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1. Introduction and main results

In this paper, we deal with the following degenerate parabolic system:

ut = (|ux|m−1ux)x,

vt = (|vx|n−1vx)x,

}
x > 0, 0 < t < T, (1.1)

with nonlinear coupled boundary flux

−|ux|m−1ux(0, t) = uα(0, t)vp(0, t),

−|vx|n−1vx(0, t) = uq(0, t)vβ(0, t),

}
0 < t < T, (1.2)

and initial data
u(x, 0) = u0(x),

v(x, 0) = v0(x),

}
x > 0, (1.3)
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where m, n > 1, p, q > 0, α, β � 0 and u0(x), v0(x) are continuous, non-negative and
compactly supported in R

+.
Parabolic systems like (1.1) appear in several branches of applied mathematics. They

have been used to model, for example, chemical reactions, heat transfer or population
dynamics (see [9] and the reference therein).

The problems of global existence, blow-up, blow-up rate and blow-up set are consid-
ered by many authors (see [3,4,7,11]). In particular, critical Fujita exponents are very
interesting for various nonlinear parabolic equations of mathematical physics (see [2,10]
and references therein).

The concept of critical Fujita exponents was proposed by Fujita in the 1960s during
discussion of the heat conduction equation with a nonlinear source (see [5]).

In [7], Galaktionov and Levine study the following scalar problem:

ut = (|ux|m−1ux)x, x > 0, 0 < t < T,

−|ux|m−1ux = up, x = 0, 0 < t < T,

u(x, 0) = u0(x), x > 0,

⎫⎪⎬
⎪⎭ (1.4)

where m > 1. They show that if 0 < p � p0 = 2m/(m + 1), then for arbitrary initial
data the solution is global in time, while for p > 2m/(m + 1) there are solutions with
finite-time blow-up. Thus, p0 is the critical global existence exponent. Moreover, they
prove that pc = 2m is a critical exponent of Fujita type. By definition, this means that
pc has the following properties:

(i) if p0 < p � pc, then non-trivial u(x, t) blows up in a finite time for all non-trivial
u0;

(ii) if p > pc, then u(x, t) is global in time for small and non-trivial u0.

In [13], Rossi considered the following problem:

ut = ∆u, vt = ∆v, (x, t) ∈ B1(0) × (0, T ),

∂u

∂n
= up11vp12 ,

∂v

∂n
= up21vp22 , (x, t) ∈ ∂B1(0) × (0, T ),

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ B1(0).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.5)

Under some assumptions the author proved that there exist positive constants c and C,
such that

c � max
x∈B1(0)

u(x, t)(T − t)α1/2 � C, c � max
x∈B1(0)

v(x, t)(T − t)α2/2 � C for 0 < t < T,

where

α1 =
p12 − p22 + 1

(p11 − 1)(p22 − 1) − p12p21
, α2 =

p21 − p11 + 1
(p11 − 1)(p22 − 1) − p12p21

.
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In [14], Wang et al . considered the following problem:

ut = uxx, vt = vxx, x > 0, t > 0,

−∂u

∂x
(0, t) = vp(0, t), −∂v

∂x
(0, t) = uq(0, t), t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.6)

Under some assumptions they established the blow-up estimate near the blow-up time.
That is

c(T − t)−τ1 � u(0, t) � C(T − t)−τ1 and c(T − t)−τ2 � v(0, t) � C(T − t)−τ2 ,

where
τ1 =

p + 1
2(pq − 1)

, τ2 =
q + 1

2(pq − 1)
.

In [15], Wang et al . considered the following problem:

ut = uxx, vt = vxx, x > 0, 0 < t < T,

−ux(0, t) = uα(0, t)vp(0, t), −vx(0, t) = uq(0, t)vβ(0, t), 0 < t < T,

u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0.

