SMALL ISOMORPHISMS BETWEEN OPERATOR ALGEBRAS

by KRZYSZTOF JAROSZ

(Received 23rd January 1984)

0. Introduction

Let A and B be function algebras. The well-known Nagasawa theorem [5] states that A and B are isometric if and only if they are isomorphic in the category of Banach algebras. In [2] it was shown that this theorem is stable in the sense that if the BanachMazur distance between the underlying Banach spaces of A and B is close to one then these algebras are almost isomorphic, that is there exists a linear map T from A onto B such that $\left\|T^{-1}(T f T g)-f g\right\| \leqq \varepsilon\|f\|\|g\|$. On the other hand one can get from Theorems 1 and 3 of [3] that the Nagasawa theorem can be extended to some operator algebras as follows:

Theorem. Let X,Y be real Banach spaces with the approximation property and such that $X^{*}, X^{* *}, Y^{*}, Y^{* *}$ are all strictly convex. Assume that T is a linear isometry from $K(X)=X^{*} \ddot{\otimes} X$ onto $K(Y)=Y^{*} \check{\otimes} Y$ then one of the following two possibilities holds
(a) $T=T_{1} \otimes T_{2}$ where $T_{1}: X^{*} \rightarrow Y^{*}, T_{2}: X \rightarrow Y$ are onto isometries.
(b) $T=T_{1} \otimes T_{2}$ where $T_{1}: X \rightarrow Y^{*}, T_{2}: X^{*} \rightarrow Y$ are onto isometries.

Consequently $K(X)$ and $K(Y)$ are isomorphic or anti-isomorphic in the category of Banach algebras.

If $X=Y=$ Hilbert space then this result is a consequence of Kadison's result on isometrics in C^{*}-algebras.

In this paper we combine the method of [3], [1] and [2] to prove that, in the case of uniformly convex spaces, the above theorem is also stable.

1. Definitions and notation

For Banach spaces U and V
$B(U)$ denotes the closed unit ball in U,
$E(U)$ denotes the set of extreme point of $B(U)$,
$U \ddot{\otimes} V$ denotes the injective tensor product of U and V,
$L(U, V)(K(U, V))$ denotes the Banach space of all continuous (compact) linear operators from U into V. If $U=V$ we write $L(U)(K(U))$ in place of $L(U, U)(\mathrm{K}(U, U))$,
the Banach-Mazur distance between U and V is defined by

$$
d_{B-M}(U, V)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T \text { is a linear isomorphism from } U \text { onto } V\right\}
$$

and we put $d_{B-M}(U, V)=\infty$ if the spaces U and V are nor isomorphic.
For a Hausdorff space S we denote by $C(S)$ the Banach space of all continuous, bounded scalar-valued functions on S with the sup-norm.

In this paper we often consider a Banach space V as a closed subspace of $C\left(E\left(V^{*}\right)\right)$ where $E\left(V^{*}\right)$ is equipped with the weak *topology. The space $V \mathscr{\otimes} U$ is regarded as a subspace of $C\left(E\left(V^{*}\right) \times E\left(U^{*}\right)\right)$.

For a Banach space V, δ_{V} denotes the modulus of convexity of V i.e. the function $\delta_{V}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$defined by

$$
\delta_{V^{\prime}}(\varepsilon)=1-\sup \left\{\frac{1}{2}\left\|v+v^{\prime}\right\|: v, v^{\prime} \in V,\|v\|=\left\|v^{\prime}\right\|=1,\left\|v-v^{\prime}\right\| \geqq \varepsilon\right\}
$$

Also we define $\delta_{V}^{*}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$by

$$
\delta_{V}^{*}(\delta)=\sup \left\{\varepsilon \in \mathbb{R}^{+}: \delta_{V}(\varepsilon) \leqq \delta\right\}
$$

Notice that V is uniformly convex if and only if $\lim _{\delta \rightarrow 0+} \delta_{V}^{*}(\delta)=0$.
Let A and B be Banach algebras and let T be a continuous map from A onto B. We say that T is a linear isomorphism or isomorphism in the category of Banach spaces if T is an isomorphism of underlying Banach spaces of A and B. If, in addition, T preserves the algebra multiplication we call it an algebra isomorphism or isomorphism in the category of Banach algebras.

Finally for a metric space S we put

$$
\operatorname{diam} S=\sup \left\{d\left(s_{1}, s_{2}\right): s_{1}, s_{2} \in S\right\}
$$

2. The results

Theorem 1. Let $X, \tilde{X}, Y, \tilde{Y}$ be Banach spaces with uniformly convex duals. Then there is an $\varepsilon_{0}>0$ such that for any $\varepsilon \leqq \varepsilon_{0}$ and any linear isomorphism T from $X \underset{\otimes}{\otimes} \tilde{X}$ onto $Y \widetilde{\otimes} \tilde{Y}$ with $\|T\|\left\|T^{-1}\right\| \leqq 1+\varepsilon$ there are linear isomorphisms $\Phi: X \rightarrow Y$ and $\Psi: \tilde{X} \rightarrow \tilde{Y}$ or $\Phi: X \rightarrow \tilde{Y}$ and $\Psi: \widetilde{X} \rightarrow Y$ with $\|\Phi\|\left\|\Phi^{-1}\right\| \leqq 1+c(\varepsilon)$ and $\|\Psi\|\left\|\Psi^{-1}\right\| \leqq 1+c(\varepsilon)$ such that

$$
\|T-\Phi \otimes \Psi\| \leqq c(\varepsilon)
$$

The constant ε_{0} and the function c depend only on the modulus of convexity of the considered Banach spaces and $\lim _{\varepsilon \rightarrow 0+} c(\varepsilon)=0$.

