Vortex shedding and burning events are marked using solid blue circle and
red cross symbols, respectively. We set at t = 0, Γ0 = Un = Pn = 0. The circulation Γ0
increases till it reaches Γsep (at ts1), leading to the shedding of the first vortex. The shed
vortex travels at a constant velocity and burns at time tc1 = τt + ts1 (red cross symbol),
where τt = lc/(Mα) is the vortex travel time. Subsequently, at the separation edge, the
circulation of the second vortex begins to increase. The initial condition (after the shedding
of the first vortex) for (Un,Pn) still remains (0, 0) as there is no burning event till the
shedding time ts2 < tc1. In this case, the burning event does not occur till the shedding of
the third vortex. Vortex shedding occurs at its natural time period, ts0 = d/MSt.

During the formation of the fourth vortex, the burning event of the first vortex occurs.
The burning event (marked as a red vertical dashed line at tc1) creates the kick given by the
map equations, (2.11) and (2.12). It therefore alters the subsequent (after tc1) evolution of
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Vortex-acoustic lock-in in a combustor

Geometric parameters Value Flow parameters Value

Vortex separation location (xsep) 0.245 Vortex convection coefficient (α) 0.6
Vortex breakdown location (xc) 0.252 Strouhal number (St) 0.14
Step height (d) 0.014 Damping coefficients (c1, c2) 0.315, 0.015

Heat capacity ratio (γ ) 1.4

Table 1. Simulation parameters chosen for the study.

Un,Pn through the initial condition (2.11). To identify the shedding instance of the fourth
vortex, the integral in (2.14) is separated into two sub-integrals with limits, ts3 − tc1− and
tc1+ − ts4. In the first integral, Un(t),Pn(t) are evaluated using the initial condition Un(0) =
Pn(0) = 0. For the second integral, the initial condition becomes Un(tc1+),Pn(tc1+), which
in turn are evaluated from (2.11) and (2.12). The discontinuity in Pn at tc1 translates as
a slope discontinuity in the evolution of Γ4 (figure 2). After the first kick, the evolution
of Γ4 and, therefore, the instantaneous vortex shedding time period is altered from the
natural period. The alteration occurs for subsequent shedding events due to the presence
of successive kicks.

Geometric and flow parameters used in the study are presented in table 1. The
parameters xsep, xc, d, γ and St are chosen from the experimental configuration of Singh &
Mariappan (2019). The vortex convection coefficient (α) is assumed to be 0.6 (Dotson et al.
1997). We use the values of damping coefficients c1, c2 from Matveev & Culick (2003).
In Singh & Mariappan (2019) the flow rate is increased to cause a rise in the natural vortex
shedding frequency while keeping the length of the Rijke tube (acoustic length) constant.
Since the occurrence of vortex-acoustic lock-in strongly depends on the relative values of
the natural acoustic and vortex shedding frequency, we vary the frequency ratio f = fa0/fs0
( fa0 = n/2 is the natural frequency of the nth acoustic mode) in our simulations. At this
point, the heat release coefficient β cannot be evaluated from the experiments or existing
literature. We, therefore, choose β as another control parameter. Simulations are performed
by varying ( f , β) in the range (0.4–2.5, 0–0.75). The results are discussed in relation to
the experiments in §§ 3 and 4.

Before we end, the geometry of the evolution of the obtained dynamical map in phase
space is studied. It illustrates the possibility that kicks during the burning of vortices can
lead to both an increase and decrease in the amplitude of the oscillation, which in turn is
related to Rayleigh criteria.

2.5. Phase space representation
A phase space representation of the coupled map equations presented in § 2.4 is shown in
figure 3. Acoustic velocity and pressure fluctuations govern the successive vortex shedding
and burning events. Therefore, the dynamics of the thermoacoustic system are represented
in Un,Pn. Following (2.9) in between the kicks, the phase difference between Un,Pn
equals α2 − α1 = αs − π/2 = arctan(ζn/

√
1 − ζ 2

n )− π/2. Eliminating t from (2.9), leads
to P2

n + U2
n − 2PnUn sinαs = r2 exp(−2nπζnτ

c
m) cos2 αs, representing the phase space

trajectory. In the absence of damping, αs = 0, the above equation represents a circle,
with α2 − α1 = −π/2, indicating that the trajectories evolve in the clockwise direction.
For αs = π/2 and 3π/2 (ζn /= 0), the above equation represents a straight line (Pn =
±Un). The phase trajectory is an ellipse for other values of αs (Cundy & Rollett 1989).
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Figure 3. (a) Schematic illustration of a typical phase space trajectory in Un–Pn plane. The trajectory is a
damped rotated ellipse. Vortex shedding and burning events are represented using blue solid circle and red cross
symbols, respectively. Panels (b,c) illustrate the effect of kick events on the amplitude of pressure and velocity
fluctuations. Red and green elliptical trajectories indicate an increase (instability) and decrease (amplitude
suppression) of the oscillation amplitude resulting from a kick event. Arrows indicate the direction of the
evolution.

The damping term ζn causes an exponential decrease in the size of the ellipse with time.
A typical phase trajectory is shown in panel (a).

A discontinuous change in the trajectory occurs during the burning events, which can
lead to the growth (instability, panel b) or decay (amplitude suppression, panel c) of the
ellipse, depending on the phase of the burning event. Shedding and burning events are
represented using solid blue circle and red cross symbols, respectively. During a kick, Un
is continuous, while Pn experiences a discontinuous jump, marked by a horizontal red line
in figure 3. The Matveev & Culick (2003) model for vortex shedding is valid only in the
absence of a reverse flow at xsep. It restricts Un < 1, which follows in all our simulations.
Due to the forms of (2.3b) and (2.8c), Γm (therefore, q̇′, refer to (2.5)) and the kick Pkick,m
in Pn are always positive.

Initially, at t = 0, Un = Pn = 0, implying the trajectory begins at the origin (panel a). At
the end of the first kick at tc1, Pn suddenly jumps to a positive value. Till the next (second)
kick (at tc2), the trajectory moves on the damped ellipse and vortices are shed (solid blue
circles in panels b,c) before the second kick event. Depending on the phase of the trajectory
at tc2, the second kick can increase (orange trajectory in panel b) or decrease (green
trajectory in panel c) the oscillation amplitude. The above argument is the representation
of Rayleigh criteria. As said already, q̇′ is always positive. The Rayleigh index is positive
when the pressure fluctuation just before the kick at xc is positive, Pn(tc−m ) > 0. Therefore,
instability and amplitude suppression occurs when the trajectory is in the first/fourth
and second/third quadrants, respectively, during a kick. Using the above idea, we show
that the current model exhibits both instability and amplitude suppression, followed by a
qualitative comparison with the experiments in § 4.2.

