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Abstract

In this paper, a differential microfluidic sensor and comparator based on a pair of microstrip
lines loaded with dumbbell-shaped defected ground structure resonators is applied to the
characterization of electrolyte concentration in samples of horse urine. Since variations in
the total electrolyte content in urine may be indicative of certain pathologies, the interest is
to use the device as a comparator, in order to determine changes in the electrolyte concentra-
tion as compared to a reference level. To validate the approach, we have made differential
measurements of a set of urine samples with different electrolyte concentrations (which
have been previously obtained by means of electrochemical methods). The obtained results
correlate with the nominal electrolyte concentrations of the samples, thereby pointing out
the potential of the approach as a low-cost pre-screening method (or complementary diagno-
sis system) to detect potential pathologies or diseases in horses and other animals.

Introduction

Electrolytes such as sodium (Na+), calcium (Ca2+), potassium (K+), chloride (Cl−), and bicar-
bonate (HCO−3) are present in blood and urine, and play an important role in several vital
functions, such as body hydration, blood pH and pressure control, nerve and muscle functions,
etc. [1]. Indeed, excessive imbalances in the concentration of certain electrolytes (known as
anion gap [2]), as well as an excess or defect of the total concentration of electrolytes in
blood and urine, may be indicative of certain disorders. Thus, monitoring the concentration
of ions in blood and urine is important for medical diagnosis and tailored fluid therapies.
Currently, available methods for that purpose use ion-selective electrodes (ISE) [3]. Such
methods are able to individually determine the concentration of specific electrolytes.
However, such electrochemical system is expensive, and it is not compatible with the increas-
ing demand for real-time monitoring of blood or urine bio-samples. Within this context, the
development of alternative low-cost and real-time measurement methods for the characteriza-
tion of electrolyte concentration in urine and blood is of high interest.

The presence of ions and other compounds in urine or blood determines their physical
properties, in particular the conductivity (or loss factor) and the dielectric constant.
Therefore, the total concentration of electrolytes in bio-samples can potentially be inferred
by means of methods sensitive to such variables (conductivity and dielectric constant), and
particularly through microwaves. Although microwave-based sensors are not able to selectively
provide the specific concentration of the different ions in blood or urine, the total concentra-
tion, microwave methods satisfy the above-cited demands of low cost and fast measurement.
Thus, microwave sensors can be considered useful for complementary diagnosis tools for dis-
eases related to the alteration of blood or urine composition. Moreover, the electromagnetic
(sensing) elements and the associated circuitry of microwave sensors are compatible with
handheld solutions. Thus, in this paper, we will apply a differential microwave sensor/com-
parator to the characterization of electrolyte content in urine, and particularly horse urine.

In recent years, significant efforts have been dedicated to the research and development of
microwave sensors for material characterization, including bio-samples. Of particular interest
are those sensors based on planar structures and electrically small resonators, due to their low
cost, low profile, compatibility with printing fabrication processes (including flexible and con-
formal substrates), integration with sensor hardware, and high sensitivity, among other
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advantageous aspects. The sensing strategies can be categorized
into various groups, to be discussed next.

One approach exploits the variation in the resonance fre-
quency and magnitude experienced by the sensing resonator
when it is loaded with the material (or sample) under test
(SUT) [4–15]. Such a technique is simple as far as a single reson-
ator, typically loading a transmission line, suffices for sensing pur-
poses. However, frequency variation sensors are subjected to
cross-sensitivities, e.g., caused by changes in environmental fac-
tors (temperature and moisture, for instance). Therefore, such
sensors need calibration before their use, in order to avoid false
readouts of the variable of interest (measurand).

To alleviate the cross-sensitivity to ambient conditions, sensors
exploiting symmetry properties have been reported (see [16–18]).
These sensors are based on symmetry disruption. Since symmetry
is invariant to changes in environmental conditions, it follows that
symmetry-based sensors are robust against the above-cited cross sen-
sitivities. These symmetry-based sensors can be divided into three
main categories: coupling modulation sensors [16, 19–26], frequency
splitting sensors [27–33], and differential-mode sensors [34–46].