Corollary 1. Let X, Y be Banach spaces with the approximation property and such that X, X^{*}, Y and Y^{*} are uniformly convex. Then there is an $\varepsilon_{0}>0$ such that if the BanachMazur distance between $K(X)$ and $K(Y)$ is less than $1+\varepsilon_{0}$ then $K(X)$ and $K(Y)$ are isomorphic in the category of Banach algebras. The constant ε_{0} depends only on the modulus of convexity of Banach spaces X, X^{*}, Y, Y^{*}.

Proof. It is an immediate consequence of Theorem 1, of the fact that any uniformly convex space is reflective and that $K(X)=X^{*} \otimes X$ whenever X has the approximation property.

Corollary 2. Let X, Y, be finite dimensional Banach spaces such that X, X^{*}, Y, Y^{*} are strictly convex. Then there is an $\varepsilon_{0}>0$ such that for any $\varepsilon \leqq \varepsilon_{0}$ and any linear map T from $L(X)$ onto $L(Y)$ with $\|T\|\left\|T^{-1}\right\| \leqq 1+\varepsilon$ and $T\left(\operatorname{Id}_{X}\right)=\operatorname{Id}_{\mathbf{Y}}$ there is an algebra isomorphism \tilde{T} from $L(X)$ onto $L(Y)$ such that

$$
\|T-\widetilde{T}\| \leqq c^{\prime}(\varepsilon)
$$

where $\lim _{\varepsilon \rightarrow 0^{+}} c^{\prime}(\varepsilon)=0$.

Proof of Theorem. We assume, without loss of generality, that $\|T\| \leqq 1+\varepsilon$ and $\left\|T^{-\mathbf{1}}\right\| \leqq 1+\varepsilon$.

At various points of the proof we shall use the inequalities involving ε which are valid only is ε is sufficiently small, in those cases we will merely assume that ε is near 0 and this assumption gives rise to the constant ε_{0}.

Lemma 1. Let U and V be normed, linear spaces, let δ be a positive number and assume that

$$
\begin{equation*}
\left\|u_{1} \otimes v_{1}+u_{2} \otimes v_{2}+u_{3} \otimes v_{3}\right\| \leqq \delta 1 \tag{1}
\end{equation*}
$$

where

$$
u_{1}, u_{2}, u_{3} \in U, v_{1}, v_{2}, v_{3} \in V
$$

and

$$
\left\|u_{1}\right\|=\left\|u_{2}\right\|=1=\left\|v_{1}\right\|=\left\|v_{2}\right\|=\left\|v_{3}\right\|
$$

Then there is a number λ of modulus one such that

$$
\left\|u_{1}-\lambda u_{2}\right\| \leqq 3 \sqrt{\delta} \text { or }\left\|v_{1}-\lambda v_{2}\right\| \leqq 3 \sqrt{\delta}
$$

Proof. If $\inf _{|\lambda|=1}\left\|\lambda v_{i}-v_{3}\right\| \leqq \frac{3}{2} \sqrt{\delta}$ for both $i=1$ and 2 , then we get $\left\|v_{1}-\lambda v_{2}\right\| \leqq 3 \sqrt{\delta}$ for some λ of modulus one, so we can assume that

$$
\begin{equation*}
\inf _{|\lambda|=1}\left\|\lambda v_{1}-v_{3}\right\|>\frac{3}{2} \sqrt{\delta} \tag{2}
\end{equation*}
$$

Assume there is an $\alpha \in C$ with $\left\|v_{1}-\alpha v_{3}\right\| \leqq \frac{3}{4} \sqrt{\delta}$. We get

$$
1+\frac{3}{4} \sqrt{\delta} \geqq|\alpha| \geqq 1-\frac{3}{4} \sqrt{\delta}>0
$$

and we have

$$
\left\|\frac{\bar{\alpha}}{|\alpha|} v_{1}-v_{3}\right\|=\left\|v_{1}-\frac{\alpha}{|\alpha|} v_{3}\right\| \leqq\left|\left|\frac{\alpha}{|\alpha|}-\alpha\right|+\left\|v_{1}-\alpha v_{3}\right\| \leqq=\left|\frac{\alpha(1-|\alpha|)}{|\alpha|}\right|+\frac{3}{4} \sqrt{\delta} \leqq \frac{3}{2} \sqrt{\delta} .\right.
$$

The above contradicts (2) and we get

$$
\begin{equation*}
\inf _{a \in C}\left\|v_{1}-\alpha v_{3}\right\|>\frac{3}{4} \sqrt{\delta} \tag{3}
\end{equation*}
$$

We define a functional v^{*} on $\operatorname{span}\left(v_{1}, v_{3}\right)$ by

$$
v^{*}\left(\alpha v_{1}+\beta v_{3}\right)=\frac{3}{4} \sqrt{\delta} \alpha
$$

From (3) we have $\left\|v^{*}\right\| \leqq 1$. Let \tilde{v}^{*} be a norm preserving extension of v^{*} from $\operatorname{span}\left(v_{1}, v_{3}\right)$ to V. From (1) we get

$$
\left\|u_{1} \tilde{v}^{*}\left(v_{1}\right)+u_{2} \tilde{v}^{*}\left(v_{2}\right)\right\| \leqq \delta,
$$

so

$$
\left\|u_{1}+u_{2} \frac{\tilde{v}^{*}\left(v_{2}\right)}{\tilde{v}^{*}\left(v_{1}\right)}\right\| \leqq \frac{4}{3} \sqrt{\delta}
$$

Hence, in the same manner as before we get

$$
\left\|\left.u_{1}+u_{2} \frac{\tilde{v}^{*}\left(v_{2}\right)}{\tilde{v}^{*}\left(v_{1}\right)} \right\rvert\, \frac{\tilde{v}^{*}\left(v_{1}\right) \mid}{\left|\tilde{v}^{*}\left(v_{2}\right)\right|}\right\| \| 2 \frac{4}{3} \sqrt{\delta}<3 \sqrt{\delta}
$$

For the next lemmas we need the following observations. The first one is easy to check by a direct computation.