3. Identification and characterization of lock-in

For a given f and β value, we use the numerical algorithm presented in Britto &
Mariappan (2019) to calculate the vortex shedding time period. Numerical simulations
are performed for 2000 shedding events. However, only the last 500 sheddings are used
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Figure 4. (a–d) Iterates of the instantaneous vortex shedding frequency, fm = 1/tsm for various β = 0 − 0.75
at f = 0.6, 0.8, 0.9 and 1.1. Plots (e–h) represent the contour that illustrates the amplitude of PSD of pressure
fluctuations p′ evaluated at x = 0.36. The range of kick strength β, where fm is close (less than 5 % deviation)
to the natural vortex shedding frequency fs0 and first acoustic mode fa0 of the duct are illustrated using green
and red double-headed arrows, respectively.

for the analyses (to discard the transients). Figure 4 shows the iterates of the instantaneous
shedding frequency 1/tsm (top panels) and contours of power spectral density (PSD) of
the corresponding p′(x = 0.36, t) (bottom panels) for (a,e) f = 0.6, (b, f ) 0.8, (c,g) 0.9
and (d,h) 1.01 across β = 0 − 0.75. Pressure fluctuations are computed at the same axial
location, x = 0.36, as that of the experiments (Singh & Mariappan 2019).

In the absence of thermoacoustic feedback, β = 0, shedding occurs at fs0. At the lowest
considered frequency ratio f = 0.6 (panel a), the period-1 solution for the instantaneous
shedding frequency, 1/tsm, occurs for β < 0.65 (marked as a red vertical dashed line).
In the next section we show that the period-1 solution corresponds to 1:1 lock-in. The
numerical value of 1/tsm is close to the natural shedding frequency, fs0 = 0.83. Hence, we
identify the region as V-lock-in (‘V’ indicates vortex shedding mode). A higher-periodic
solution occurs for β > 0.65. The corresponding PSD contours of p′(t) (panel e) reveal
a single peak and multiple peaks for period-1 (β < 0.65) and higher-periodic (β > 0.65)
solutions, respectively. Since pressure fluctuations (and not instantaneous vortex shedding
frequency) are measured in the experiments (Singh & Mariappan 2019), PSD contours
serve as a bridge in the comparative study (refer to § 4).

As we move to the next higher frequency ratio f = 0.8 (which is closer to 1), at low
kick strengths β = 0 − 0.33 (panel b), iterates of tsm are period-1 (V-lock-in), with the
shedding occurring near to its natural vortex frequency ( fs0 = 0.625), similar to that of
panel (a). As the kick strength increases, the iterates exhibit a transition at β = 0.33, where
the shedding frequency jumps close to the frequency of the first acoustic mode fa0 = 0.5,
still retaining the period-1 feature (called A-lock-in, ‘A’ indicating the acoustic mode). At
large kick strengths β > 0.63, the shedding transitions out of a period-1 orbit and exhibits
higher-periodic behaviour. In the PSD (panel f ), the two transitions at β = 0.33 and β =
0.63 are reflected as a shift in the frequency of the dominant peak and the formation of
multiple peaks, respectively.
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As we move f further closer to 1, ( f = 0.9, panels c,g), the range of β where A-lock-in
occurs, widens. Comparing the last two cases, the transition from V-lock-in to A-lock-in
is sudden and smooth for f = 0.8 and f = 0.9, respectively. Considering f = 1.1 (present
on the other side of f = 1), one could not identify separate A- and V-lock-in regions. In all
the panels (a–d), the instantaneous shedding begins from fs0 (period-1 solution) at β = 0.
It approaches fa0 (also a period-1 solution) as β is increased. The approach is both smooth
and sudden, depending on f . We show in subsection § 3.2, the reason for sudden/smooth
transition. Although there is a shift in the dominant frequency in the PSDs (bottom panels),
the peak values almost remain constant, indicating similarity with the frequency-pulling
route to synchronization (Balusamy et al. 2015).

Increasing β leads to a more effective thermoacoustic coupling, leading to more
significant u′ fluctuations, affecting the shedding frequency. Therefore, there is a tendency
for 1/tsm to approach the acoustic frequency as β is increased. In the next subsection
we show that the period-1 solution lies in the phase lock-in region. Unlike the case of
external excitation discussed in Britto & Mariappan (2019, 2021), the shedding frequency
associated with lock-in in the present self-excited case is near to either fs0 (low β) or fa0
(high β). Thus, two lock-in (A- and V-lock-in) regions are observed.

3.1. Phase lock-in
Acoustic field and vortex shedding are the two oscillators in the present vortex shedding
combustor. The relative evolution of phase associated with the two oscillators allows one to
define phase lock-in. Velocity fluctuation at the separation edge (u′

sep) is chosen as the flow
variable for the former, while the shedding instances are chosen for the latter. The above
two variables were also considered in our previous study (Britto & Mariappan 2021).

The instantaneous phase (ψA(t)) of u′
sep(t) is obtained using the Hilbert transform

(Balanov et al. 2008) ψA(t) = arctan(H(u′
sep(t))/u

′
sep(t)), where H indicates the Hilbert

transform. Furthermore, the phase instances for vortex shedding are obtained based on
the following implication. The evolution of circulation strength Γm is reset to zero at
the end of every vortex shedding. Therefore, the shedding system can be considered to
have completed one cycle (2π), when a vortex is shed. Hence, the phase (ψV,m) at the
mth vortex shedding instance tsm is given by ψV,m(tsm) = 2mπ (the phase at t = 0 is set
arbitrarily to zero). As discussed in Britto & Mariappan (2021), a p : q phase lock-in is
said to occur when the phase difference,ψm(tsm) = qψA,m(tsm)− pψV,m(tsm), evolves to a
constant value. Therefore, a zero difference(ψm) between the phase differences during
successive shedding, ψm −ψm−1 = 0, determines the phase lock-in state.

Figure 5 shows the contour of(ψm), corresponding to 1 : 1 (panel a) and 2 : 1 (panel
b) phase relations between ψA and ψV . Blue regions represent (ψm) = 0, indicating
phase lock-in. It is observed that 1 : 1 and 2 : 1 phase lock-in dominates the β–f plane, in
the range f = 0.5–1.5 (region I) and f = 1.5–2.5 (region II), respectively. Higher-periodic
and quasiperiodic solutions (unlocked state) occur at large β, identified as region III. Near
f = 1.5 (where there is a junction of 1 : 1 and 2 : 1 lock-in boundaries), one observes
multiple V-shaped boundaries forming higher-order lock-ins such as 3 : 2, 5 : 3 and 7 : 4
(region IV). Furthermore, below f = 0.5, we observe a 1 : 2 phase lock-in state (marked
in panel a). The region has large β values in a small range of f . Both regions IV and
V occur for non-zero β. Since 1 : 1 and 2 : 1 lock-in regions occupy a large part and
occur in the frequency range explored in the experiments (Singh & Mariappan 2019),
the rest of the paper is focused on studying regions I and II. In particular, we focus on
understanding (i) the transition from V- to A-lock-in, as f approaches one from either side,
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Figure 5. Contours of the difference in the phase difference,(ψm) across the β–f plane. Panels (a,b) show
regions of 1 : 1 and 2 : 1 phase relations, respectively, between vortex shedding and the acoustic field. The blue
colour represents the phase lock-in regions, where (ψm) = 0.

