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Introduction. In the Amitsur-Kurosch theory of radicals in rings (2), an 
important problem is to determine the relationship between the radical of a 
ring and the radical of each of its ideals. The first result on this problem was 
by Amitsur who proved that if 0 is a hereditary radical in the sense that ideals 
of /3-radical rings are ^-radical, then for each associative ring R and ideal I 
of R, 13(1) = mp(R), where /3(R) denotes the /3-radical of R; see (2). 

Later, Sulinski, Divinsky, and the author proved that if ($ is any radical 
and R is an associative or alternative ring, then /3(I) Ç I C\ /3(i?) for each 
ideal / of R; see (3). Since every hereditary radical /3 has the property 
13(1) 3 I r\p(R), this result provided another proof of Amitsur's theorem 
and extended that theorem to alternative rings. Of course, this raises the 
question of whether Amitsur's theorem is true for Lie or Jordan rings. 

To answer this question, it is necessary to study the behaviour of a here
ditary radical under derivations, and that is the subject of this paper. However, 
since the nature of the additive group of a ring plays an important role here, 
it is expedient to restrict our attention to algebras. 

The main result is that if A is an algebra (not necessarily associative or 
finite-dimensional) over a non-modular field and if A satisfies the descending 
chain condition (D.C.C.) for ideals, then for each hereditary radical /3 and 
derivation D oî A, (13(A))D C (3(A). 

In § 3 we give some applications of this theorem to Lie, Jordan, and flexible 
algebras. The result in the Jordan case may be of particular interest because 
of Jacobson's recent work (5) on Jordan algebras with chain condition. 

1. Preliminary definitions. For algebras, the definition of radical property 
may be formulated as follows. 

Let UF be a class of algebras, not necessarily associative or finite-dimensional 
over a field F, which is universal in the sense that ideals and homomorphic 
images of algebras in UF are again in UF-

Let | 8 b e a property that a given algebra A in UF might have. In the case 
that A has property /3 we say that A is a jô-algebra. Then /3 is said to be a 
radical property in UF if the following conditions are met: 

(I) Homomorphic images of ^-algebras in UF are /3-algebras; 
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(II) Each A G UF has a maximal /3-ideal (i.e., an ideal which is a /3-algebra), 
/3(^4), which contains all the /3-ideals of A. The ideal /3(^4) is called the 
^-radical of A ; 

(III) For each A G UF, P (A/0(A)) = 0. That is, A//3(A) is 0-semi-simple. 
A radical £ is said to be hereditary if ideals of jô-algebras are /3-algebras. This 

is equivalent to saying that @(I) 2 I Pi /3 (A ) for each 4̂ G £7F and ideal I oiA. 
Let .4 G [7F and define 4 0 = A, An = (4w_i)2 for n > 0. The sequence 

4 = 4 0 2 Ai 3 . . . 2 4„ 3 4„ + 1 3 . . . 

is called the derived series for A, and A is said to be solvable if An — 0 for 
some integer n. Note that in the above sequence, Ak is an ideal of ^U_i, & ̂  1. 

A derivation of an algebra A is a linear transformation D oi A with the 
property that (xy)D = (xD)y + x(yD) for all x, y G .4. 

2. Main theorem. We require the following lemma, whose proof is obvious. 

LEMMA 2.1. Let I be an ideal of an algebra A and D a derivation of A. Then 
ID — {t (z I\ tD £ 1} is an ideal of A and ID ~D I2. 

THEOREM 2.2. Let UF be a universal class of algebras defined over a field F of 
characteristic 0, and suppose that A G UF has D.C.C. on ideals. Then for each 
hereditary radical (3 defined in UF and derivation D of A, (J3(A))D CI /3(A). 

Proof. We first prove the theorem for fi (A ) a solvable ideal of A. 
There is nothing to prove if 13(A) = 0; hence, assume that I = /3(A) is a 

non-zero solvable ideal of A and let 

be the derived series for I. 
Select x 9^ 0 in In. Since In

2 = 7n+i = 0, the one-dimensional subspace, Fx, 
spanned by x is an ideal of In. Then since each of the subalgebras in the 
derived series is an ideal of its predecessor, the fact that /3 is hereditary implies 
that Fx is a ^-algebra. 

We claim now that if B is any algebra such that B2 = 0, then B is /3-radical. 
To show this, it is sufficient to show that each non-zero homomorphic image 
B' of B contains a non-zero £-ideal (4, p. 4). However, if b' is a non-zero 
element of B', then FV is a non-zero ideal of B' and the mapping ax —> ab', 
a G F, is an isomorphism from the /3-algebra Fx onto FV. Hence, FV is a 
non-zero /3-ideal of B', as required. 

Now we can show that I contains all the solvable ideals of A. Indeed, 
suppose that W is a solvable ideal of A with derived series 

W = Wo 3 . . . 2 Wm 3 Wm+1 = 0. 