Proposition 1. Let V be a Banach space with uniformly convex dual and let $v \in V,\|v\|=1$ then

$$
\operatorname{diam}\left\{v^{*} \in B\left(V^{*}\right): \operatorname{Re}\left(v^{*}(v)\right) \geqq 1-\delta\right\} \leqq \delta_{V^{*}}^{*}(2 \delta)
$$

Proposition 2. Let V, U be Banach spaces with uniformly convex duals and let $v \in V, u \in U,\|v\|=1=\|u\|$ then

$$
\operatorname{diam}\left\{v^{*} \otimes u^{*} \in B\left(V^{*}\right) \otimes B\left(U^{*}\right): \operatorname{Re}\left(\left(v^{*} \otimes u^{*}\right)(v \otimes u)\right) \geqq 1-\delta\right\} \leqq \delta_{V^{*}}^{*}(2 \delta)+\delta_{U^{*}}^{*}(2 \delta) .
$$

Proof. Fix $v_{i}^{*} \otimes u_{i}^{*} \in B\left(V^{*}\right) \otimes B\left(U^{*}\right)$ such that

$$
\operatorname{Re}\left(v_{i}^{*} \otimes u_{i}^{*}\right)(v \otimes u) \geqq 1-\delta \quad \text { for } \quad i=1,2 .
$$

Let $\alpha_{i}, i=1,2$ be complex numbers of modulus one such that $\alpha_{i} v_{i}^{*}(v) \in \mathbb{R}^{+}$. By our assumption we get

$$
\alpha_{1} v_{i}^{*}(v) \geqq 1-\delta \quad \text { and } \quad \operatorname{Re} \frac{1}{\alpha_{i}} u_{i}^{*}(u) \geqq 1-\delta \quad \text { for } \quad i=1,2
$$

Hence by Proposition 1 we get

$$
\left\|\alpha_{1} v_{1}^{*}-\alpha_{2} v_{2}^{*}\right\| \leqq \delta_{V^{*}}^{*}(2 \delta) \quad \text { and } \quad\left\|\frac{1}{\alpha_{1}} u_{1}^{*}-\frac{1}{\alpha_{2}} u_{2}^{*}\right\| \leqq \delta_{U^{*}}^{*}(2 \delta)
$$

so

$$
\begin{aligned}
\left\|v_{1}^{*} \otimes u_{1}^{*}-v_{2}^{*} \otimes u_{2}^{*}\right\| \leqq & \left\|\alpha_{1} v_{1}^{*} \otimes \frac{1}{\alpha_{1}} u_{1}^{*}-\alpha_{2} v_{2}^{*} \otimes \frac{1}{\alpha_{1}} u_{1}^{*}\right\| \\
& +\left\|\alpha_{2} v_{2}^{*} \otimes \frac{1}{\alpha_{1}} u_{1}^{*}-\alpha_{2} v_{2}^{*} \otimes \frac{1}{\alpha_{2}} u_{2}^{*}\right\| \leqq \delta_{V^{*}}^{*}(2 \delta)+\delta_{U^{*}}^{*} 2(\delta) .
\end{aligned}
$$

Proposition 3. Let S be a compact Hausdorff space, let A be a closed subspace of $C(S)$ and Let F be a norm one functional on A. We denote by S_{0} the subset of S consisting of all points s from S such that the norm of the functional $A \ni f \rightarrow f(s)$ is equal to one. Assume that for any $s \in S$ and any number λ of modulus one there is exactly one $s_{\lambda} \in S$ such that

$$
f(s)=\lambda f\left(s_{\lambda}\right) \text { for all } f \in A
$$

Then there is a probability measure μ on S which is a norm preserving extension of F from A to $C(S)$. Furthermore for any such μ we have $\mu\left(S_{0}\right)=\mu(S)=1$.

Proof. Let v be a norm one extension of F from A to $C(S)$. Denote by K_{r} the subset of S consisting of all points $s \in S$ such that the norm of functional $A \ni f \rightarrow f(s)$ is not greater than r. For any $f \in A$ with $\|f\|=1$ we have

$$
\begin{aligned}
|F(f)|= & \left|\int_{S} f d v\right| \leqq \int_{K_{r}}|f| d|v|+\int_{S \backslash K_{r}}|f| d|v| \leqq \sup \left\{|f(s)|: s \in K_{r}\right\} \cdot|v|\left(K_{r}\right) \\
& +|v|\left(S \backslash K_{r}\right) \leqq 1-|v|\left(K_{r}\right)(1-r) .
\end{aligned}
$$

Hence $|v|\left(K_{r}\right)=0$ for any $r<1$, because F has norm one on A. Since $S \backslash S_{0}$ is the union of $S \backslash K_{r}$ for $0<r<1,|v|\left(S_{0}\right)=1$.

