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0. Introduction

Let A and B be function algebras. The well-known Nagasawa theorem [5] states that
A and B are isometric if and only if they are isomorphic in the category of Banach
algebras. In [2] it was shown that this theorem is stable in the sense that if the Banach-
Mazur distance between the underlying Banach spaces of A and B is close to one then
these algebras are almost isomorphic, that is there exists a linear map Tfrom A onto B
such that llT"1^/Tg)—./g||ge||/| | | |g||. On the other hand one can get from Theorems
1 and 3 of [3] that the Nagasawa theorem can be extended to some operator algebras
as follows:

Theorem. Let X, Y be real Banach spaces with the approximation property and such
that X*, X**i Y*, Y** are all strictly convex. Assume that T is a linear isometry from
K{X) = X*®X onto K{Y)=Y*®Y then one of the following two possibilities holds

(a) T= T^®^ where T1:X*->Y*, T2:X^>Y are onto isometries.
(b) T= Ti®T2 where TX:X-*Y*, T2:X*-+Y are onto isometries.

Consequently K(X) and K(Y) are isomorphic or anti-isomorphic in the category of
Banach algebras.

If X=7=Hilbert space then this result is a consequence of Kadison's result on
isometrics in C*-algebras.

In this paper we combine the method of [3], [1] and [2] to prove that, in the case of
uniformly convex spaces, the above theorem is also stable.

1. Definitions and notation

For Banach spaces U and V

B(U) denotes the closed unit ball in U,
E(U) denotes the set of extreme point of B{U),

U® V denotes the injective tensor product of U and V,
L(U,V) (K(U, V)) denotes the Banach space of all continuous (compact) linear operators
from U into V. If [/= V we write L(U) (K(U)) in place of L(U, U) (K(C/, [/)),
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the Banach-Mazur distance between U and V is defined by

dB^M(U, F) = inf{||T||||T"1||:T is a linear isomorphism from U onto V},

and we put dB_M(t/, V) = oo if the spaces U and V are nor isomorphic.
For a Hausdorff space S we denote by C(S) the Banach space of all continuous,

bounded scalar-valued functions on S with the sup-norm.
In this paper we often consider a Banach space V as a closed subspace of C(E(V*))

where E{V*) is equipped with the weak *topology. The space V®U is regarded as a
subspace of C(E(V*) x E(U*)).

For a Banach space V,dv denotes the modulus of convexity of V i.e. the function
<5K:R + -»R+ defined by

Also we define «5£:IR+->[R+ by

Notice that V is uniformly convex if and only if lim4_o+5£(5) = 0.
Let A and B be Banach algebras and let T be a continuous map from A onto B. We

say that T is a linear isomorphism or isomorphism in the category of Banach spaces if
T is an isomorphism of underlying Banach spaces of A and B. If, in addition, T
preserves the algebra multiplication we call it an algebra isomorphism or isomorphism
in the category of Banach algebras.

Finally for a metric space S we put

diamS=

2. The results

Theorem 1. Let X,X,Y,Y be Banach spaces with uniformly convex duals. Then there
is an eo>0 such that for any e^e0 and any linear isomorphism T from X®X onto Y®Y
with llTjIllT^H^H-e there are linear isomorphisms <D:X->Y and V.X^Y or O:X->Y
and ^V-.X^Y with ||<D||||<I>-1||gl-l-c(e) and | | ¥ | | | | > F - 1 | | ^ 1 + C ( E ) such that

The constant e0 and the function c depend only on the modulus of convexity of the
considered Banach spaces and lime-0+ c(e) = 0.

Corollary 1. Let X, Y be Banach spaces with the approximation property and such that
X, X*, Y and Y* are uniformly convex. Then there is an e0 > 0 such that if the Banach-
Mazur distance between K{X) and K(Y) is less than l+e 0 then K(X) and K(Y) are
isomorphic in the category of Banach algebras. The constant e0 depends only on the
modulus of convexity of Banach spaces X,X*, Y, Y*.
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Proof. It is an immediate consequence of Theorem 1, of the fact that any uniformly
convex space is reflective and that K(X) = X*®X whenever X has the approximation
property.