(ii) the bifurcations involved in the system and (iii) the interpretation of V- and A-lock-ins
in relation to our experiments (Singh & Mariappan 2019).

3.2. Transition from V- to A-lock-in and its relation to unidirectional forcing
The understanding of the transition from V- to A-lock-in is illustrated through figure 6.
As discussed in § 3, V- and A-lock-ins are described by the closeness of the shedding
frequency 1/tsm to fs0 and fa0, respectively. Panels (a,b) show the contour of 1/tsm in
the β–f plane for the frequency range f = 0.5–1.5 (1 : 1 phase lock-in) and f = 1.5–2.5
(2 : 1 phase lock-in region), respectively. The natural acoustic frequency fa0 is kept at 0.5,
while fs0 is varied to achieve the desired range of f . Masked white regions exclude 1 : 1
and 2 : 1 phase lock-in regions.

To recollect, the transition from V- to A-lock-in is sudden ( f = 0.8, figure 4b) and
smooth ( f = 0.9, 1.1, figure 4c,d) depending on the closeness of f to 1. Therefore, for
classification, we identify A-lock-in when 1/tsm lies less than ±5 % (arbitrary threshold)
of fa0 and fa0/2 for 1 : 1 and 2 : 1 phase lock-in, respectively. Otherwise, V-lock-in
prevails. The black curve in panels (a,b) mark the A-lock-in boundary. From the contours,
we observe that 1/tsm close to the A-lock-in boundary in the f < 1 and f > 1 sides show
steep and shallow gradients, respectively.

To scrutinize for the presence of bifurcations, we investigate a representative case, β =
0.2, where the instantaneous shedding time period 1/tsm and phase ψA,m(tsm) of Un are
plotted with f (panels c,d). The dashed green line indicates the natural vortex shedding fs0.
Brown horizontal lines indicate fa0 (panel c) and fa0/2 (panel d) with which 1:1 and 2:1
A-(phase) lock-in relation occurs, respectively.

In the f < 1 region we observe that the response (1/tsm) occurs at the natural vortex
shedding frequency fs0 (V-lock-in) when f is outside the black curve. Across the black
curve, two types of transition occur as the frequency ratio is gradually increased. (i) A
sudden jump in the shedding frequency 1/tsm (blue curve) occurring from fs0 (V-lock-in)
to fa0 (A-lock-in) is observed for f < 1 (panel c). A similar jump in ψA,m(tsm) occurs (pink
curve in panel (c) shown using the right-hand side handle of the vertical axis). (ii) On the
other hand, for f > 1, 1/tsm and ψA,m(tsm) exhibit a smooth transition (panel c) from fa0
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Figure 6. Panels (a,b) show the contours of 1/tsm across f = 0.5–1.5 and f = 1.5–2.5, respectively. The
black curve represents 1 : 1 and 2 : 1 A-lock-in boundaries. Green and pink boundaries indicate the occurrence
of Neimark–Sacker (NS) and saddle-node (SN) bifurcations, respectively. Panels (c,d) shows the transition
of 1/tsm (blue) and the shedding phase ψA,m (pink) with the frequency ratio f = 0.5–1.5 and f = 1.5–2.5,
respectively, at β = 0.2. They illustrate the sudden and smooth transition between V- and A-lock-in regions.
The horizontal orange dashed line indicates the frequency of the first acoustic duct mode fa0 and its first
subharmonic fa0/2 in panels (c,d), respectively. Furthermore, the natural vortex shedding frequency ( fs0) is
shown using green dashed lines. Insets in panel (c) show the behaviour of the first return map (between ψA,m −
ψA,m−1, blue curve) across the 1 : 1 A-lock-in boundary. The map intersects the 45◦ dashed black line at the
fixed points. Green and red solid circles represent stable and unstable fixed points, respectively. Panels (e, f )
compare the 1 : 1 and 2 : 1 A-lock-in boundaries, extracted from the present coupled simulations (black curve)
and the analytical expression (red dashed curve) described in Britto & Mariappan (2019).
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Vortex-acoustic lock-in in a combustor

to fs0 as f is increased. Both the sudden (V- to A-lock-in) and gradual (A- to V-lock-in)
occur in the case of 2 : 1 lock-in (panels b,d) also.

The insets in panel (c) show the first return maps between ψA,m − ψA,m−1 (blue curve),
which illustrate the variation of stable (green solid circle) and unstable (red solid circle)
fixed points across the black boundary. The map intersects the 45◦ line (dashed black line)
at the fixed points. The number of fixed points remains the same (two), and their stability
is unchanged. Therefore, no bifurcation occurs. However, on the f < 1 side, the change
in the shape of the first return map forces a strong movement in the location of the stable
fixed point. The corresponding shedding phase, ψA,m, shows a sharp variation, leading to
the sudden drop in the vortex shedding frequency (1/tsm). On the other side ( f > 1), the
movement of the stable fixed point is smooth, leading to the smooth transition inψA,m and,
therefore, the shedding frequency.

Later in § 4.2 we show that the A-lock-in phenomenon provides the most
favourable condition for the occurrence of combustion instability. A comparison of
the A-lock-in boundary from the present simulation is made with the boundary
obtained from a unidirectionally forced vortex shedding system. The acoustic feedback
is replaced by an external velocity forcing. An analytical expression for the A-lock-in
boundary, described in our earlier work (Britto & Mariappan 2019) is available:
|(2u2

rms + 2(1 − f /p))(2
√

2urmsf /p)| = 1, where p = 1, 2 for 1 : 1 and 2 : 1 A-lock-in,
respectively. Here urms indicates the root-mean-square (r.m.s.) value of the acoustic
velocity fluctuations measured at the vortex separation location xsep. It is obtained for a
given β from the coupled simulation. Solving the analytical expression provides two values
for f , within which A-lock-in occurs. Panels (e, f ) show the comparison of the A-lock-in
boundaries obtained from the coupled simulation (black curve, same as that in panels
a,b) and unidirectionally forced analytical solution (red dashed curve) for 1 : 1 and 2 : 1
lock-in, respectively. A fair qualitative match in the shape of the boundary is observed.
Therefore, the analytical solution can be used as a first design prescription for combustors
to avoid A-lock-in and combustion instability.

3.3. Bifurcations leading to lock-in
White regions (termed as the unlocked state) shown in panels (a,b) of figure 6,
exhibit vortex shedding time periods, either at higher-periodic or quasiperiodic orbits.
Bifurcations occurring during the transition between the phase-locked state and the white
region are investigated by sweeping along f for a fixed β, chosen as β = 0.65. For
illustration, we choose two transitions occurring at f = 0.628 and f = 0.831 (figure 6a).
The corresponding Feigenbaum diagrams for tsm, displaying the transitions from
V-lock-in to the unlocked state ( f = 0.6 − 0.65) and the unlocked state to the A-lock-in
state ( f = 0.76 − 0.86) are shown in figure 7(a,b), respectively. Grey regions spanning
f = 0.600 − 0.627 and 0.830 − 0.860 in panels (a,b) indicate 1 : 1 V- and A-lock-in,
respectively. Two successive iterates of tsm are plotted to form the phase portrait in the
insets for a few specific values of f (vertical dashed lines). The colours in the insets
correspond to f at the vertical dashed lines. The phase portrait illustrates the dynamics
observed in the Feigenbaum diagrams.