In coupling modulation sensors, a symmetric resonator sym-
metrically loads a transmission line. The line and the resonant
element should not be arbitrarily selected. That is, for sensor
functionality, the symmetry planes of both elements (the reson-
ator and the line) must behave as electromagnetic walls of a dif-
ferent sort (one an electric wall and the other one a magnetic
wall) [16–18]. By this means, electromagnetic coupling between
the resonator and the line is prevented, and the line is transparent.
By contrast, when symmetry is truncated, e.g., by means of an
asymmetric dielectric load, or by means of a relative (angular or
linear) displacement between the line and the resonator,

line-to-resonator coupling arises, and a notch in the transmission
coefficient of the line is generated. The magnitude of this notch is
related to the level of asymmetry and thereby it can be used as an
output variable for sensing purposes. This type of sensors can be
applied to material characterization, but most of these sensors
have been focused on the measurement of spatial variables and
velocities [19–26]. The main limitation of these sensors is that
measurement of notch magnitude is more sensitive to noise, as
compared to frequency measurement.

Frequency splitting sensors consist of a transmission line
structure symmetrically loaded with a pair of resonant elements
(not necessarily symmetric) [29, 30]. These sensors are similar
to differential sensors as far as one resonant element is for the ref-
erence (REF) material, or sample, whereas the other one should be
loaded with the (SUT). If the samples are identical, a single notch
in the transmission coefficient arises. However, this notch splits
into two notches, provided symmetry is truncated. The level of
asymmetry dictates the difference in the notch frequencies, and
therefore such frequency difference can be considered the main
output variable for sensing [31–33].

Finally, in differential sensors, two independent sensors are
used, one for the REF material and the other one for the
SUT. Several implementations of these sensors have been
reported, including sensors based on meandered lines [41, 44]
on resonator loaded lines [35, 37–40, 42, 45–47], and sensors
based on artificial transmission lines [34, 43]. In these sensors,

Fig. 2. Perspective view of the fabricated microfluidic sensor including the fluidic
part.

Fig. 1. The proposed DB-DGS-based differential sensor.
(a) Layout of the microwave part; (b) fabricated device (top);
(c) fabricated device (bottom). Dimensions (in mm) are: w1 =
w2 = 2, wTL = 1.14, lLT = 50, ld = 28, gd = 0.2, and Sd = 44. The con-
sidered substrate is the Rogers RO3010 with thickness h = 1.27
mm, dielectric constant ϵr = 10.2, and loss tangent tanδ = 0.0035.

Table 1. List of urine samples and the corresponding electrolyte concentration

Urine sample Electrolyte concentration (mEq/l)

5341 130.05

5349 133.66

5344 155.35

5346 213.31

5345 311.14

5343 417.05

5347 552.14

5342 580.51

5348 757.2
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the output variable can be the phase difference between the
sensing lines [36, 41], but, recently, sensors based on the meas-
urement of the cross-mode transmission coefficient have been
reported [35, 37–39, 40, 43, 45–47]. Moreover, in a very recent
implementation, differential sensors with enhanced sensitivity
based on simple two-port measurements have been presented
[44]. Sensors based on the measurement of the cross-mode
transmission coefficient have demonstrated to exhibit good
levels of sensitivity and resolution. It is remarkable, for instance,
the sensor presented in [45], where a resolution as small as
0.125 g/l (5.44 mEq/l) of electrolyte concentration in DI water
was demonstrated. It is also worth-mentioning the sensor
reported in [43], with very high sensitivity achieved thanks to
the high dispersion characteristics of electro-inductive wave
transmission lines [48] (the complementary counterpart of
magneto-inductive wave transmission lines [49–54]).

As an extended paper of the conference paper [46], in this
work, we apply the differential-mode sensor first presented in
[46], and based on a pair of microstrip lines loaded with a
dumbbell-shaped defected ground structure (DB-DGS), to the
characterization of urine samples. The main aim is to demonstrate
that the sensor is sensitive to variations in the electrolyte content
of the considered samples. Since such samples have been achieved
from horses (in some cases suffering medical disorders), it follows
that the sensor can be used as a method for real-time monitoring
changes in the total electrolyte concentration in urine. Many
other sensors focused on the characterization of liquids and bio-
samples have been reported (see, e.g., [55–61]).