⎫⎪⎬
⎪⎭ (1.7)

The global existence and blow-up conditions for solutions of (1.7) are pq � (1 − α)(1 −
β) and pq > (1 − α)(1 − β), respectively. The blow-up rate of the solution (u, v) is
(O((T − t)−γ1), O((T − t)−γ2)) as t → T with α < 1, β < 1 and pq > (1 − α)(1 − β),
where

γ1 =
1
2

p + 1 − β

pq − (1 − α)(1 − β)
, γ2 =

1
2

q + 1 − α

pq − (1 − α)(1 − β)
.

In [12], Quirós and Rossi considered the degenerate equation

ut = (um)xx, vt = (vn)xx, x > 0, 0 < t < T,

−(um)x(0, t) = vp(0, t), −(vn)x(0, t) = uq(0, t), 0 < t < T,

u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0,

⎫⎪⎬
⎪⎭ (1.8)

with notation

α1 =
2p + n + 1

(m + 1)(n + 1) − 4pq
, α2 =

2q + m + 1
(m + 1)(n + 1) − 4pq

,

β1 =
p(m − 1 − 2q) + (n + 1)m

(m + 1)(n + 1) − 4pq
, β2 =

q(n − 1 − 2p) + (m + 1)n
(m + 1)(n + 1) − 4pq

.

They proved that the solutions of (1.8) are global if pq � 1
4 (m + 1)(n + 1), and may

blow up in finite time if pq > 1
4 (m + 1)(n + 1). In the case of pq > 1

4 (m + 1)(n + 1), if
α1 + β1 � 0, or α2 + β2 � 0, then every non-negative, non-trivial solution of (1.8) blows
up in finite time; if α1 + β1 > 0 and α2 + β2 > 0, then there exist blow-up solutions for
large initial data and global solutions for small initial data. The critical Fujita exponents
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to (1.8) are described by αi + βi = 0, i = 1, 2, while the blow-up rate of the positive
solution is O((T − t)−α1) for component u and O((T − t)−α2) for v as t → T .

In [1], Audreu et al . consider the behaviour of solutions of the following parabolic
problem:

ut = ∆(|u|m−1u) − λ|u|p−1u in Ω × (0, T ),

∂(|u|m−1u)
∂n

= |u|q−1u on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.9)

By constructing adequate supersolutions and subsolutions, they obtain the existence of
a globally bounded weak solution or blow-up solution that depends on the relationship
between the parameters m, p, q and λ. They also prove the results about uniqueness and
non-uniqueness in the case of null initial data.

In [18], Zheng et al . considered the degenerate equations coupled via nonlinear bound-
ary flux:

ut = (um)xx, vt = (vn)xx, x > 0, 0 < t < T,

−(um)x(0, t) = uα(0, t)vp(0, t), −(vn)x(0, t) = uq(0, t)vβ(0, t), 0 < t < T,

u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0,

⎫⎪⎬
⎪⎭

(1.10)
with notation

r1 =
2p + n + 1 − 2β

4pq − (m + 1 − 2α)(n + 1 − 2β)
, r2 =

2q + m + 1 − 2α

4pq − (m + 1 − 2α)(n + 1 − 2β)
,

s1 =
1 − r1(m − 1)

2
, s2 =

1 − r2(n − 1)
2

.

They proved that the solutions of (1.10) are global if α < 1
2 (m+1), β < 1

2 (n+1) and pq �
( 1
2 (m+1)−α)( 1

2 (n+1)−β) and may blow up in finite time if α > 1
2 (m+1) or β > 1

2 (n+1).
In the case when α � 1

2 (m + 1), β � 1
2 (n + 1) and pq > ( 1

2 (m + 1) − α)( 1
2 (n + 1) − β), if

s1 < r1 or s2 < r2, or s1 = r1 and s2 = r2, then every non-negative, non-trivial solution
of (1.10) blows up in finite time; if s1 > r1 and s2 > r2, then the solution of (1.10)
is global for small initial data and blows up in finite time with large initial data. The
critical Fujita exponents to (1.10) are described by ri = si, i = 1, 2, while the blow-up
rate of the positive solution is O((T − t)−r1) for component u and O((T − t)−r2) for v

as t → T .
The purpose of this paper is to extend the main results of [7] into the more general

form (1.1)–(1.3). To state our results, we need to introduce parameters ki, li, i = 1, 2,
satisfying ⎛