Put $h=d v / d|v|$. We can assume $|h| \equiv 1$ on S. By our assumption there is the map $\varphi: S \rightarrow S$ such that

$$
h(s) f(s)=f \circ \varphi(s) \quad \text { for } \quad f \in A, s \in S
$$

If h is continuous, then the corresponding function φ defined by the above equality is also continuous. Hence it is standard to prove that if h is a Borel function then φ is also Borel. To end the proof we define μ by $\mu(K)=|v|\left(\varphi^{-1}(K)\right)$ for any Borel subset K of S.

Lemma 2. Let $X, \widetilde{X}, Y, \widetilde{Y}$ be Banach spaces with uniformly convex duals and let T be a linear isomorphism from $X \mathscr{\otimes} \tilde{X}$ onto $Y \mathscr{\otimes} \tilde{Y}$ with $\|T\| \leqq 1+\varepsilon,\left\|T^{-1}\right\| \leqq 1+\varepsilon$. Then for any $y^{*} \in E\left(Y^{*}\right), \tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right)$ there are $x^{*} \in E\left(X^{*}\right), \tilde{x}^{*} \in E\left(\tilde{X}^{*}\right)$ such that

$$
\left\|T^{*}\left(y^{*} \otimes \tilde{y}^{*}\right)-x^{*} \otimes \tilde{x}^{*}\right\| \leqq \alpha(\varepsilon)
$$

where $\alpha(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and the function depends only on the modulus of convexity of $X^{*}, \tilde{X}^{*}, Y^{*}, \widetilde{Y}^{*}$.

Proof. Fix $y_{0}^{*} \in E\left(Y^{*}\right), \tilde{y}_{0}^{*} \in E\left(\tilde{Y}^{*}\right)$ and let μ be a measure on $B\left(X^{*}\right) \times B\left(\tilde{X}^{*}\right)$ which is a norm preserving extension of the functional $T^{*}\left(y_{0}^{*} \otimes \tilde{y}_{0}^{*}\right)$ from $X \otimes \tilde{X}$ to $C\left(B\left(X^{*}\right) \times\right.$ $\left.B\left(\tilde{X}^{*}\right)\right)$. By Proposition 3 we can assume that μ is positive and we have

$$
\|\mu\|=\mu\left(B\left(X^{*}\right) \times B\left(\tilde{X}^{*}\right)\right)=\mu\left(E\left(X^{*}\right) \times E\left(\tilde{X}^{*}\right)\right)
$$

and

$$
1-\varepsilon \leqq\|\mu\| \leqq 1+\varepsilon
$$

The spaces Y and \tilde{Y} are reflective so there are $y_{0} \in B(Y), \tilde{y}_{0} \in B(\tilde{Y})$ such that

$$
y_{0}^{*}\left(y_{0}\right)=1=\tilde{y}_{0}^{*}\left(\tilde{y}_{0}\right) .
$$

Put

$$
S=\left\{\left(x^{*}, \tilde{x}^{*}\right) \in E\left(X^{*}\right) \times E\left(\tilde{X}^{*}\right): \operatorname{Re}\left(T^{-1}\left(y_{0} \otimes \tilde{y}_{0}\right)\right)\left(x^{*} \otimes \tilde{x}^{*}\right) \geqq 1-\sqrt{\varepsilon}\right\} .
$$

We have

$$
\|\mu\| \leqq 1+\varepsilon,\left\|T^{-1}\left(y_{0} \otimes \tilde{y}_{0}\right)\right\| \leqq 1+\varepsilon
$$

and

$$
\int T^{-1}\left(y_{0} \otimes \tilde{y}_{0}\right) d \mu=1
$$

so, by a direct calculation

$$
\begin{equation*}
\mu\left(E\left(X^{*}\right) \times E\left(\tilde{X}^{*}\right) \backslash S\right) \leqq 2 \sqrt{\varepsilon} \tag{4}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
\operatorname{diam}\left(\left\{\left(x^{*} \otimes \tilde{x}^{*}\right):\left(x^{*}, \tilde{x}^{*}\right) \in S\right\}\right) \leqq \alpha^{\prime}(\varepsilon) \tag{5}
\end{equation*}
$$

where $\alpha^{\prime}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$, and α^{\prime} depends only on the modulus of convexity of $X^{*}, \widetilde{X}^{*}, Y^{*}, \tilde{Y}^{*}$.

For this purpose let $\left(x_{i}^{*}, \tilde{x}_{i}^{*}\right) \in S$ for $i=1,2$. The spaces X and \tilde{X} are reflexive so there are $x_{i} \in B(X), \tilde{x}_{i} \in B(\tilde{X})$ such that $x_{i}^{*}\left(x_{i}\right)=1=\tilde{x}_{i}^{*}\left(\tilde{x}_{i}\right)$ for $i=1,2$. We have

$$
\left\|x_{i} \otimes \tilde{x}_{i}+T^{-1}\left(y_{0} \otimes \tilde{y}_{0}\right)\right\| \geqq\left|\left(\left(x_{i} \otimes \tilde{x}_{i}\right)+T^{-1}\left(y_{0} \otimes \tilde{y}_{0}\right)\right)\left(x_{i}^{*} \otimes \tilde{x}_{i}^{*}\right)\right| \geqq 2-\sqrt{\varepsilon}
$$

hence, if $\varepsilon \leqq \frac{1}{4}$, we get

$$
\left\|T\left(x_{i} \otimes \tilde{x}_{i}\right)+y_{0} \otimes \tilde{y}_{0}\right\| \geqq(2-\sqrt{\varepsilon}) /(1+\varepsilon) \geqq 2-2 \sqrt{\varepsilon} \quad \text { for } \quad i=1,2 .
$$