Since for each factor Wk/Wk+i we have that (Wk/Wk+i)2 = 0, it follows that 
Wk/Wk+i is ^-radical; hence, if Wk+i is ^-radical, so is Wk a ^-radical algebra. 
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Since Wm is /3-radical, we have that IF is a /3-radical ideal of A ; hence W Ç 7. 
I t is easy to see that 7 + (I)D is an ideal of A ; thus, it follows from the 

above remark that if I + (I)D is solvable, then (I)D C 7. 
For each integer of the form m = 2*, where k is a positive integer, we define 

products {au . . . , am\ of elements au . . . , am G A by the rule: {ai, a2} = #ia2, 
{au . • • , #2P} = {#i, . • • , aP}{aP+u • • • , ^ J - Evidently, to prove that 
I + (I)D is solvable, it is sufficient to prove that there is an integer m such 
that {aiD, . . . , amD} G 7 for all ai, . . . , aTO G 7. 

We may generalize the Leibniz rule, 

(xy)Dn = it\r)xDryDn~T 

to obtain the formula 

(1) {a1,...,am}D- = T/(
m)(m~ai)...(m~ai~---~am-;) " \ a i / \ a2 / \ am_i / 

X{o i l ? a ,
l a^" , , . . . , a 1 l l Z) -*} , 

where aw = m — a± — . . . — am-i and the summation is taken over all 
choices of au • • • , <xm-i such that 0 :g ai ^ w, 0 ^ a* ^ m — ai — . . . — a2_i, 
1 < i :g m — 1. Of course, #D° is defined to be x. 

Since 7 is solvable, there exists an integer m such that {#i, . . . , aw} = 0 for 
all ai, . . . , am G 7; hence, {ax, . . . , am}Dm = 0. Moreover, for ax, . . . , «w G 7, 
{ai7)al, . . . , awZ>m} G 7 if some at = 0, 1 ^ i ^ WÎ. On the other hand, if 
«i ^ 1 for all i, 1 ^ i ^ m, then, necessarily, ax = . . . = am = 1. Therefore, 
it follows from (1) that 

(7)(W71). . .(;){«1A...,a^i€/, 

and since F has characteristic 0, we have that {aiD, . . . , amD) G 7. 
This completes the proof of the theorem when 13(A) is solvable, and we 

proceed to consider the general case. 
Again, set 7 = 13(A). We define a sequence 

7 = 7(1) 2 . . . 2 I{n) 3 I{n+l) 2 . . . 

by setting 7(w+1) = (7(n))z> îor n ^ 1. From Lemma 2.1, we know that I{n) is 
an ideal of A and 7^+1> 3 (/(»)) 2 for all n è 1. 

From our assumption of D.C.C., it follows that 7(m) = 7(m+1) = . . . for 
some integer m. Then (I(m))D Q I(m\ so that 7> induces a derivation on the 
algebra A' = A/Hm). Since ft is hereditary, 7(w) is a 0-ideal of A; hence, 
P(A') = I/I™. From the property Hn+l) 2 (7^) 2 , it follows that p(A') is 
solvable. Using the result from the first part of the proof, we conclude that 
13(A') is invariant under the derivation of A' which is induced by D. Since 
p(A') = P(A)/I<m\ this implies that (fi(A))D C {3(A). 
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Counterexamples. I t is well-known that the above theorem is false if F has 
characteristic not equal to 0. For counterexamples in the case UF consists of 
associative or Lie algebras, see (6, p. 75). On the other hand, the lone assump
tion that F be of characteristic 0 is not sufficient to give the above result. 
As an example, let A be the algebra of formal power series Y,n=* o &nXn in the 
variable x with coefficients an taken from an arbitrary field F. Then the 
Jacobson radical, J(A), is the ideal consisting of all Y,n = o cinx

n with a0 = 0; 
see (7, p. 21). If we take D = d/dx, then x G J (A) but xD = 1 £ J (A). 

3. Applications. Lie algebras. Jacobson's argument in (6, p. 75) shows 
that a hereditary radical /3 has the property 13(1) = 7 Pi 0(L) for each Lie 
algebra L and ideal 7 of L if and only if (3 is invariant under all derivations. 
Therefore, we have the following theorem as a corollary to Theorem 2.2. 

THEOREM 3.1. If fi is a hereditary radical, then for each Lie algebra L over a 
field of characteristic 0 and ideal I of L satisfying D.C.C. on its ideals, 

0(j) = mp(L). 

Jordan algebras. Let A be a Jordan algebra over a field F of characteristic 0. 
The associator, (a, b, c), a,b, c G A, is defined by (a, b, c) = {ab)c — a(bc). 

A well-known identity for Jordan algebras is (w, xy, z) = x(w, y, z) + 
(w, x, z)y. Therefore, for fixed a, b G A, the mapping x —» (a,x,b) is a 
derivation of A. 