⎜⎝α − 2m

m + 1
p

q β − 2n

n + 1

⎞
⎟⎠

(
k1

k2

)
=

⎛
⎜⎝

m

m + 1
n

n + 1

⎞
⎟⎠ . (1.11)
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By (1.11), we have

k1 =
n(m + 1)p − m(nβ + β − 2n)

(m + 1)(n + 1)pq − (mα + α − 2m)(nβ + β − 2n)
,

k2 =
m(n + 1)q − n(mα + α − 2m)

(m + 1)(n + 1)pq − (mα + α − 2m)(nβ + β − 2n)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.12)

Set

l1 =
1 − k1(m − 1)

m + 1
and l2 =

1 − k2(n − 1)
n + 1

. (1.13)

Linear algebraic systems such as (1.11) were also introduced in [4,16,17] for a semilinear
parabolic system.

In this paper, motivated by [7,18], by seeking a self-similar solution, we obtain our
main results as follows.

Theorem 1.1. Let
α >

2m

m + 1
or β >

2n

n + 1
.

Then the solution of (1.1)–(1.3) may blow up in finite time.

Theorem 1.2. Let

α � 2m

m + 1
, β � 2n

n + 1
and pq �

(
2m

m + 1
− α

)(
2n

n + 1
− β

)
.

Then every solution of (1.1)–(1.3) exists globally.

Theorem 1.3. Let

α � 2m

m + 1
, β � 2n

n + 1
and pq >

(
2m

m + 1
− α

)(
2n

n + 1
− β

)
.

(i) If l1 > k1 and l2 > k2, then the solutions of (1.1)–(1.3) are global for small initial
data and blow up in finite time with large initial data.

(ii) If l1 < k1 or l2 < k2 or l1 = k1 and l2 = k2, then every non-negative, non-trivial
solution of (1.1)–(1.3) blows up in finite time.

Theorem 1.4. Assume that k1, k2 > 0 and that (u, v) is a solution of (1.1)–(1.3)
increasing in time (ut, vt � 0) which blows up in finite time T . There then exist positive
constants c and C such that

c(T − t)−k1 � ‖u(· , t)‖∞ � C(T − t)−k1 ,

c(T − t)−k2 � ‖v(· , t)‖∞ � C(T − t)−k2 .

Remark 1.5. The results of Theorems 1.1–1.4 for problem (1.1)–(1.3) coincide with
those for the single equation case (see [7, (1.4)]). The critical Fujita exponent of (1.1)–
(1.3) obtained in this paper can be described as li = ki, i = 1, 2: if l1 < k1 or l2 < k2, or
l1 = k1 and l2 = k2, every non-negative, non-trivial solution of (1.1)–(1.3) is non-global,
while if l1 > k1 and l2 > k2, there are both non-trivial global and non-global solutions.
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Remark 1.6. The word ‘large’ in Theorem 1.3 means that at least one of the altitudes
and the supports of the initial data is sufficiently large; see the proof of Corollary 3.2,
below. As will be shown in the proof of Lemma 3.3, the word ‘small’ here requires that
both the altitudes and the supports of the initial data are sufficiently small.

Remark 1.7. The classification for the parameters m, n, p, q, α and β in The-
orems 1.1–1.3 is complete. In fact, the coupled condition p, q > 0 together with the
assumption that

pq �
(

2m

m + 1
− α

)(
2n

n + 1
− β

)

in Theorem 1.2 rules out the possibility that α = 2m/(m + 1) or β = 2n/(n + 1).