At low values of f (panel a), shedding exhibits a period-1 V-lock-in state, where in the
vortices are shed close to their natural shedding frequency fs0. The phase portrait (say at
f = 0.62, red line) becomes a point. On increasing f beyond 0.627, the iterates densely
fill a finite space in the Feigenbaum diagram. The corresponding phase portraits (say at
f = 0.637, black line) is a closed curve, indicating a quasiperiodic orbit. Furthermore,
the size of the orbit increases gradually with a further increase in f (compare portraits
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Figure 7. Feigenbaum diagram for tsm across (a) f = 0.6 − 0.65 and (b) f = 0.76 − 0.87. Niemark–Sacker
(NS) bifurcation is observed in panel (a) wherein the shedding exhibits a gradual transition from a period-1
fixed point to a quasiperiodic orbit. The size of the orbit smoothly increases with f as shown in the phase
portraits at various values of f in the inset. The chosen frequencies for illustration in the phase portrait are
marked using vertical dashed lines having the same colours as in the phase portrait. The transition from a
higher-periodic state (black colour in the inset) to 1 : 1 A-lock-in state (period-1 orbit, red colour) occurs
through a saddle-node (SN) bifurcation as shown in panel (b).

of f = 0.637 black, f = 0.64 green, f = 0.65 yellow). There is a birth of ergodic torus
(quasiperiodic orbit) from the period-1 fixed point (V-lock-in), indicating the occurrence
of Neimark–Sacker bifurcation (marked as NS in figure 6a).

The transition back to a lock-in state on the higher value side of f is illustrated in
panel (b). At f = 0.76 (black), vortex shedding occurs at higher-periodic orbits, leading
to discrete (finite) points in the phase portrait. The dynamics occur in a resonant torus.
At f = 0.831, the resonant torus suddenly collapses to become a period-1 fixed point
(A-lock-in). The associated phase portrait (say at f = 0.84, red) becomes a point. The
sudden death of the resonant torus indicates the occurrence of saddle-node bifurcation.
The corresponding bifurcation boundary is marked in pink with a mention of the saddle
node in figure 6(a). In between, the frequency ratio mentioned in the panels of figure 7
(0.645 < f < 0.757), there is a transition from ergodic to the resonant torus, occurring via
a saddle-node bifurcation (not shown).

A similar exercise to identify the bifurcation leading to 2:1 lock-in is performed. It
should be noted that phase trapping, a behaviour commonly observed in synchronization
regions near the onset of lock-in (Li & Juniper 2013c), is not observed in the current
simulations. Phase trapping was also not spotted in the external velocity excitation
investigation in our previous papers (Britto & Mariappan 2019, 2021). Since acoustic
field equations used in the study are linear, phase trapping is not expected in the current
paper. In summary, saddle-node and Neimark–Sacker bifurcations are observed during the
transition to 1 : 1 and 2 : 1 phase lock-in. Their locations are marked in figure 6(a,b). The
next section discusses our interpretation of the A- and V-lock-in regions in light of the
experimental observations of Singh & Mariappan (2019).

4. Reinterpretation of the experimental observations with respect to A- and V-lock-in
phenomena

The experiments used a premixed fuel–air mixture to establish a turbulent flame behind a
circular disc bluff body, shedding vortices. The fuel flow rate is fixed at 1.75 slpm, while
the air flow rate is chosen as the control parameter to take the system from an unlocked to
a lock-in state. On the journey of increasing air flow rate, three distinguishable regimes of
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Figure 8. Comparison of waterfall plots of PSD between the experimental results (panel a) of Singh &
Mariappan (2019) and the current simulations (panels (b,c) correspond to β = 0.2, 0.65, respectively). The
PSD is obtained from the pressure time series at x = 0.36. The letters V and A indicate the peaks associated
with vortex shedding and acoustic modes, respectively. The number 2 before the letters V and A represent the
first harmonics. The air flow rates and the corresponding frequency ratio f are represented in each panel.

interest occur, namely: (i) no lock-in, (ii) pre-lock-in and (iii) lock-in. The waterfall plot of
PSD corresponding to the three regimes are shown in figure 8(a) using blue (no lock-in),
green (pre-lock-in) and red (lock-in) colours.

In panel (a) (experiments), for low air flow rates 18–26 slpm (blue colour), the PSD
indicates the existence of two dominant frequencies: vortex shedding (identified with the
letter ‘V’) and acoustic (identified with the letter ‘A’) mode frequencies. The frequencies
are incommensurate. The phase space reconstruction from the measured acoustic pressure
time series shows quasiperiodic orbits (discussed subsequently in figure 9a–j). Since the
frequencies of the vortex shedding and acoustic modes are far apart, both modes do not
influence each other. Vortex shedding occurs at its natural frequency fs0, which increases
linearly with the flow rate. The frequency of the first acoustic mode remains (almost)
constant at fa0 = 0.5. Since both vortex shedding and acoustic modes are present, we
identify it as a no-lock-in regime or unlocked state.

On further increasing the flow rate, the combustor advances to the pre-lock-in region
(green colour), where the acoustic mode is suppressed: fundamental (V) and first harmonic
(2V) of the vortex shedding frequency are present. Furthermore, as the flow rate increases,
the vortex shedding frequency approaches the acoustic frequency ( f → 0.5), leading to
lock-in (red colour). During lock-in, fundamental (A) and first harmonic (2A) of the
acoustic mode are only present (vortices shed at the acoustic frequency). In the lock-in
regime large amplitude pressure oscillations (instability) are observed.

Bifurcations during the transition from one regime to another are examined using
recurrence plots and Poincaré maps in figure 9. Flow rates involving the transition from
no-lock-in (18 slpm) to pre-lock-in (28 slpm) regimes are shown. The panels in the first
(a–c)/third (g–i) and second (d–f )/fourth ( j–l) columns show the recurrence plots and their
corresponding Poincaré maps, respectively. Acoustic pressure data from the experiments
are Fourier filtered, keeping only the first two dominant modes (based on the amplitude)
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Figure 9. Recurrence plots (a–c and g–i) and their corresponding Poincaré maps (d–f and j–l) generated from
the experimental acoustic pressure time series for the flow rates 18–28 slpm. A transition from the no-lock-in
to pre-lock-in regime is observed in the above flow rates. Saddle-node bifurcation causes the transition.

to remove the noise from the data. Time delay and embedding dimension required to
construct the recurrence plots are obtained using average mutual information (Fraser
& Swinney 1986) and false nearest neighbours (Abarbanel et al. 1993), respectively.
Furthermore, the threshold for the revisit of a phase trajectory to an earlier dynamical
state is fixed at 20 % of the size of the attractor (Nair et al. 2014). The Poincaré map is
constructed between successive local peaks (p′

max(m), m being the index of the peak) in
the pressure time series.

