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Abstract. We prove that the inclusion of the space of gradient vector fields into
the space of all vector fields on D2 non-vanishing in S1 is a homotopy equivalence.
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1. Introduction. The main goal of our paper is to prove some version of the
well-known Parusiński theorem (see [5]), which says that if two gradient vector fields
on the unit disc Dn and non-vanishing in Sn−1 are homotopic, then they are also
gradient homotopic. In other words, the inclusion of the space of gradient vector fields
in the space of all vector fields on Dn non-vanishing in Sn−1 induces the bijection
between the sets of path-components of these function spaces. In this paper we restrict
ourselves to the two-dimensional case, but we also strengthen the mentioned result via
showing that the above inclusion is a homotopy equivalence (both spaces are homotopy
equivalent to S1). Precisely, this was partially proved in [5] using the argument of
deformation retraction, but this method fails (at least in that form) in the case of
identity components. For this reason we wish to investigate this (more difficult in our
opinion) case here.

It may be worth pointing out that even though Parusiński’s result does not hold
for equivariant maps, his techniques may be still used to study homotopy classes of
gradient equivariant maps (see [1–4]).

The organisation of the paper is as follows. Section 2 contains some preliminaries.
Section 3 presents the so-called Parusiński’s Trick, which allows to replace gradient
vector fields on a two-dimensional disc by pairs of functions on S1 without common
zeros and one of which has integral over S1 equal to zero. In Section 4 our main results
are stated. These results are proved in Section 5.

2. Preliminaries. Let I = [0, 1]. We will denote by D2 the unit disc in �2 and
by S1 its boundary. We often denote a point in S1 by its angle θ ∈ [0, 2π ]. Similarly,
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maps on S1 will be identified with 2π -periodic maps on [0, 2π ]. If ϕ is such a map,
then Im ϕ := ϕ([0, 2π ]). We will consider continuous maps on D2 with no zeros on its
boundary and their homotopies, i.e. continuous maps h : D2 × I → �2 non-vanishing
on S1 × I . It is well known that homotopy classes of such maps are classified by the
topological degree. Recall that a map f is called gradient if there is a C1-function
ϕ : D2 → � such that f = ∇ϕ. Similarly, we say that a homotopy h : D2 × I → �2 is
gradient if h(x, t) = ∇xχ (x, t) for some continuous function χ that is C1 with respect
to x. Of course, we still assume that f (resp. h) has no zeros on S1 (resp. S1 × I).

3. Parusiński’s trick in the plane. Let V denote the space of all continuous maps
on the unit disc in �2 non-vanishing on its boundary, i.e.

V = C0(D2, S1; �2, �2 \ {0})

and G denote the subspace of V consisting of gradient maps, i.e. G = {f ∈ V |
f is gradient }.

We will also need the following mapping spaces:

V := C0(S1; �2 \ {0}),
G := {(f, g) ∈ V | ∃η : S1 C1→ � such that f = η′ }.

All the above function spaces are equipped with natural compact-open topology.
It is well known that path-components (homotopy classes) of V and V are classified
by the topological degree. Let us denote the path-component consisting of maps of
degree k by Vk and Vk. Moreover, let Gk = G ∩ Vk and Gk = G ∩ Vk.

We will make use of the following easy consequence of the above definitions.

PROPOSITION 3.1. If (f, g) ∈ V , then (f, g) ∈ G iff
∫ 2π

0 f ds = 0.

Let �τ (resp. �ν) denote the unit tangent (resp. normal) vector field on S1. Consider
the following natural mapping, P : Vk → Vk−1

P(v) = (f, g),

where v� S1 = f · �τ + g · �ν. Observe that for v ∈ G we have

P(v) = P(∇ϕ) =
(

∂ϕ

∂θ
,
∂ϕ

∂r

)∣∣∣
S1

,

in particular P(v) ∈ G. The following result can be found in [5, Lemma 1].

THEOREM 3.2 (Parusiński’s trick in the plane). The following diagram commutes

Gk −−−−→ Vk

P�Gk

⏐⏐� ⏐⏐�P

Gk−1 −−−−→ Vk−1,

(3.1)

where the horizontal arrows are inclusions and the vertical arrows are homotopy
equivalences.
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4. Main result. Let us formulate the main result of this paper.

Main Theorem. The horizontal inclusions in diagram (3.1) are homotopy equivalences.

From the commutativity of the diagram, it is enough to show that for all k ∈ �,
the inclusion i : Gk → Vk is a homotopy equivalence. In fact, for k 	= 0 this was proved
by Parusiński and we simply repeat his short and elegant argument. But for k = 0 the
proof requires a modified approach.

Maps v ∈ V will be often written in polar coordinates as v(α) = (θ (α), r(α)) or
v = (θ, r) for short. We use the standard transformation from polar coordinates to
Cartesian ones 
(θ, r) := (r cos θ, r sin θ ), which is a local diffeomorphism. We will
need the following simple observation.