Remark 1.8. The assumption that k1, k2 > 0 in Theorem 1.4, together with (1.12),
implies that either

(i) n(m + 1)p − m(nβ + β − 2n) > 0, m(n + 1)q − n(mα + α − 2m) > 0 or

(ii) n(m + 1)p − m(nβ + β − 2n) < 0, m(n + 1)q − n(mα + α − 2m) < 0.

For (i), the assumption k1, k2 > 0 requires (m+1)(n+1)pq − (mα+α−2m)(nβ +β −
2n) > 0 if α � 2m/(m + 1), β � 2n/(n + 1); the assumption k1, k2 > 0 is automatically
satisfied if at least one of

2n

n + 1
< β <

n(m + 1)p + 2mn

m(n + 1)
and

2m

m + 1
< α <

m(n + 1)q + 2mn

n(m + 1)

holds.
Case (ii) implies that α > 2m/(m + 1), β > 2n/(n + 1). We clearly have (m + 1)(n +

1)pq − (mα + α − 2m)(nβ + β − 2n) < 0.
By using Theorems 1.1 and 1.3, we know that both (i) and (ii) for k1, k2 > 0 do indeed

correspond to the finite-time blow-up situation of the solution.

This paper is organized as follows. In the next section we study the conditions of
blow-up and global existence (Theorems 1.1 and 1.2). In § 3 we obtain the critical Fujita
exponents (Theorem 1.3). Section 4 is devoted to computation of the blow-up rate in the
case of solutions which are monotonic in time (Theorem 1.4).

2. Blow-up and global existence

Definition 2.1. The pair (u
¯
, v
¯
) is a subsolution of (1.1), (1.2) if it satisfies

u
¯t � (|u

¯x|m−1u
¯x)x, v

¯t � (|vx|n−1v
¯x)x, x > 0, 0 < t < T,

−|u
¯x|m−1u

¯x(0, t) � u
¯

α(0, t)v
¯

p(0, t),

−|v
¯x|n−1v

¯x(0, t) � u
¯

q(0, t)v
¯

β(0, t), 0 < t < T.

⎫⎪⎬
⎪⎭ (2.1)

Definition 2.2. We call (ū, v̄) a supersolution of (1.1), (1.2) if it satisfies (2.1) with
the opposite inequalities.
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Lemma 2.3. Let (u0, v0) be smooth and satisfy the compatibility condition at
the boundary and (|u′

0|m−1u′
0)

′ � 0, (|v′
0|n−1v′

0)
′ � 0. Then the solution of (1.1)–(1.3)

increase in time, i.e. ut � 0, vt � 0.

Proof. Set Z = ut, W = vt. We can show that (Z, W ) is a solution of

Zt = m(|ux|m−1Zx)x,

Wt = n(|vx|n−1Wx)x,

−m|ux|m−1Zx(0, t) = αuα−1(0, t)vp(0, t)Z(0, t) + pvp−1(0, t)uα(0, t)W (0, t),

−n|vx|n−1Wx(0, t) = quq−1(0, t)vβ(0, t)Z(0, t) + βuq(0, t)vβ−1(0, t)W (0, t),

with Z(x, 0) � 0, W (x, 0) � 0.
To end the proof we apply the maximum principle. Due to the degeneration of the

equations, this cannot be done directly. By a similar regularization procedure to that used
in [7] we can prove it easily, so we shall omit it. The proof of Lemma 2.3 is complete. �

Proof of Theorem 1.1. Without loss of generality, we assume that α > 2m/(m+1).
We know from Lemma 2.3 that ut � 0, vt � 0. Thus, uα(0, t)vp(0, t) � uα(0, t)vp

0(0).
Consider the single equation problem:

Wt = (|Wx|m−1Wx)x, x > 0, 0 < t < T,

−|Wx|m−1Wx(0, t) = Wα(0, t)vp
0(0), 0 < t < T,

W (x, 0) = u0(x), x > 0.