Corollary 2. Let X, Y, be finite dimensional Banach spaces such that X, X*, Y, Y* are
strictly convex. Then there is an £o>0 such that for any e^e0 and any linear map T from
L(X) onto L(Y) with | |T | | | |T~1 | |^l+e and T(Id^) = IdY there is an algebra isomorphism
tfrom L(X) onto L(Y) such that

\\T-T\\^c'(s).

where limE_>o+c'(e) = 0.

Proof of Theorem. We assume, without loss of generality, that | | J T | | ^ 1 + £ and
llT^H^l+e.

At various points of the proof we shall use the inequalities involving e which are valid
only is £ is sufficiently small, in those cases we will merely assume that e is near 0 and
this assumption gives rise to the constant e0.

Lemma 1. Let U and V be normed, linear spaces, let 6 be a positive number and
assume that

(1)

where

u1,u2,u3eU,v1,v2,v3eV

and

WHhlhHNHMHMI-
Then there is a number X of modulus one such that

or Wvi-XviW^

Proof. If inf|;i| = 1||A»i —i^H^f^/^ for both i = l and 2, then we get ||i>i
for some X of modulus one, so we can assume that

inf \\Xv,-vz\>\Jl.
Ul = i

Assume there is an aeC with Ht̂ — a t ) 3 | | ^ | N /5 . We get
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a
—rUi — V-i
al

a
V\ V-i

a <c
a

l a

The above contradicts (2) and we get

inf ||«i— at)3||
aeC

We define a functional v* on s p a n ^ , ^ ) by

(3)

From (3) we have | | «* | | ^1 . Let v* be a norm preserving extension of v* from
tt?!,!^) to K From (1) we get

so

Hence, in the same manner as before we get

For the next lemmas we need the following observations. The first one is easy to
check by a direct computation.

Proposition 1. Let V be a Banach space with uniformly convex dual and let veV, \\v\\ = 1
then

Proposition 2. Let V,U be Banach spaces with uniformly convex duals and let
veV,ueU,\\v\\ = l = \\u\\ then

diam {v* ® u*eB(V*) ® B(U*):Re({v* ® «*) (v ® u)) ̂  1 -(5} g<5?.(2<5) + ^

Proof. Fix «f ® M?" G B ( K * ) ® B(l/*) such that

Re(v?®u?)(v®u)^l-8 for i = l,2.
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Let a,, i = l,2 be complex numbers of modulus one such that a,Df(u)elR+. By our
assumption we get

v^l-S and Re-u*(u)^l-(5 for i=l,2.
a,-

Hence by Proposition 1 we get

and
1 ^ 1

*1 a2

so

1
«1

1

«2

Proposition 3. Let S be a compact Hausdorff space, let A be a closed subspace of C(S)
and Let F be a norm one functional on A. We denote by So the subset of S consisting of all
points s from S such that the norm of the functional Asf^f(s) is equal to one. Assume
that for any seS and any number k of modulus one there is exactly one sxeS such that

for all feA.

Then there is a probability measure [i on S which is a norm preserving extension of F from
A to C(S). Furthermore for any such /x we have

Proof. Let v be a norm one extension of F from A to C(S). Denote by Kr the subset
of S consisting of all points seS such that the norm of functional Asf-*f(s) is not
greater than r. For any feA with | | / | | = 1 we have

^J I/I 4 1 + J

Hence |v|(/Cr) = 0 for any r < 1, because F has norm one on A. Since S\S0 is the union of
5 \ / C r f o r 0 < r < l , |v|(S0) = l.

Put h = dv/d\v\. We can assume \h\ = l on S. By our assumption there is the map
(p:S-*S such that

h(s)f(s) = f°cp(s) for feA,seS.
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If h is continuous, then the corresponding function q> defined by the above equality is
also continuous. Hence it is standard to prove that if h is a Borel function then cp is also
Borel. To end the proof we define \i by ^i(K) = \v\(<p~ i(K)) for any Borel subset K of S.