The proposed sensor

The differential-mode sensor used for the characterization of
urine samples was the one first reported in [46] and then studied
in detail in [40]. The topology of such a sensor, including relevant
dimensions, is depicted in Fig. 1. The sensor consists of a pair of
microstrip lines, each one loaded with a DB-DGS transversally
oriented to the axis of the lines. For liquid characterization, fluidic
channels on top of both DB-DGSs, plus the necessary accessories
for liquid injection and for providing mechanical stability, are
needed (see Fig. 2, and [40], where further details of the fluidic
part of the sensor are reported). In [40], an exhaustive analysis
relative to sensitivity improvement was carried out. It was con-
cluded from that analysis that, for sensitivity optimization, the

sensor substrate must exhibit a small dielectric constant.
Moreover, the ratio between the inductance and the capacitance
of the DB-DGS must be as small as possible. In practice, this is
achieved by means of elongated topologies, as the one visible in
Fig. 1 [40, 46].

The high sensitivity of the sensor of Fig. 1 was demonstrated in
[40, 46], where it was used as a comparator, able to discriminate
the presence of tiny defects in solid samples [46], as well as a
measuring device, able to provide the concentration of NaCl in
aqueous solutions. In this paper, the aim is to demonstrate the
potential of the device to characterize urine samples, and particu-
larly to infer the total concentration of electrolytes, to be dis-
cussed in the next section.

Characterization of urine samples

The Faculty of Veterinary Sciences at the Universitat Autònoma
de Barcelona has provided us with the urine samples. Such sam-
ples have been obtained from horses suffering from different dis-
orders. The list of samples and the corresponding total
concentration of electrolytes (in mEq/l) is shown in Table 1,
where the samples have been sorted in ascending order of electro-
lyte concentration. The nominal electrolyte concentrations in

Fig. 3. Cross-mode transmission coefficient for the
different SUT samples.

Fig. 4. Maximum value of the cross-mode transmission coefficient for the different
samples.
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urine have been inferred from electrochemical methods by deter-
mination of sodium, potassium, chloride, calcium and magne-
sium concentrations, particularly ISE, as reported in the
introduction (this aspect is out of the scope of this paper).

Since the main purpose of this study is to demonstrate the
potential of the approach as a method to monitor changes in
the total concentration of electrolytes in urine, we have opted to
consider sample #5341, the one with lower electrolyte content,
as REF sample. In a real scenario, the interest is monitoring the
potential changes of the electrolyte content in a diseased animal
during a certain interval of time (e.g., during hospitalization).
Consequently, the REF sample is the urine at the beginning of
the monitoring time interval. Each urine sample has been injected
in the SUT channel, with the REF sample in the corresponding
channel, and, after injection, we have obtained the cross-mode
transmission coefficient. The results are depicted in Fig. 3,
where it can be appreciated that the noise level is situated at
roughly 25.9 dB. This is the maximum value of the cross-mode
transmission coefficient corresponding to the symmetric case
(i.e. with the REF sample in both channels). Figure 4 depicts
the maximum value of the cross-mode transmission coefficient
for the different samples (the x-axis corresponds to the total con-
centration of electrolytes of the samples). As it can be seen, there
is in general a correlation between the electrolyte content and the
maximum value of the cross-mode transmission coefficient,
although one sample (#5342) does not follow this trend. This is
thought to be due to the presence of other substances, in particu-
lar sediments, which are visible and may affect somehow the com-
plex permittivity of the SUT. Nevertheless, these results indicate
that the system is able to detect small changes in the total concen-
tration of electrolytes. Actually, we have repeated the measure-
ment four times, in order to ensure that the results are
repetitive. The error bars, included in Fig. 4, indicate that the
results are repetitive to a good extent.