Now, suppose that I is an ideal of A and assume that I has D.C.C. on 
ideals. Let 0 be a hereditary radical and put M = fi (I). For each a, b G A, 
the map i —> (a, i,b),i 6 7, defines a derivation of 7, hence leaves 17 invariant 
because of Theorem 2.2. Thus, we have that 

(1) (A,M,A) £ M. 

This implies that 

(2) M + Mx is an ideal of 7 for each x G -4. 

Indeed, if m £ il7, i 6 7, then i{mx) = — (i, m, x) + (im)# G M + A7x 
because of (1) and the fact that M is an ideal of 7. 

Next we prove that 

(3) (il7x-il7x)7Ç M for all x G 4 . 

To do this, we recall that in any algebra we have the identity 

0 = (xm, y, z) — (x, my, z) + (x, m, yz) — x(m, y, z) — (x, m, y)z. 

In particular, if m G M, x G A, y, z G 7, then (x, my, z) G {A, M, A) C A7, 
(x, m, ys) G 04, i!7, A) C M, and (x, m, y)z G U , M, A)I C 177 ç= il7; 
hence, (xm,y,z) — x(m,y,z) G il7. Using the fact that x —» (m, x, z) is a 
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derivation, we can write x(m, y, z) = (m, xy, z) — (m, x, z)y = 
- (m, x, z)y (mod M) since (m, xy, z) G (M, AI, I) C (M, I, I) C M. Al
together, we have that (xm, y, z) + (m, x, z)y = 0 (mod ikf). In this relation, 
put z = mx. Then (xm, y, mx) = 0 since A is commutative; hence, 
(m,x,mx)y = 0 (modlf ) . However, (m,x,mx)y = (mx-mx)y — (m(x-mx))y, 
and (m(x-mx))y G ikf. Therefore, (mx-mx)y G Tkf for all m £ M, x £ A, 
y (z I. If we now replace m by m + m', where m' G M, then we obtain 
2(mx-m'x)y G M; hence, (mx-mfx)y G JM". Since the elements of (Mx-Mx)I 
are sums of terms of the type (mX'M,x)yJ m, m' G M, y G / , it follows that 
(Mx-MxO/Ç M. 

Finally, let us note that M2A Ç if. Indeed, using (1) we obtain 
IP A = (MM) A Q(M,M,A) + M (MA) C M. 

The next lemma is an easy consequence of (2) and (3). 

LEMMA 3.2. Let A be a non-modular Jordan algebra and /3 a hereditary radical. 
Assume the ideal I has D.C.C. on its ideals and put M = /3(/). Then for each 
x G A, M + Mx and M + Mx • Mx are ideals of I and (Mx • Mx) (Mx • Mx) Ç If. 
Moreover, M2A Ç M" 

THEOREM 3.3. Let A be a non-modular Jordan algebra and $ a hereditary 
radical. Then, if I is an ideal of A and has D.C.C. on its ideals, 

p(i) = in p(A). 

Proof. It is sufficient to prove that ft (I) is an ideal of A. However, having 
Lemma 3.2, this may be done simply by repeating the argument for alternative 
rings in (3). 

We remark that if every algebra B such that B2 = 0 is /3-radical, then it is 
not necessary to refer to (3) to complete the proof. Indeed, for each x G A, 
M + Mx • Mx/M is an ideal in the /3-semi-simple algebra 1/M. According to 
Lemma 3.2, (M + Mx-Mx/M)2 = 0; hence, Mx-Mx Ç M. Then, applying 
the same argument to M + Mx/M, we find that Mx Ç M. That is, M is an 
ideal of A. 

Flexible algebras. A flexible algebra A is one in which (xy)z + (zy)x = 
x(yz) + z(yx) for all x, y, z G A. 

In determining the structure of A, it is useful to study the commutative 
algebra A+ which is obtained from A by letting A+ be the vector space of A 
in which a new product x o y is defined in terms of the product xy of A by 
the equation x o y = xy + yx; see, for example (1; 8; or 9). 

Let (x, y) = xy — yx. Then it is easy to see that the mapping x —> (x, z) 
is a derivation of A+ for each z G A. Therefore, we have the following result 
by application of Theorem 2.2. 

THEOREM 3.4. Let A be a flexible algebra over a field of characteristic 0. Then 
for every hereditary radical /3 defined in the class of commutative algebras, fi(A+) 
is an ideal of A if A+ satisfies D.C.C. on ideals. 
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We remark here that for power-associative algebras, i.e., algebras such that 
each element generates an associative subalgebra, the nil radical rj certainly 
is hereditary. Therefore, we have the result that if A is a flexible, power-
associative algebra over a non-modular field which is 77-semi-simple, and if 
A+ has D.C.C. on ideals, then so is A+ an 77-semi-simple algebra. 
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