Unequal spacing among the diagonals in the recurrence plots for flow rates 18–24 slpm
indicates quasiperiodic behaviour. The corresponding Poincaré maps show closed curves.
At 26 slpm, the spacing between the diagonal lines becomes constant, displaying periodic
orbits. Two distinct points in the Poincaré map show the occurrence of period-2 orbits.
At the next higher flow rate (28 slpm), the system transitions to a period-1 limit cycle.
Overall, the phase space attractor transitions from an ergodic torus (18–24 slpm) to a
resonant torus (26 slpm), culminating in a closed curve (28 slpm). Therefore, the transition
from a no-lock-in to a pre-lock-in regime occurs through a saddle-node bifurcation. On the
other hand, the period-1 limit cycle continues as the system transitions from a pre-lock-in
to lock-in regime (not shown), indicating the absence of a bifurcation.

Experiments show the presence of pre-lock-in and lock-in regimes, while the model
displays V-and A-lock-in regimes, all of them displaying period-1 orbits. Our focus is to
(i) establish the connection between the regimes observed in the experiments and model,
and (ii) demonstrate the occurrence of instability and amplitude suppression during lock-in
using the Rayleigh index (§ 4.2).
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Vortex-acoustic lock-in in a combustor

4.1. Journey to lock-in and its relation to V-, A-lock-in
As mentioned earlier, simulation parameters shown in table 1 are chosen from Dotson
et al. (1997), Matveev & Culick (2003) and Singh & Mariappan (2019). The range of air
flow rate, 18–58 slpm, in the experiments translates to the frequency ratio in the range
f = 2.7–0.88 ( fs0 increases linearly with flow rate, while fa0 is kept at 0.5). As β cannot
be determined, we perform simulations for two values (a low and a high value) of β =
0.2, 0.65. Their corresponding waterfall plots for PSD are shown in panels (b,c) of figure 8.
Traversing the air flow rate from 18 to 64 slpm, corresponds to the movement of f from
right to left in figures 5 and 6(a,b).

The waterfall plots in figure 8(b,c) are read along with figures 5 and 6(a,b) to relate the
dynamics to V- and A-lock-ins. For β = 0.2 (figure 8b), at low flow rates (18–22 slpm,
marked in green), dominant frequencies are associated only with the vortex shedding
mode. The flow regime qualitatively resembles the pre-lock-in regime observed in the
experiments (figure 8a). Furthermore, the V-lock-in region has a 2 : 1 phase relationship
(refer to figure 5). As the flow rate gradually increases (24–28 slpm), the frequency ratio
enters the 2 : 1 A-lock-in state (red colour in figure 8b). Here, the peak at fs0 is absent.
Pressure fluctuations occur at fa0 and its sub- and super-harmonics. A further increase in
the flow rate (30–46 slpm, green colour) transitions the system from a 2 : 1 A-lock-in state
to a 1 : 1 V-lock-in state (absence of the acoustic mode: similar to pre-lock-in region). The
1 : 1 A-lock-in occurs at 48 slpm (figure 8b), which resembles the lock-in regime observed
in the experiments (figure 8a).

From the qualitative similarity of the presence of peaks in the PSD (in panel (a)
with panels b,c), one can connect that pre-lock-in and lock-in regimes observed in the
experiments occur due to V- and A-lock-in phenomena, respectively. The connection is
further strengthened by the (i) presence of saddle-node bifurcation leading to the lock-in
from the unlocked (no-lock-in) state and (ii) absence of bifurcation during the transition
between V-and A-lock-in phenomena, observed in both experiments and simulations.
However, the amplitudes of the higher harmonics are comparable to the corresponding
fundamental peaks in the V- and A-lock-in regions (green and red plots in figure 8b,c).
In contrast, the higher harmonics are highly damped in the experiments (figure 8a). The
above behaviour is a limitation of the model, discussed further in § 4.4.

The model also does not capture the no-lock-in region of the experiments (blue colour
curves of figure 8a). The turbulent combustion noise excites weakly the acoustic modes
and, therefore, is recorded in the pressure fluctuations in the experiments. Since the
current thermoacoustic model excludes noise, the simulations cannot obtain the no-lock-in
region. Furthermore, far from f = 1, say at f = 2.7 (where the no-lock-in regime occurs
in experiments, refer to figure 8), the thermoacoustic coupling is too weak in generating
appreciable acoustic waves to appear in the PSD of figure 8(b,c).

Simulations at large β = 0.65 (panel c) is qualitatively similar to that of β = 0.2
(panel b). However, one observes unlocked states (24–34 slpm, black colour) in between
V-lock-in regions. The oscillations are found to be either quasi or higher periodic in
the unlocked state (not shown in the paper). In the subsequent section we study the
occurrence of thermoacoustic instability and suppression, followed by a comparison with
the experiments.

4.2. Amplitude suppression and instability
As indicated in § 2.5, the phase of the vortex burning event with respect the acoustic
pressure determines whether the lock-in leads to instability (figure 3b) or amplitude
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Figure 10. Contours of (a) Γsep and (b) Rayleigh index (RIfb) due to thermoacoustic feedback in the β–f plane.
Heat release rate is proportional to Γsep(t) (panel a). Regions where Γsep(t) < d/2St and Γsep(t) > d/2St,
shown using green and yellow/red shades, indicate heat release lower and higher than the heat release without
feedback, respectively. Red/yellow and blue shaded regions in panel (b) indicate instability (RIfb > 0) and
suppression (RIfb < 0) of the thermoacoustic oscillations, respectively. A vertical pink line demarcates 1 : 1
and 2 : 1 V-lock-in boundaries. Panel (c) shows the phase portrait at two close-by parameters, which are on
either side of the 1 : 1 A-lock-in boundary.

suppression (figure 3c). The present section calculates the Rayleigh index (RI) and
identifies the regions of instability and suppression in the β–f plane. Later, the two regions
are identified in the experiments. The Rayleigh index in the non-dimensionalized form
becomes

RI = 1
T

∫ T

0

∫ 1

0
p′(x, t)q̇′(x, t) dx dt. (4.1)