Let $y_{i}^{*} \otimes \tilde{y}_{i}^{*} \in E\left(Y^{*}\right) \otimes E\left(\hat{Y}^{*}\right)$ be such that

$$
\operatorname{Re}\left(y_{i}^{*} \otimes \tilde{y}_{i}^{*}\left(T\left(x_{i} \otimes \tilde{x}_{i}\right)+y_{0} \otimes \tilde{y}_{0}\right)\right) \geqq 2-2 \sqrt{\varepsilon}
$$

Hence

$$
\operatorname{Re} y_{i}^{*} \otimes \tilde{y}_{i}^{*}\left(T\left(x_{i} \otimes \tilde{x}_{i}\right)\right) \geqq 1-2 \sqrt{\varepsilon}, \operatorname{Re} y_{i}^{*} \otimes \tilde{y}_{i}^{*}\left(y_{0} \otimes \tilde{y}_{0}\right) \geqq 1-3 \sqrt{\varepsilon} .
$$

By Proposition 2 we get

$$
\left\|y_{0}^{*} \otimes \tilde{y}_{0}^{*}-y_{i}^{*} \otimes \tilde{y}_{i}^{*}\right\| \leqq \delta_{\hat{P}^{*}}^{*}(6 \sqrt{\varepsilon})+\delta_{\hat{P}^{*}}^{*}(6 \sqrt{\varepsilon})
$$

which in view of previous inequalities leads to

$$
\operatorname{Re}\left(T\left(x_{i} \otimes \tilde{x}_{i}\right)\right)\left(y_{0}^{*} \otimes \tilde{y}_{0}^{*} \geqq 1-3 \sqrt{\varepsilon}-3(1+\varepsilon)\left[\delta_{Y^{*}}^{*}(6 \sqrt{\varepsilon})+\delta_{\bar{Y}^{*}}^{*}(6 \sqrt{\varepsilon})\right]=\gamma(\varepsilon) \text { for } \quad i=1,2\right.
$$

so

$$
\left\|x_{1} \otimes \tilde{x}_{1}+x_{2} \otimes \tilde{x}_{2}\right\| \geqq 2 \gamma(\varepsilon)
$$

Hence there is $x^{*} \otimes \tilde{x}^{*} \in E\left(X^{*}\right) \otimes E\left(\tilde{X}^{*}\right)$ such that

$$
\operatorname{Re} x_{i} \otimes \tilde{x}_{i}\left(x^{*} \otimes \tilde{x}^{*}\right) \geqq 2 \gamma(\varepsilon)-1 \quad \text { for both } \quad i=1 \text { and } 2 .
$$

By Proposition 2

$$
\left\|x_{1}^{*} \otimes \tilde{x}_{1}^{*}-x_{2}^{*} \otimes \tilde{x}_{2}^{*}\right\| \leqq\left[\delta_{X^{*}}^{*}(4-4 \gamma(\varepsilon))+\delta_{\tilde{x}^{*}}^{*}(4-4 \gamma(\varepsilon))\right]=\alpha^{\prime}(\varepsilon) .
$$

Fix $\left(x_{0}^{*}, \tilde{x}_{0}^{*}\right) \in S$. To end the proof we observe that for any $f \in X \otimes \tilde{X}$ with $\|f\| \leqq 1$, it
follows from (4) and (5) that

$$
\begin{aligned}
\mid f\left(x_{0}^{*} \otimes \tilde{x}_{0}^{*}\right) & -T^{*}\left(y_{0}^{*} \otimes \tilde{y}_{0}^{*}\right)(f)\left|=\left|f\left(x_{0}^{*} \otimes \tilde{x}_{0}^{*}\right)-\int f d \mu\right|\right. \\
& \leqq 4 \sqrt{\varepsilon}+\int_{S}\left|f-f\left(x_{0}^{*} \otimes \tilde{x}_{0}^{*}\right)\right| d \mu+|1-\mu(S)| \\
& \leqq 4 \sqrt{\varepsilon}+\alpha^{\prime}(\varepsilon)(1+\varepsilon)+4 \sqrt{\varepsilon}=\alpha(\varepsilon)
\end{aligned}
$$

Lemma 3. Let $X, \tilde{X}, Y, \tilde{Y}, T, \varepsilon, \alpha$ be as in Lemma 2. Assume $y_{0}^{*} \in E\left(Y^{*}\right), \tilde{y}_{1}^{*}, \tilde{y}_{2}^{*}, \tilde{y}_{3}^{*} \in E\left(\tilde{Y}^{*}\right)$, $x_{1}^{*}, x_{\mathbf{2}}^{*}, x_{\mathbf{3}}^{*} \in E\left(X^{*}\right), \tilde{x}_{1}^{*}, \tilde{x}_{2}^{*}, \tilde{x}_{\mathbf{3}}^{*} \in E\left(\tilde{X}^{*}\right)$ are such that

$$
\left\|T^{*}\left(y_{0}^{*} \otimes \tilde{y}_{i}^{*}\right)-x_{i}^{*} \otimes \tilde{x}_{i}^{*}\right\| \leqq\langle(\varepsilon) \quad \text { for } \quad i=1,2,3
$$

then there are numbers $\lambda_{i, j}$ for $i, j=1,2,3$ of modulus one such that

$$
\left\|x_{i}^{*}-\lambda_{i, j} x_{j}^{*}\right\| \leqq \beta(\varepsilon) \quad \text { for } \quad i, j=1,2,3
$$