We have also characterized the same urine samples by means
of the differential-mode sensor reported in [39]. The measured
cross-mode transmission coefficients are depicted in Fig. 5,
whereas the maximum value of the cross-mode transmission
coefficient is shown in Fig. 6. For this sensing device, also the
sample #5342 (with a nominal concentration of electrolytes of
580.51 mEq/l) does not correlate with the other values.
Therefore, these results support that the presence of visible sedi-
ments in the urine sample is the cause of the uncorrelated value
of the cross-mode transmission coefficient. The fact that the

results obtained from both independent differential sensors
exhibit good correlation (with the above-cited exception of the
altered sample #5342) indicate that the proposed differential
sensing method, based on the measurement of the cross-mode
transmission coefficient, is useful to real-time monitoring poten-
tial changes in the total electrolyte content of urine in animal
patients.

Discussion

In general, microfluidic sensors based on DGS structures as
sensing elements are interesting as far as the upper side of the
substrate is kept unaltered, i.e., without the presence of the flu-
idic channel, and this eases, in general, sensor design. There are
other DGS structures of interest for sensing, for example, com-
plementary split ring resonators (CSRRs) [62]. CSRR-based sen-
sors with good sensitivity have been reported. However, as
discussed in [63], the sensitivity of the resonance frequency of
DB-DGSs with the dielectric constant of the SUT is, in general,
superior to the one of CSRRs. This is because, in a DGS struc-
ture, the varying capacitance directly affects the resonance fre-
quency, whereas in a CSRR there is a coupling capacitance
that adds to the varying capacitance, and this obscures somehow

Fig. 6. Maximum value of the cross-mode transmission coefficient for the different
samples, as inferred from the sensor reported in [39].

Fig. 5. Cross-mode transmission coefficient for the
different SUT samples inferred by means of the sensor
system reported in [39].
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the effects of the dielectric constant of the SUT on the resonance
frequency, thereby limiting the sensitivity.

In [40], an exhaustive comparative analysis of various types of
sensors for the measurement of solute content (mainly NaCl and
glucose) in DI water was carried out, and it was concluded from
that analysis that the sensor of Fig. 2 and the one in [39] (used to
obtain the results depicted in Figs 5 and 6) offer a very competi-
tive combination of resolution, sensitivity, and dynamic range.
For that main reason, the measurements of the cross-mode trans-
mission coefficient for the different urine samples have been
obtained by considering not only the DGS-based sensor (Fig. 2)
but also the SRR-based sensor of [39]. Indeed, the results in
terms of performance are very similar, as it can be appreciated
by comparing Figs 4 and 6 (note, however, that a true comparison
is not easy since the substrate materials are different, as discussed
in [40]). It can be concluded from the results of this paper, and
from the above-cited comparative analysis, that the sensor of
Fig. 2 is very useful to monitor variations of electrolyte concentra-
tions in urine, the main intended application. It is also a good
candidate for that purpose the sensor reported in [39], though
in this case the fluidic part should be placed at the same substrate
face than the line strip.

Let us further emphasize that this work represents a first stage
for the development of low-cost sensors for monitoring changes
in the electrolyte content of urine in diseased animals, particularly
horses, in real-time. Monitoring these potential changes in the
electrolyte content is of interest as a pre-screening method to
detect possible pathologies related to variations in electrolyte con-
tent. In a real scenario, the REF sample should be the urine of the
animal at the beginning of the monitoring time. Nevertheless, in
this paper, we have opted to consider as REF sample one specific
sample, i.e., the one with smaller electrolyte content, as a way to
emulate real operating conditions of the sensor.

Conclusion

In conclusion, the microwave comparator presented in [46], based
on a pair of DB-DGS-loaded microstrip lines, has been applied to
the characterization of urine samples in this paper. The samples
contain different concentrations of electrolytes and have been
obtained from horses suffering from different diseases. We have
considered as REF sample the one with a smaller concentration
of urine, and it has been found that the maximum value of the
cross-mode transmission coefficient for the different SUT samples
exhibits a good correlation with the electrolyte content (with one
exception attributed to the presence of sediments in the sample).
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