The above integral is evaluated over the combustor length and a time T , comprising of
many oscillation cycles. In the current model pressure and heat release rate oscillations are
piecewise continuous functions of time (tcm) and space (xc) (refer to (2.5) and (2.8)). At the
kick events (tcm) the jump in pressure (given in (2.8c)) and heat release rate fluctuations are
proportional to Γsep = (1 + u′

sep)/2dSt. Since |u′
sep| < 1 in the explored parameter space,

Γsep > 0. Therefore, the jumps in pressure Pkick,m and heat release rate q̇′ remain positive.
Figure 10(a) shows the contour of Γsep in the β–f plane. Black curves represent 1 : 1

and 2 : 1 A-lock-in boundaries. For the parameter values considered in table 1 and in
the absence of thermoacoustic feedback (u′

sep(t) = 0), Γsep = Γsep,wfb equals 0.05. The
related burning events result in a constant heat release rate (across the kicks). The presence
of acoustic feedback (β /= 0, |u′

sep(t)| < 1) alters Γsep away from Γsep,wfb. The value of
Γsep depends on the phase of the velocity fluctuations u′

sep at the time of shedding. Since
q′(x, t) ∝ Γsep, the contour in figure 10(a) highlights the variation of the heat release rate
q̇′. Yellow/red and green regions represent heat release rates higher and lower than the
heat release rate without feedback, respectively. Most higher and lower heat release rate
regions overlap with the A- and V-lock-in regions, hinting at the possibility of instability
and amplitude suppression, respectively. The observation is incomplete since the analysis
should be performed in terms of the Rayleigh index, which determines the actual addition
of acoustic energy into the system (discussed later). Note that a large heat release rate (red
contour regions) occurs slightly to the left of f = 1 (red vertical dashed line). The result
reinforces the experimental observation of Emerson & Lieuwen (2015), who highlighted a
reduction in the heat release rate when a bluff body stabilized flame is excited at its natural
frequency ( ff = fs0).
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From the above discussion, we observe the jump in heat release rate can be decomposed
into two components: heat release rate in the absence (q′

wfb) of and due (q′
fb) to acoustic

feedback. They are caused due to the steady-state (ū = 1) and fluctuating velocity (u′
sep(t))

components, respectively. Their expressions are

q̇′
wfb(x, t) = dβ

2St

∑
m

δ(t − tcm) δ(x − xc), (4.2)

q̇′
fb(x, t) = dβ

2St

∑
m

u′
sep(t

s
m)δ(t − tcm), δ(x − xc) (4.3)

where q̇′ = q̇′
wfb + q̇′

fb. Note that q̇′
wfb is always positive, and therefore, acoustic waves are

continuously generated, even in the absence of thermoacoustic feedback. We choose the
state as the reference and explore the amplification or attenuation of acoustic waves over
the reference due to the thermoacoustic feedback. We therefore calculate the Rayleigh
index (RIfb) associated with the heat release due to feedback (q̇′

fb). Using (4.1), RIfb is
calculated by replacing q̇′ with q̇′

fb. After substituting the Galerkin expansion for p′ and
performing the spatial integration, it results in the expression

RIfb = F1

T

Mtot∑
m=1

[
u′

sep(t
s
m)
] ∫ T

0
Pn(t)δ(t − tcm) dt, (4.4)

where Mtot is the total number of shed vortices in time T (taken as 20 non-dimensional
time) and F1 = βd sin(nπxc)/(2nSt). In the time integral Pn(t) is discontinuous at tcm,
where the Dirac delta δ(t − tcm) function also fires. As suggested by Coutinho, Nogami &
Toyama (2009), the average of Pn(t) (= (Pn(tcm+)+ Pn(tcm−))/2) across the mth kick is
used to evaluate the integral. Therefore, (4.4) results in the expression

RIfb = F1F2 cos(nπxsep)

T

[Mtot∑
m

U2
n(t

s
m) cos(nπxsep)+

Mtot∑
m

Un(tsm)

]

+F1 cos(nπxsep)

T

Mtot∑
m

Un(tsm)Pn(tcm−), (4.5)

where F2 = βf sin(nπxc)(γ − 1)/nγ .
Equation (4.5) implies that RIfb (acoustic energy addition) depends on two factors,

namely: (i) velocity fluctuations at the separation time instant Un(tsm), translating to the
heat release rate; and (ii) pressure fluctuations just before the mth kick at the burning
location xc. Positive and negative values of RIfb correspond to instability and amplitude
suppression of the thermoacoustic oscillations, respectively.

Figure 10(b) represents the contour of Rayleigh index (RIfb). Yellow/red and
blue contours represent regions where RIfb > 0 (instability) and RIfb < 0 (amplitude
suppression), respectively. Two regions of instability are observed: (i) inside the 1 : 1
A-lock-in region and (ii) the upper portion of the 2 : 1 A-lock-in region. The following
general conclusions can be made regarding instability.

(a) At low kick strength (β < 0.15), both 1 : 1 and 2 : 1 A-lock-in regions do not excite
the system towards instability (because RIfb ≤ 0, refer to panel b), although the
corresponding (q̇′

fb) (refer to panel a) is positive.
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Figure 11. Comparison of Rayleigh index and r.m.s. value of pressure fluctuations (Prms) between the
experiments (Singh & Mariappan 2019) (panel a) and the current simulations (panels (b,c) for β = 0.2, 0.65,
respectively). Left (blue colour) and right (red colour) handles of the vertical axes are used to present RIfb
(cos θ in panel (a) only: θ is the phase angle between heat release rate and pressure fluctuations at the dominant
frequency) and Prms (at x = 0.36), respectively. Panel (d) shows a flowchart of the dynamical states encountered
in experiments and numerical simulations. Arrows indicate increasing flow direction. The comparison is colour
coded with respect to figure 8.

(b) Large values of positive RIfb is observed for higher β in the 1 : 1 A-lock-in.
Therefore, 1 : 1 A-lock-in region is the most favourable region for the occurrence
of instability (to be discussed further in figure 11).

(c) Near the A-lock-in boundary (for example, f < 1 side), RIfb changes its sign
leading to a sudden switch between instability and suppression of oscillation (refer
to panel c). Therefore, the evaluation of the A-lock-in boundary is crucial. As
shown in § 3.2, the boundary approximately coincides with the lock-in boundary
of the unidirectionally excited vortex shedding system (figure 6e, f ). The analytical
expression for the same is available in Britto & Mariappan (2019, 2021), which can
serve as an essential design guideline.

(d) Throughout the V-lock-in region, RIfb ≤ 0 indicates amplitude suppression and,
therefore, the most suitable lock-in state for the combustor operation to avoid
thermoacoustic instability.

4.3. Comparison with Singh & Mariappan (2019)
Figure 11 compares the Rayleigh index and r.m.s. value of pressure fluctuations (Prms)
between the experiments (Singh & Mariappan 2019) (panel a) and the current simulations
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(panels (b,c) for β = 0.2, 0.65, respectively). Left (blue colour) and right (red colour)
handles of the vertical axes are used to present RIfb (cos θ in panel (a) only: θ is the phase
angle between heat release rate and pressure fluctuations at the dominant frequency) and
Prms (at x = 0.36), respectively.