or

$$
\left\|\tilde{x}_{i}^{*}-\lambda_{i, j} \tilde{x}_{j}^{*}\right\| \leqq \beta(\varepsilon) \quad \text { for } \quad i, j=1,2,3
$$

where

$$
\beta(\varepsilon)=24 \sqrt{\alpha(\varepsilon)}
$$

Proof. Since \tilde{Y}^{*} is uniformly convex, by Lemma 2, there are $x_{4}^{*} \in E\left(X^{*}\right)$ and $\tilde{x}_{4}^{*} \in E\left(\tilde{X}^{*}\right)$ such that

$$
\left\|T\left(y_{0}^{*} \otimes\left(\tilde{y}_{1}^{*}+\tilde{y}_{2}^{*}\right)\right)-k x_{4}^{*} \otimes \tilde{x}_{4}^{*}\right\| \leqq k \alpha(\varepsilon)
$$

where

$$
k=\left\|\tilde{y}_{1}^{*}+\tilde{y}_{2}^{*}\right\| \leqq 2
$$

Hence

$$
\left\|x_{1}^{*} \otimes \tilde{x}_{1}^{*}+x_{2}^{*} \otimes \tilde{x}_{2}^{*}-k x_{4}^{*} \otimes \tilde{x}_{4}^{*}\right\| \leqq(k \alpha(\varepsilon)+2 \alpha(\varepsilon)) \leqq 4 \alpha(\varepsilon)
$$

and by Lemma 1 we have

$$
\left\|x_{1}^{*}-\lambda x_{2}^{*}\right\| \leqq 12 \sqrt{\alpha(\varepsilon)} \quad \text { or } \quad\left\|\tilde{x}_{1}^{*}-\lambda \tilde{x}_{2}^{*}\right\| \leqq 12 \sqrt{\alpha(\varepsilon)}
$$

for some λ of modulus one.
Considering successively the pairs of indices $(1,2),(2,3)$ and $(1,3)$ we obtain the assertion of the lemma.

From Lemmas 2 and 3 we deduce that for any $y_{0}^{*} \in E\left(Y^{*}\right)$ we have exactly two possibilities:
(a) there is an $x_{0}^{*} \in E\left(X^{*}\right)$ and a function $\varphi: E\left(\tilde{Y}^{*}\right) \rightarrow E\left(\tilde{X}^{*}\right)$ such that

$$
\left\|T^{*}\left(y_{0}^{*} \otimes \tilde{y}^{*}\right)-x_{0}^{*} \otimes \varphi\left(\tilde{y}^{*}\right)\right\| \leqq \alpha(\varepsilon)+\beta(\varepsilon)=\gamma(\varepsilon) \quad \text { for all } \quad \tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right)
$$

or
(b) there is an $\tilde{x}_{0}^{*} \in E\left(\tilde{X}^{*}\right)$ and a function $\psi: E\left(\tilde{Y}^{*}\right) \rightarrow E\left(X^{*}\right)$ such that

$$
\begin{equation*}
\left\|T^{*}\left(y_{0}^{*} \otimes \tilde{y}^{*}\right)-\psi\left(\tilde{y}^{*}\right) \otimes \tilde{x}_{0}^{*}\right\| \leqq \gamma(\varepsilon) \quad \text { for all } \quad \tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right) . \tag{7}
\end{equation*}
$$

By the same arugments applied to the map T^{-1} in place of T, we get by symmetry (replacing the space X by \tilde{X} and Y by \tilde{Y}) and by Lemma 3 that

$$
\begin{align*}
& \sup \left\{\inf \left\{\left\|\varphi\left(\tilde{y}^{*}\right)-\tilde{x}^{*}\right\|: \tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right)\right\}: \tilde{x}^{*} \in E\left(\tilde{X}^{*}\right)\right\} \leqq \gamma(\varepsilon) \tag{8}\\
& \sup \left\{\inf \left\{\left\|\psi\left(\tilde{y}^{*}\right)-x^{*}\right\|: \tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right)\right\}: x^{*} \in E\left(X^{*}\right)\right\} \leqq \gamma(\varepsilon) .
\end{align*}
$$

For any $y_{0}^{*} \in E\left(Y^{*}\right)$ we define, depending on which of the above possibilities takes place, a function $\Phi: \tilde{X} \rightarrow \tilde{Y}$ or $\Psi: X \rightarrow \widetilde{Y}$ as follows:
(a) fix $x_{0} \in B(X)$ such that $x_{0}^{*}\left(x_{0}\right)=1$ and define Φ by $\tilde{y}^{*}(\Phi(x))=y_{0}^{*} \otimes \tilde{y}^{*}\left(T\left(x_{0} \otimes \tilde{x}\right)\right)$ for $\tilde{y}^{*} \in \tilde{Y}^{*}, \tilde{x} \in \tilde{X}$;
(b) fix $\tilde{x}_{0} \in B(\tilde{X})$ such that $\tilde{x}_{0}^{*}\left(x_{0}\right)=1$ and define Ψ by $\tilde{y}^{*}(\Psi(x))=y_{0}^{*} \otimes \tilde{y}^{*}\left(T\left(x \otimes \tilde{x}_{0}\right)\right)$ for $\tilde{y}^{*} \in \tilde{Y}^{*}, x \in X$.

The above definitions may depend on the choice of $x_{0}\left(\tilde{x}_{0}\right)$ and we assume that we have fixed some $\Phi(\Psi)$ as above, for any $y_{0}^{*} \in E\left(Y^{*}\right)$.