PROPOSITION 4.1. The evaluation map e : Vk → S1, defined by e(v) = θ (0) for v =
(θ, r), is a homotopy equivalence.

Proof. Since the inclusion Map(S1, S1) ↪→ V is a homotopy equivalence, it is
enough to use the ‘lifting’ argument or to apply the homotopy sequence of evaluation
fibration. �

Observe that our Main Theorem is an immediate consequence of the following
result.

Main Lemma. In the following commutative diagram

Gk

e
��

��
��

��
�
� � i �� Vk

e
����

��
��

�

S1

all maps represent isomorphisms in the category HTop.

Proof. For k 	= 0 it follows from Proposition 4.1 and Corollary 5.4 and for k = 0
from Proposition 4.1 and Evaluation Lemma (Lemma 5.10). �

5. The proof of evaluation lemma.

5.1. Retractions in mapping spaces. Consider a map f : [0, 2π ] → � such that
f (0) = f (2π ). We will make use of the following natural notation for functions

f + := max{f, 0}, f − := min{f, 0}

and their integrals

c+(f ) :=
∫ 2π

0
f + ds, c−(f ) := −

∫ 2π

0
f − ds, c(f ) := c+(f ) − c−(f ).
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Recall thatVk = {v : S1 → �2 \ {0} | deg v = k}. By Proposition 3.1,Gk = {v = (f, g) ∈
Vk | c(f ) = 0}. Set

V#
k = {v = (f, g) ∈ Vk | c+(f ) > 0 and c−(f ) > 0},

G#
k = Gk ∩ V#

k .

LEMMA 5.1. For all k, G#
k is a strong deformation retract of V#

k .

Proof. Consider the retraction R : V#
k → G#

k given by

R(v) = R(f, g) :=
(

min{c−(f ), c+(f )}
c+(f )

f + + min{c−(f ), c+(f )}
c−(f )

f −, g
)

.

Observe that i ◦ R is homotopic to IdV#
k

via the straight-line homotopy. �

REMARK 5.2. In [5] Parusiński uses the similar retraction

R(v) = R(f, g) :=
(√

c−(f )
c+(f )

f + +
√

c+(f )
c−(f )

f −, g

)
,

which unfortunately does not work for our approach (see Lemma 5.6).

LEMMA 5.3. For all k 	= 0, Vk = V#
k and, in consequence, Gk = G#

k .

Proof. If c+(f ) = 0 or c−(f ) = 0, then deg v = 0, since in this case there is a straight-
line homotopy (with no zeros for t ∈ (0, 1]) between f and some non-zero constant
function through 2π -periodic functions. �

COROLLARY 5.4. For each k 	= 0, the inclusion Gk ↪→ Vk is a homotopy equivalence.

REMARK 5.5. Observe that for k = 0 we have G0 	⊂ V#
0 and G#

0 � G0 because two
new non-empty contractible subspaces of G0 appear:

G+
0 := {v = (f, g) ∈ G0 | f = 0 and g > 0},

G−
0 := {v = (f, g) ∈ G0 | f = 0 and g < 0}.

Let us denote by W0 the subspace V#
0 ∪ G−

0 ∪ G+
0 . It is obvious that W0 = {v =

(f, g) ∈ V0 | c+(f ) = 0 ≡ c−(f ) = 0}. In case k = 0 the retraction from the proof of
Lemma 5.1 can be easily extended from G0 to W0. By abuse of notation, we continue
to write R for this extension.

LEMMA 5.6. The map R : W0 → G0, given by

R(v) =
{(

min{c−(f ),c+(f )}
c+(f ) f + + min{c−(f ),c+(f )}

c−(f ) f −, g
)

if v ∈ V#
0 ,

v if v ∈ G−
0 ∪ G+

0

is a strong deformation retraction.
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Figure 1. Function γ .

5.2. Homotopy equivalence between G0 and S1. Let us denote by p : � → [0, 2π ]
the natural projection p(x) := x (mod 2π ). We will make use of an auxiliary function
γ : [0, 2π ] → � given by

γ (s) :=

⎧⎪⎨
⎪⎩

2s if s ∈ [
0, π

2

]
2π − 2s if s ∈ [

π
2 , 3π

2

]
,

2s − 4π if s ∈ [ 3π
2 , 2π

]
(see Figure 1) and its projection on S1, i.e. γγγ : S1 → S1, γγγ = p ◦ γ .

