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Analysis of nanoparticles has enjoyed a continuously increasing interest, with applications in catalysis, 

medicine or optoelectronics, to name a few. The physical and chemical properties of these particles rely 

on their exact 3D structure, and multiple approaches have been developed to extract this information. 

The most accurate and reliable procedure for retrieving the nanoparticle morphology is through scanning 

transmission electron microscopy (STEM) tomography, which performs well even at the atomic scale 

[1]. However, tomographic techniques require acquiring at least two different image projections from 

different zone axes, demanding a stable and stationary system. This limits the temporal resolution 

necessary to capture dynamics, which are critical to understanding the underlying functionality of 

interest. Other approaches use the intensity of a single STEM or TEM image, combined with very 

precise image simulations to extract 3D structure information [2]. Here too, temporal resolution is 

limited by the signal-to-noise ratios required in order to reliably measure the intensity of each atomic 

column. Deep neural networks have shown tremendous results in applications involving processing and 

analyzing high dimensional data. Specifically, convolutional neural networks (CNNs) were used in 

applications involving natural image data such as: image classification, segmentation, and object 

detection [3]. More recently, machine learning based algorithms have shown great success in processing 

other kinds of images, applied to medical imaging data, and images encountered in biology, chemistry 

and physics. Pioneering work on 3D shape reconstruction of gold nanoparticles using machine learning 

was first done on simulated TEM images [4], followed by experimental data [5]. Still, in the presence of 

low doses, i.e., poor signal-to-noise ratios, the reported results are not accurate. 

 

We propose a semantic segmentation convolutional neural network-based retrieval algorithm for 3D 

atomic structure, even in the presence of strong noise. At present, we focus our initial efforts on 

Ceria(CeO2) nanoparticles due to their importance in catalytic energy conversion processes. The 

network can be applied to temporally resolved in situ image series providing information on the 

fluctuations of the structure with time. For example, in CeO2, this allows us to track both cation 

migration and the time dependence of oxygen vacancy formation at different locations in a CeO2 

nanoparticle. 

 

The general sketch of the training and evaluation process is described elsewhere [6]. A neural network, 

as shown in Figure 1, based on U-net architecture is trained using simulated images that captures the 

heterogeneities of dynamical nanoparticles, including variations in thickness, tilts, point defects, and 

modifications of electron-optical parameters. Poisson noise, which models the shot noise encountered 

experimentally on fast direct electron detectors, is added. The output of the network is matched to a 

mask based on the 3D structure of the nanoparticle, where the mask is optimized to produce stable 

https://doi.org/10.1017/S143192762201131X Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S143192762201131X&domain=pdf
https://doi.org/10.1017/S143192762201131X


Microsc. Microanal. 28 (Suppl 1), 2022 3025 

 

 

predictions. Every pixel in the output is classified as either an atom or background, as well as the 

occupancy of the atomic column. The network parameters are trained by minimizing the output label 

misclassification error using a spatially weighted cross-entropy loss. The preliminary result on applying 

this neural network on experiment TEM data is shown in Figure 2 [7]. 

 

 
Figure 1. Simulated TEM images: (a) The clean image generated by the solver. (b) The network takes 

as an input a corrupted version where the value of every pixel ni ∼Pois(ci) is a Poisson random variable. 

ci is the corresponding pixel value in the clean image. (c) The target mask. Atomic column depth serves 

as a label. Smoothing the target labels so that they are gradually changing to the background provides 

fewer ambiguous predictions. (d) The network’s output. While the pixel classification accuracy is not 

100% the network predicted all atomic columns values correctly. (e) Pixel valued confidence score. The 

confidence score is high for the background and column centers, and lower for areas on the boundary, 

the most susceptible to noise. 

 

 
Figure 2. Results on in situ experiment data: The network applied to time-resolved TEM images of 

CeO2 at the (110) surface in a [110] zone axis (sampled at 7.5 frames per second). (a) The input data 

with an estimated SNR of 1. (b) The network’s output. The atomic column depth decreases as one 

reaches the surface. 
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