We have $\|\Phi\| \leqq 1+\varepsilon,\|\Psi\| \leqq 1+\varepsilon$, and

$$
\begin{array}{rll}
\left|\tilde{y}^{*}(\Phi(\tilde{x}))-\varphi\left(\tilde{y}^{*}\right)(\tilde{x})\right| \leqq \gamma(\varepsilon)\|\tilde{x}\| & \text { for all } & \tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right), \tilde{x} \in \tilde{X}, \\
\left|\tilde{y}^{*}(\Psi(x))-\psi\left(\tilde{y}^{*}\right)(x)\right| \leqq \gamma(\varepsilon)\|x\| & \text { for all } & \tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right), x \in X,
\end{array}
$$

so from (8) we infer that Φ and Ψ are one to one, onto isomorphisms with $\left\|\Phi^{-1}\right\| \leqq$ $1+\gamma(\varepsilon),\left\|\Psi^{-1}\right\| \leqq 1+\gamma(\varepsilon)$ and

$$
\left\|\Phi^{*}\left(\tilde{y}^{*}\right)-\varphi\left(\tilde{y}^{*}\right)\right\| \leqq \gamma(\varepsilon) \quad \text { and } \quad\left\|\Psi^{*}\left(\tilde{y}^{*}\right)-\psi\left(\tilde{y}^{*}\right)\right\| \leqq \gamma(\varepsilon) \quad \text { for all } \quad \tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right) .
$$

To end the proof we show that for all $y_{0}^{*} \in E\left(Y^{*}\right)$ one of the two possibilities (a) and (b) takes place and the map assigning to $y_{0}^{*} \in E\left(Y^{*}\right)$ a $\Phi \in L(\tilde{X}, \tilde{Y})(\Psi \in L(X, \tilde{Y}))$ is " ε almost" constant.

For this end, assume that $y_{1}^{*}, y_{2}^{*} \in E\left(Y^{*}\right), x_{1}^{*} \in E\left(X^{*}\right), \tilde{x}_{2}^{*} \in E\left(\tilde{X}^{*}\right), \quad \Phi_{1} \in L(\tilde{X}, \tilde{Y})$, $\Psi_{2} \in L(X, \tilde{Y})$ are such that, for all $\tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right)$,

$$
\begin{equation*}
\left\|T^{*}\left(y_{i}^{*} \otimes \tilde{y}^{*}\right)-x_{1}^{*} \otimes \Phi_{1}^{*}\left(\tilde{y}^{*}\right)\right\| \leqq 2 \gamma(\varepsilon) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T^{*}\left(y_{2}^{*} \otimes \tilde{y}^{*}\right)-\Psi_{2}^{*}\left(\tilde{y}^{*}\right) \otimes \tilde{x}_{2}^{*}\right\| \leqq 2 \gamma(\varepsilon) \tag{10}
\end{equation*}
$$

Since $\left\|\left(\Phi_{1}^{*}\right)^{-1}\right\| \leqq 1+\gamma(\varepsilon),\left\|\left(\Psi_{2}^{*}\right)^{-1}\right\| \leqq 1+\gamma(\varepsilon)$ there are $\tilde{y}_{1}^{*}, \tilde{y}_{2}^{*} \in E\left(\tilde{Y}^{*}\right)$ such that $\left\|\Phi_{1}^{*}\left(\tilde{y}_{1}^{*}\right)-\tilde{x}_{2}^{*}\right\| \leqq \gamma(\varepsilon),\left\|\Psi_{2}^{*}\left(\tilde{y}_{2}^{*}\right)-x_{1}^{*}\right\| \leqq \gamma(\varepsilon)$; so we get

$$
\left\|x_{1}^{*} \otimes \tilde{x}_{2}^{*}-T^{*}\left(y_{i}^{*} \otimes \tilde{y}_{i}^{*}\right)\right\| \leqq(1+\varepsilon) \gamma(\varepsilon)+2 \gamma(\varepsilon) \text { for } i=1,2
$$

and hence

$$
\left\|y_{1}^{*} \otimes \tilde{y}_{1}^{*}-y_{2}^{*} \otimes \tilde{y}_{2}^{*}\right\| \leqq 2(1+\varepsilon)(3+\varepsilon) \gamma(\varepsilon) \leqq 7 \gamma(\varepsilon)
$$

leading to the inequality

$$
\left\|y_{1}^{*}-y_{2}^{*}\right\| \leqq 7 \gamma(\varepsilon)
$$

which contradicts (9) and (10).
Thus without loss of generality we can assume that it is the first possibility that always holds.

Fix $y_{0}^{*} \in E\left(Y^{*}\right)$ and $\tilde{y}_{0}^{*} \in E\left(\tilde{Y}^{*}\right)$. There is an $x_{0}^{*} \in E\left(X^{*}\right)$ and $\Phi_{0} \in L(\tilde{X}, \tilde{Y})$ with $\left\|\Phi_{0}\right\|\left\|\Phi_{0}^{-1}\right\| \leqq(1+\varepsilon)(1+\gamma(\varepsilon))$ such that

$$
\begin{equation*}
\left\|T^{*}\left(y_{0}^{*} \otimes \tilde{y}^{*}\right)-x_{0}^{*} \otimes \Phi_{0}^{*}\left(\tilde{y}^{*}\right)\right\| \leqq 2 \gamma(\varepsilon), \quad \text { for all } \quad \tilde{y}^{*} \in E\left(\tilde{Y}^{*}\right) \tag{11}
\end{equation*}
$$