Lemma 2. Let X, X, Y, Y be Banach spaces with uniformly convex duals and let T be a
linear isomorphism from X ® X onto Y® Y with | |T||^1 +e, | |T~1 | |^l+e. Then for any
y*eE(Y*), y*eE(Y*) there are x*eE(X*), x*eE(X*) such that

\\T*(y* ® y*)-x* ® x*\\^4e);

where a(e)-*0 as e—»0 and the function depends only on the modulus of convexity of
X*,X*,Y*,Y*.

Proof. Fix y$ e £( Y *), y% e E( Y *) and let / jbea measure on B(X*) x B(X*) which is
a norm preserving extension of the functional T*(y% ® y%) from X ® X to C(B(X*) x
B(X*)). By Proposition 3 we can assume that /x is positive and we have

\\4 =KB(X*) x B(X*)) = ti(E(X*) x E(X*))

and

1— £g||/i | |gl+e.

The spaces Y and Y are reflective so there are yoeB(Y), yoeB(Y) such that

Put

We have

and

so, by a direct calculation

H{E{X*)XE{X*)\S)^2JE. (4)

We shall show that

diam({(x* ®x*):(x*,x*)eS})^a'(e) (5)
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where <X'(E)-+0 as e->0, and a' depends only on the modulus of convexity of
X*,X*,Y*,Y*.

For this purpose let (xf,xf)eS for i=l ,2. The spaces X and X are reflexive so there
are xteB(X), xteB(X) such that x?(x,) = 1 = xf(x,) for i= 1,2. We have

hence, if £^5, we get

®^.)+3'o®>;o| |^(2-N/^)/(l+£)^2-27e" for i=

Let j>f ® j>? e£(T*) ® £( Y*) be such that

Re (yf ® yf(T(x, ® x,) + y0 ®

Hence

Re yf ® yf(T(Xi ® jc,)) ^ 1 - 2^/e, Re yf

By Proposition 2 we get

which in view of previous inequalities leads to

so

||xj ® xi+x2 ® x2|| ^

Hence there is x* ® x* e £(A"*) (g) £(X*) such that

Re x,- (g) Xj(x* ® x*) = 2y(e) - 1 for both i = 1 and 2.

By Proposition 2

Fix (x$,xg)eS. To end the proof we observe that for any feX ® X with ll/l l^l, it
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follows from (4) and (5) that

/ = a(e).

Lemma 3. Let X,X,Y,Y,T,e,<x be as in Lemma 2. Assume y % e £( Y*), yt,y$,y%e E( Y*),
xf, xf, x% e E(X*), xf, x | , xJ e E(X*) are such that

\\T*(y$®9?)-xT®xT\\£«(e) for i= 1,2,3,

t/ien J/iere are numbers ktjfor i,j= 1,2,3 of modulus one such that

WxT-KjxfUm M i,j= 1,2,3

or

||x?-A,f_,x;||^(e) /or i,;=l,2,3

where

Proof. Since Y* is uniformly convex, by Lemma 2, there are xJe£(X*) and
x$eE(X*) such that

where

Hence

||xf

and by Lemma 1 we have

or

for some A of modulus one.

Considering successively the pairs of indices (1,2), (2,3) and (1,3) we obtain the assertion
of the lemma.
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From Lemmas 2 and 3 we deduce that for any y$eE(Y*) we have exactly two
possibilities:

(a) there is an x$eE(X*) and a function (p:E(Y*)-+E(X*) such that

= y(e) for all y*eE(Y*)

or

(b) there is an x$eE(X*) and a function il/:E(f*)^E(X*) such that

\\T*ty%®y*)-ilf{y*)®xt\\£y(e) for all y*eE(Y*). (7)

By the same arugments applied to the map T'1 in place of T, we get by symmetry
(replacing the space X by X and Y by Y) and by Lemma 3 that

sup {inf {\\<p(y*) -x*\\:y* e E(Y*)}:x*eE(X*)}^y(e)
(8)

sup {M{\\4,(y*)-x*\\:y* e E(Y*)}:x* e £(**)} gy(e).