Observe that (γγγ , 1) ∈ G0, since
∫ 2π

0 cos γ (s) ds = 0.
The following definitions will be needed in the proof of Deformation Lemma

(Lemma 5.8). Recall that a homotopy g : X × I → X such that g0 is the identity map
is called a deformation of X onto Y := { g1(x) | x ∈ X }. Furthermore, if g1(x) = x0

for all x ∈ X , then the deformation g is called a contraction of X to x0. Note that
for a homotopy h : X × I → X and a deformation g : X × I → X the ‘composition of
homotopies’ g ∗ h : X × I → X given by

(g ∗ h)(x, t) :=
{

h(x, 2t) if t ∈ [
0, 1

2

]
g (h(x, 1), 2t − 1) if s ∈ [ 1

2 , 1
]

is well defined and continuous.
Let A+ := { x ∈ � | cos x > 0 } and A− := { x ∈ � | cos x < 0 }. We will denote by

L the space of 2π -periodic continuous functions from [0, 2π ] to �. We will also need
the following subspaces of L:

La := {ϕ ∈ L | ϕ(0) = a},
I := {ϕ ∈ L | Im ϕ ∩ A+ = ∅ ≡ Im ϕ ∩ A− = ∅ },
 := {γ + a ∈ L | a ∈ � }.

By the definition of I and W0, we immediately obtain the following result.

PROPOSITION 5.7. For any r : [0, 2π ] → (0,+∞),

ϕ ∈ I ≡ (p ◦ ϕ, r) ∈ W0.

We finish this section with two key lemmas: Deformation Lemma and Evaluation
Lemma.

LEMMA 5.8 (Deformation Lemma). There is a deformation h : L × I → L of L
onto  such that
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1. ht(ϕ + c) = ht(ϕ) + c for all t ∈ I and c ∈ �,
2. h1(La) = {γ + a} for all a ∈ �,
3. ht(I) ⊂ I for all t ∈ I.

REMARK 5.9. Note that from (1), if ψ = ϕ + 2kπ , then ht(ψ) = ht(ϕ) + 2kπ

and, in consequence, p ◦ [ht(ψ)] = p ◦ [ht(ϕ)]. It may be worth pointing out that the
deformation constructed in our proof also satisfies the following condition:

ht(La) ⊂ La for all t ∈ I and a ∈ �,

but we will not use it here.

Proof. Let, for ϕ ∈ L,

m(ϕ) := max{|ϕ(s)| | s ∈ [0, 2π ]}
π

.

Consider a finite sequence {ki}5
i=1 of deformations ki : L0 × I → L0 given by the

formulas

k1(ϕ, t)(s) :=
{

ϕ
( 2s

2−t

)
for s ∈ [0, (2 − t)π ],

0 for s ∈ [(2 − t)π, 2π ],

k2(ϕ, t)(s) :=
{

ϕ(s) for s ∈ [0, π ],

ϕ(s) + tm(ϕ)γ (s) for s ∈ [π, 2π ],

k3(ϕ, t) := (1 − t)ϕ + t max{ϕ, m(ϕ)γ },
k4(ϕ, t) := (1 − t)ϕ + tm(ϕ)γ,

k5(ϕ, t) := (1 − t)ϕ + tγ.

Let k := k4 ∗ (k3 ∗ (k2 ∗ k1)). By definition,

� Im (kt1 (ϕ)) ⊂ Im (kt2 (ϕ)) for 0 ≤ t1 ≤ t2 ≤ 1,
� if ϕ ≡ 0, then kt(ϕ) ≡ 0 for all t ∈ I .

Moreover, we emphasise that the above claim does not hold if we replace the
deformation k by any of the deformations k4 ∗ k1, k4 ∗ k2 ∗ k1 etc. Let us define K :=
k5 ∗ k. By the above, K is a contraction of L0 to γ such that for all t ∈ I

Im ϕ ⊂ Im (Kt(ϕ)) or diam Im (Kt(ϕ)) ≥ 2π.

Finally, we extend K to the deformation h : L × I → L by setting

h(ϕ, t) := K(ϕ − ϕ(0), t) + ϕ(0).

It is easy to see that h satisfies the conditions (1) –(3). �
LEMMA 5.10 (Evaluation Lemma). The evaluation map e : G0 → S1, given by

e(v) = θ (0) for v = (θ, r), is a homotopy equivalence.

Proof. We show that the homotopical inverse of e is the map d : S1 → G0 defined
by

d(α)(s) := (α + γγγ (s), 1).
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Figure 2. Deformation k ‘step by step.’

Precisely, since e ◦ d = IdS1 , it is enough to show that the map T := d ◦ e is homotopic
to IdG0 . Using the deformation h from Deformation Lemma and the retraction R from
Lemma 5.6 we define the new deformation H : G0 × I → G0 by setting

H((θ, r), t) := R (
 (p ◦ [ht(ϕ)] , (1 − t)r + t)),

where ϕ ∈ L is any lift of θ (recall that 
 is transformation from polar to Cartesian
coordinates). Observe that if (θ, r) ∈ G0 ⊂ W0, then ht(ϕ) ∈ L, in consequence,
(p ◦ [ht(ϕ)] , (1 − t)r + t) lies in the domain of the retraction R, i.e. the space W0.
Moreover, H0 = IdG0 and H1 = T , where T((θ, r)) = (θ (0) + γγγ , 1). �
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