Considering panel (a) (experiments), at the lowest air flow rate (18 slpm), cos θ is
negative, leading to low amplitude oscillations. The increase in the air flow rate gradually
intensifies the positive thermoacoustic feedback between p′ and q̇′ (positive slope of cos θ
close to the first vertical black dashed line, 26 slpm). Simultaneously, the amplitude of
pressure oscillations also increases. The first transition occurs when the combustor enters
the pre-lock-in region (above 26 slpm), where in the interaction between p′ and q̇′ leads
to negative feedback. It marks the event of suppression (shown using green downward
arrows). The corresponding Prms decreases slightly. A further increase in the air flow rate
(above 30 slpm) intensifies the interaction between p′ and q̇′ (blue curve marches upwards
and reaches positive values: black upward arrows indicate positive feedback), and the
pressure oscillations begin to grow again (red curve). The oscillations are now locked-in
with the acoustic mode of the combustor (above 38 slpm, second vertical dashed line). In
the lock-in flow regime the combustor exhibits instability (cos θ reaches its maximum),
and large amplitude pressure oscillations are observed (red curve). Flame blow-off occurs
beyond the lock-in regime (52 slpm), leading to a sudden drop in p′ and q̇′. As discussed
in § 4.1, pre-lock-in and lock-in regimes are associated with V- and A-lock-in phenomena,
respectively, through the PSD, recurrence plots and Poincaré maps of acoustic pressure
time series. It is imperative to examine the above association regarding the Rayleigh index.

In the current model (panels b,c), the qualitative variation of RIfb and Prms with air flow
rate is similar to that of the experimental observation (panel a). The A-lock-in regions
(both 2 : 1 and 1 : 1) are accompanied by positive RIfb leading to instability. The behaviour
is associated with the lock-in regime of the experiments, where cos θ is positive with the
oscillations occurring close to the natural duct acoustic frequency (1 : 1 A-lock-in).

On the other hand, V-lock-in (2 : 1 and 1 : 1) is accompanied by RIfb < 0, indicating
amplitude suppression (panels b,c). A similar drop to negative values in cos θ
(experiments, panel a) is observed in the pre-lock-in regime. It allows one to associate
the regime with V-lock-in phenomena based on the Rayleigh index. In a nutshell,
lock-in and pre-lock-in regimes observed in the experiments correspond to 1 : 1 A-lock-in
and 2 : 1/1 : 1 V-lock-in regions of the simulations, showing instability and amplitude
suppression, respectively. A comparison summary of the observed dynamical states
between experiments and the simulations is represented as a flowchart in panel (d). The
comparison is colour coded with respect to figure 8. Arrows indicate the direction of the
increasing flow rate.

The vortical structures are shed in the wake region behind the bluff body/step, where the
time-averaged velocity profile is lower than the upstream flow velocity. It slows the vortex
convection speed compared with the upstream flow (Shanbhogue, Husain & Lieuwen
2009). Based on the previous experimental and numerical investigations (Rossiter 1964;
Zaman & Hussain 1981; Zhou & Antonia 1992; Kook & Mongeau 2002), the vortex
convection speed downstream of a bluff body or in a cavity is found to be between 0.4–0.95
times the free-stream velocity. All the simulations in this paper are performed by assuming
the coefficient of vortex convection speed to be α = 0.6. The convection of the vortex
produces a time delay between the origin of its birth to its effect on the heat release
rate. Thermoacoustic instability strongly depends on the time delay (Huber & Polifke
2009). We therefore re-ran the simulations with α = 0.9 (green solid curves) and presented
the comparison with α = 0.6 (original results shown in red dashed curves) in figure 12.
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Figure 12. Comparison of vortex convection velocity α, between α = 0.6 (red dashed curve) and 0.9 (green
solid curve). Panel (a) compares lock-in boundaries in the β–f plane. The parameter α influences the A-lock-in
boundary in the f > 1 region. Panels (b,c) represent the comparison of Rayleigh index (Rfb) and r.m.s. values
of pressure fluctuations (Prms), respectively. The V- and A-lock-in regions are illustrated along with the
corresponding frequency ratios.

Panel (a) compares the 1 : 1 A-lock-in boundary. As expected, the convection velocity
does influence the lock-in boundary; however, the qualitative nature of the boundary
remains the same. Furthermore, panels (b,c) show the calculated Rayleigh index and r.m.s.
values of pressure. The frequency ratio and the corresponding A- and V-lock-in regions are
illustrated in the figure. The convection velocity does not produce a qualitative difference
in the curves. It indicates that the conclusions on amplitude suppression and instability
hold for other values of vortex convection speed.

4.4. Limitations of the model
The current model has its limitations, resulting in an inaccurate match with the
experiments, which are explained through figures 8 and 13. The first one is the inability of
the model to reproduce the no-lock-in region (blue curves, 18–26 slpm) of the experiments
(figure 8). Acoustic fluctuations are generated due to flow turbulent fluctuations (Pawar
et al. 2017). The exclusion of noise in the model leads to the cause. The second limitation
is that the simulations (panels b,c) exhibit higher harmonics of comparable amplitude to
the fundamental peak. The behaviour is absent in the experiments (panel a). For clarity,
figure 13 directly compares the PSD between the experiments and the current model at two
flow rates. The flow rates 36 and 50 slpm are chosen as they represent V- and A-lock-in,
respectively. Altering the damping c1, c2 or heat release β coefficients does not produce a
qualitative change in the simulated PSD (not shown).

The following assumption has led to the above contrasting observations between the
experiment and the model. The heat release is assumed to occur instantaneously when
the vortex reaches the spatial location xc at the temporal instant tcm (2.5). It leads to
using the Dirac-delta (δ) functions. The δ function in time excites all the modes with
equal amplitudes. In reality, as the vortex convects along the flame, the heat release rate
fluctuation q̇′ is a continuous function of space and time. It should be noted that accurate
modelling of q̇′ distribution in space and time, such as that observed in the experiments
(figure 1b), destroys the analytical tractability (§§ 2.3–2.5), which removes substantial
findings of the paper.
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Figure 13. Comparison of the non-dimensional PSD between the experimental results of Singh & Mariappan
(2019) (black colour) and the current simulations (β = 0.2, red colour). The PSD is obtained from the pressure
time series at x = 0.36 for the flow rates 36 and 50 slpm where 1 : 1 V- and A-lock-in are observed, respectively.

Our main aim of the paper is to show the essential effects and the outstanding questions
that exist in the literature of vortex-acoustic lock-in: (i) amplification or suppression of
thermoacoustic instability (§ 4.2) and their analytical interpretation (§ 2.4), (ii) existence
of lock-in regions where the common frequency can be either associated with acoustic
(A-lock-in) or vortex shedding (V-lock-in) modes. Experimental comparisons are made for
qualitative purposes only. Therefore, the presented results are at the expense of the model’s
assumptions (figure 8) in favour of the analytical tractability rather than the accuracy of
the match with the experiments. The quantitative predictions of the model can certainly
be enhanced by relaxing the above assumptions and using Bayesian inference (Juniper &
Yoko 2022; Nóvoa & Magri 2022) to assimilate data from experiments or computational
fluid dynamics, which will be taken as our future work.