For any _y5e£(7*) we define, depending on which of the above possibilities takes
place, a function <t>:Jit-*Y or *¥:X->Y as follows:

(a) fix xoeB(X) such that xg(xo) = l and define O by y*(<I>(x)) = ;y3 ®y*(T(x0 ® x))
for fe?*, xeX;

(b) fix x o e B ( ^ ) such that xj(xo) = l and define W by y*(y¥(x))=y$ ® y*(T(x® x0))
forj;*eY*,xeX.

The above definitions may depend on the choice of xo(x0) and we assume that we
have fixed some <S>(W) as above, for any y%eE(Y*).

We have | |O| |gH-e, | |T | |S l + e, and

\y*(<t>(x))-(p(y*)(x)\Zy(e)\\x\\ for all y*eE(Y*),xeX,

||x|| for all y*eE(Y*),xeX,

so from (8) we infer that 4> and *P are one to one, onto isomorphisms with j|«I> x11 ^
p \ \ and

\\<t>*(y*)-cp(y*)\\^y(e) and \\V*(9*)-ip(y*)\\^y(e) for all y* 6 £ (7* ) .

To end the proof we show that for all y$eE(Y*) one of the two possibilities (a) and
(b) takes place and the map assigning to y$eE(Y*) a <5>eL(X,Y) {¥eL{X, Y)) is "e-
almost" constant.

For this end, assume that y*,y$eE(Y*), xJe£(X*) ,xfeE(X*) , 0> i eL(X,y) ,
V2eL(X, Y) are such that, for all y*eE(Y*),

(9)
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and

\\T*{yl ® y*)-Vl(y*) ® x!||^2y(e). (10)

Since |[(0)*)-x || ^ 1 +y(e),\\C¥$yl\\^l+y(e) there are y\, y?e£(Y*) such that
UpV)-xl\\m£y, so we get

|| || for i = l,

and hence

||y* ® y*-y\ ® j?5|| ̂ 2(1 +e)(3 + e)y(e) gly(z)

leading to the inequality

which contradicts (9) and (10).
Thus without loss of generality we can assume that it is the first possibility that

always holds.
Fix y%eE(Y*) and y$eE(Y*). There is an x%eE(X*) and <DoeL(X, Y) with

||d>0|| ||(Do x | |^(1 + e)(i+y(e)) such that

for all y*e£(y*). (11)

By symmetry there is an xge£(X*) and ^oeLiX, Y) with | |^0 | | ^ ^ ^ ^ ( l +e)(l +y(e))
such that

||r*(y*®3?g)-«Fg(y*)®Jcj||S2y(6) for all 3;* ££(7*). (12)

Moreover, replacing 2y(e) in (11) and (12) by 4y(e) we can assume jcj = ̂ >*(3'o)

Let us compose T with <I> x ® *P J. To complete the proof it is sufficient to show the
following lemma:

Lemma 4. Let X,X be Banach spaces with uniformly convex duals, then there is an
eo>0 such that for all e<e0 the following implication holds:

if T is a linear isomorphism from X®X onto itself with | |T| | | |T~1 | |^l+2 and if there
exist x$eE(X*) and x%eE(X*) such that

T*(xS® x*)=xj® x* for all x*eX*

and

r*(x*®xS) = x*®JcS for all x*eX*

then | | r - Id | |^2y(e) .
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Proof. Let xf eE(X*), x?e£(X*). It follows from the assumptions and our previous
considerations that there are isomorphisms <S> e L(X) and *F e L(X) such that

||T*(xJ ® x ) - * i ®O*(x*)||^2y(e) for all x*eE(X*)

and

||T*(x*®xf)-T*(x*)®x*||g2y(6) for all x*eE(X*).

Substituting x*=xf and x* = xf we get

||T*(xf ® x?) - x f ® 0>*(x*||

and

Hence

||**(xf)-xj||g2y(e) and

so ||T*(xt®x}')-x?!®x3'||^2y(e) as required.
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