By symmetry there is an $\tilde{x}_{0}^{*} \in E\left(\tilde{X}^{*}\right)$ and $\Psi_{0} \in L(X, Y)$ with $\left\|\Psi_{0}\right\|\left\|\Psi_{0}^{-1}\right\| \leqq(1+\varepsilon)(1+\gamma(\varepsilon))$ such that

$$
\begin{equation*}
\left\|T^{*}\left(y^{*} \otimes \tilde{y}_{0}^{*}\right)-\Psi_{0}^{*}\left(y^{*}\right) \otimes \tilde{x}_{0}^{*}\right\| \leqq 2 \gamma(\varepsilon) \quad \text { for all } \quad y^{*} \in E\left(Y^{*}\right) \tag{12}
\end{equation*}
$$

Moreover, replacing $2 \gamma(\varepsilon)$ in (11) and (12) by $4 \gamma(\varepsilon)$ we can assume $\tilde{x}_{0}^{*}=\Phi_{0}^{*}\left(\tilde{y}_{0}^{*}\right)$ and $x_{0}^{*}=\Psi_{0}^{*}\left(y_{0}^{*}\right)$.

Let us compose T with $\Phi^{-1} \otimes \Psi^{-1}$. To complete the proof it is sufficient to show the following lemma:

Lemma 4. Let X, \tilde{X} be Banach spaces with uniformly convex duals, then there is an $\varepsilon_{0}>0$ such that for all $\varepsilon<\varepsilon_{0}$ the following implication holds:
if T is a linear isomorphism from $X \otimes \tilde{X}$ onto itself with $\|T\|\left\|T^{-1}\right\| \leqq 1+\varepsilon$ and if there exist $x_{0}^{*} \in E\left(X^{*}\right)$ and $\tilde{x}_{0}^{*} \in E\left(\tilde{X}^{*}\right)$ such that

$$
T^{*}\left(x_{0}^{*} \otimes \tilde{x}^{*}\right)=x_{0}^{*} \otimes \tilde{x}^{*} \quad \text { for all } \quad \tilde{x}^{*} \in \tilde{X}^{*}
$$

and

$$
T^{*}\left(x^{*} \otimes \tilde{x}_{0}^{*}\right)=x^{*} \otimes \tilde{x}_{0}^{*} \quad \text { for all } \quad x^{*} \in X^{*}
$$

then $\|T-\mathrm{Id}\| \leqq 2 \gamma(\varepsilon)$.

Proof. Let $x_{1}^{*} \in E\left(X^{*}\right), \tilde{x}_{1}^{*} \in E\left(\tilde{X}^{*}\right)$. It follows from the assumptions and our previous considerations that there are isomorphisms $\Phi \in L(\tilde{X})$ and $\Psi \in L(X)$ such that

$$
\left\|T^{*}\left(x_{1}^{*} \otimes \tilde{x}\right)-x_{1}^{*} \otimes \Phi^{*}\left(\tilde{x}^{*}\right)\right\| \leqq 2 \gamma(\varepsilon) \quad \text { for all } \quad \tilde{x}^{*} \in E\left(\tilde{X}^{*}\right)
$$

and

$$
\left\|T^{*}\left(x^{*} \otimes \tilde{x}_{1}^{*}\right)-\Psi^{*}\left(x^{*}\right) \otimes \tilde{x}_{1}^{*}\right\| \leqq 2 \gamma(\varepsilon) \quad \text { for all } \quad x^{*} \in E\left(X^{*}\right) .
$$

Substituting $\tilde{x}^{*}=\tilde{x}_{1}^{*}$ and $x^{*}=x_{1}^{*}$ we get

$$
\left\|T^{*}\left(x_{1}^{*} \otimes \tilde{x}_{1}^{*}\right)-x_{1}^{*} \otimes \Phi^{*}\left(\tilde{x}_{1}^{*}\right)\right\| \leqq 2 \gamma(\varepsilon)
$$

and

$$
\left\|T^{*}\left(x_{1}^{*} \otimes \tilde{x}_{1}^{*}\right)-\Psi^{*}\left(x_{1}^{*}\right) \otimes \tilde{x}_{1}^{*}\right\| \leqq 2 \gamma(\varepsilon) .
$$

Hence

$$
\left\|\Phi^{*}\left(\tilde{x}_{1}^{*}\right)-\tilde{x}_{1}^{*}\right\| \leqq 2 \gamma(\varepsilon) \quad \text { and } \quad\left\|x_{1}^{*}-\Psi^{*}\left(x_{1}^{*}\right)\right\| \leqq 2 \gamma(\varepsilon)
$$

so $\left\|T^{*}\left(x_{1}^{*} \otimes \tilde{x}_{1}^{*}\right)-x_{1}^{*} \otimes \tilde{x}_{1}^{*}\right\| \leqq 2 \gamma(\varepsilon)$ as required.

REFERENCES

1. K. Jarosz, A generalization of the Banach-Stone theorem, Studia Math. 73 (1982), 33-39.
2. K. Jarosz, Metric and algebraic perturbations of function algebras, Proc. Edinburgh Math. Soc. 26 (1983), 383-391.
3. K. Jarosz, Isometries between injective tensor products of Banach spaces, Pacific J. Math. to appear.
4. M. Nagasawa, Isomorphisms between commutative Banach algebras with application to rings of analytic functions, Kodai Math. Sem. Rep. 11 (1959), 182-188.

Institute of Mathematics
Warsaw University, PKiN
$00-901$ Warsaw, Poland