5. Conclusion

The paper investigates the mutual interaction between vortex shedding and acoustic waves
to study vortex-acoustic lock-in in a bluff body combustor. The former is modelled by
an existing, widely used low-order model (Matveev & Culick 2003), while the latter is
governed by the wave equation. Coupling between them is established through heat release
rate fluctuations from vortex shedding, whose shedding characteristics are in turn, altered
by the acoustic field. A set of kmth order discrete dynamical maps relating pressure and
velocity fluctuations of km shedding events are obtained. The heat release coefficient β
and frequency ratio f are the chosen control parameters, while the other parameters are
selected from our previous experiments (Singh & Mariappan 2019).

Considering vortex shedding and the acoustic field as two coupled oscillators, the
concept of phase lock-in is used to identify the region of vortex-acoustic lock-in. Two
orders of lock-in, 1 : 1 and 2 : 1, are observed in the explored parameter space. During
lock-in, the common oscillation frequency can lie close to the natural acoustic or
vortex shedding frequency. Accordingly, the phenomena are termed A- and V-lock-in,
respectively. By comparing our simulations with Singh & Mariappan (2019), we make the
following salient conclusions. (i) The A- and V-lock-in phenomena are associated with the
lock-in and pre-lock-in regimes reported in the experiments, respectively. (ii) Instability
and amplitude suppression occur in most of the A- and V-lock-in regions, respectively.
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(iii) Saddle-node or Neimark–Sacker bifurcations occur at the onset of lock-in. (iv) Finally,
we show that the boundary of the 1:1 A-lock-in regime, which is the most favourable
condition for instability, can be determined from the lock-in boundary corresponding
to the forced response of the vortex shedding process. An analytical expression for the
forced lock-in boundary is provided in our earlier papers (Britto & Mariappan 2019,
2021), which can serve as a tool for the design of quiet combustors. All the conclusions
of the study rely on a qualitative comparison between simulations and experiments. The
analytical elegance/simplicity of the model is preferred over a quantitative match with the
experiments. Future work will aim to use recent data assimilation methods developed for
thermoacoustics to have a better quantitative match.
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Appendix A

The integral equation given in (2.13) results in a discrete difference equation that relates
the successive vortex shedding events ts1, ts2, . . . , tsm as

[
−Lnfs0e−2 Lnτm−1 (Ln cos (2ωd τm−1 + 2α1)+ ωd sin (2ωd τm−1 + 2α1))

+ Lnfs0e−2 Lnτm (Ln cos (2ωd τm + 2α1)− ωd sin (2ωd τm + 2α1))

− (Ln
2 + ωd

2)( e−2 Lnτm−1 + e−2 Lnτm)
]

fs0R2

+
[
8 Lnfs0e−Lnτm−1 (ωd cos (ωd τm−1 + α1)+ Ln sin (ωd τm−1 + α1))

− 8 Lnfs0e−Lnτm (ωd cos (ωd τm + α1)+ Ln sin (ωd τm + α1))

−4 Lne−Lnτm(Ln
2 + ωd

2) sin (ωd τm + α1)
]

R

− 4 (Ln
2 + ωd

2) (1 + (τm−1 − τm) fs0) Ln = 0, (A1)

where R = r cos(nπxsep) and Ln = ζnnπ. Furthermore, the terms relating the successive
shedding instances are τm−1 and τm: τm−1 = tsm−1 − tcm−km

, τm = tsm − tcm−km
.

Appendix B

The integral equation given in (2.14) results in a discrete difference equation that relates
the successive vortex shedding events ts1, ts2, . . . , tsm through an intermediate burning
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event as[
−Lnfs0e−2 Lnτm−1 (Ln cos (2ωd τm−1 + 2α1)+ ωd sin (2ωd τm−1 + 2α1))

+ Lnfs0e−2 Lnτ
c
m−km (Ln cos(2ωd τ

c
m−km

+ 2α1)− ωd sin(2ωd τ
c
m−km

+ 2α1))

− (Ln
2 + ωd

2)( e−2 Lnτm−1 + e−2 Lnτ
c
m−km )

]
fs0R2

+
[
8 Lnfs0e−Lnτm−1 (ωd cos (ωd τm−1 + α1)+ Ln sin (ωd τm−1 + α1))

− 8Lnfs0e−Lnτ
c
m−km (ωd cos(ωd τ

c
m−km

+ α1)+ Ln sin(ωd τ
c
m−km

+ α1))

− 4 Lne−Lnτm(Ln
2 + ωd

2) sin (ωd τm + α1)
]

R

− 4 (Ln
2 + ωd

2)(1 + (τm−1 − τ c
m−km

)fs0)Ln

+
m−km+b∑
j=m−km

[ [
−Lnfs0e−2 Lnτ

c
j (Ln cos(2ωd τ

c
j + 2α1)+ ωd sin(2ωd τ

c
j + 2α1))

+ Lnfs0e−2 Lnτ
c
j+1(Ln cos(2ωd τ

c
j+1 + 2α1)− ωd sin(2ωd τ

c
j+1 + 2α1))

− (Ln
2 + ωd

2)( e−2 Lnτ
c
j + e−2 Lnτ

c
j+1)

]
fs0R2

+
[
8 Lnfs0e−Lnτ

c
j (ωd cos(ωd τ

c
j + α1)+ Ln sin(ωd τ

c
j + α1))

− 8 Lnfs0e−Lnτ
c
j+1(ωd cos(ωd τ

c
j+1 + α1)+ Ln sin(ωd τ

c
j+1 + α1))

− 4 Lne−Lnτm(Ln
2 + ωd

2) sin(ωd τm + α1)
]

R

− 4 (Ln
2 + ωd

2)(1 + (τ c
j − τ c

j+1)fs0)Ln

]

+
[
−Lnfs0e−2 Lnτ

c
j (Ln cos(2ωd τ

c
j + 2α1)+ ωd sin(2ωd τ

c
j + 2α1))

+ Lnfs0e−2 Lnτm(Ln cos(2ωd τm + 2α1)− ωd sin(2ωd τm + 2α1))

−(Ln
2 + ωd

2)( e−2 Lnτ
c
j + e−2 Lnτm)

]
fs0R2

+
[
8 Lnfs0e−Lnτ

c
j (ωd cos(ωd τ

c
j + α1)+ Ln sin(ωd τ

c
j + α1))

− 8 Lnfs0e−Lnτm (ωd cos (ωd τm + α1)+ Ln sin (ωd τm + α1))

−4 Lne−Lnτm(Ln
2 + ωd

2) sin (ωd τm + α1)
]

R

− 4 (Ln
2 + ωd

2)(1 + (τ c
j − τm)fs0)Ln = 0. (B1)

In the above equation the terms involving time instances are τm−1, τm−km, τm, τ
c
j and

τ c
j+1. These terms contain vortex shedding and burning events as follows:

τm−1 = tsm−1 − tcm−km−1, (B2)
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τm−km = tcm−km
− tcm−km−1, (B3)

τm = tsm − tcm−km
, (B4)

τ c
j = tcj − tcj−1, (B5)

τ c
j+1 = tcj − tcj+1. (B6)

Here the time instances tsm−1, tcm−km−1 and tcm−km
are known from the previous iterates.
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