⎫⎪⎬
⎪⎭ (2.2)

Clearly, (W, v0) is a subsolution of (1.1)–(1.3). By the result of [7] we know that the
solution of (2.2) may blow up in finite time and so may the solution of (1.1)–(1.3). The
proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. It is sufficient to construct global supersolutions with initial
data as large as needed. We achieve this with the aid of the self-similar solutions of
exponential form. Let

ū(x, t) = eKt

(
M + exp

(
− L1x exp

(
K(1 − m)t

1 + m

)))
,

v̄(x, t) = exp
(

K(2m − mα − α)t
(m + 1)p

)

×
(

M + exp
(

− L2x exp
(

K(2m − mα − α)(1 − n)t
(m + 1)(n + 1)p

)))
,

with

M = max(‖u0‖∞, ‖v0‖∞, 1), L1 = (M + 1)(α/m)+(p/m),

L2 = (M + 1)(β/n)+(q/n), K = max
(

mLm+1
1

M
,

n(m + 1)pLn+1
2

M(2m − mα − α)

)
.
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So ū(x, 0) � u0(x), v̄(x, 0) � v0(x) for x ∈ R
+. After a computation we have

ūt = KeKt

(
M + exp

(
− L1x exp

(
K(1 − m)t

1 + m

)))

+ eKt

(
KL1(m − 1)x

m + 1
exp

(
K(1 − m)

1 + m
t − L1x exp

(
K(1 − m)t

1 + m

)))

� KeKt

(
M + exp

(
− L1x exp

(
K(1 − m)t

1 + m

)))
� KMeKt,

ūx = −L1 exp
(

2kt

1 + m

)
exp

(
− L1x exp

(
K(1 − m)t

1 + m

))
,

|ūx|m−1ūx = −Lm
1 exp

(
2Kmt

1 + m

)
exp

(
− L1mx exp

(
K(1 − m)t

1 + m

))
,

(|ūx|m−1ūx)x = mLm+1
1 eKt exp

(
− L1mx exp

(
K(1 − m)t

1 + m

))
� mLm+1

1 eKt,

and

v̄t � K(2m − mα − α)
(m + 1)p

exp
(

K(2m − mα − α)t
(m + 1)p

)

×
(

M + exp
(

− L2x exp
(

K(2m − mα − α)(1 − n)t
(m + 1)(n + 1)p

)))

� M
K(2m − mα − α)

(m + 1)p
exp

(
K(2m − mα − α)t

(m + 1)p

)
,

v̄x = −L2 exp
(

2K(2m − mα − α)t
(m + 1)(n + 1)p

)

× exp
(

− L2x exp
(

K(2m − mα − α)(1 − n)t
(m + 1)(n + 1)p

))
,

|v̄x|n−1v̄x = −Ln
2 exp

(
2Kn(2m − mα − α)t

(m + 1)(n + 1)p

)

× exp
(

− L2nx exp
(

K(2m − mα − α)(1 − n)t
(m + 1)(n + 1)p

))
,

(|v̄x|n−1v̄x)x = nLn+1
2 exp

(
K(2m − mα − α)t

(m + 1)p

)

× exp
(

− L2nx exp
(

K(2m − mα − α)(1 − n)t
(m + 1)(n + 1)p

))

� nLn+1
2 exp

(
K(2m − mα − α)t

(m + 1)p

)
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in R
+ × R

+. On the other hand, We have on the boundary that

−|ūx|m−1ūx(0, t) = Lm
1 exp

(
2Kmt

1 + m

)
,

−|v̄x|n−1v̄x(0, t) = Ln
2 exp

(
2Kn(2m − mα − α)t

(m + 1)(n + 1)p

)
,

ūα(0, t) = eKαt(M + 1)α, v̄p(0, t) = exp
(

K(2m − mα − α)t
(m + 1)

)
(M + 1)p,

ūq(0, t) = eKqt(M + 1)q, v̄β(0, t) = exp
(

Kβ(2m − mα − α)t
(m + 1)p

)
(M + 1)β .

By the definitions of K, M , L1, L2 and the assumption that

pq �
(

2m

m + 1
− α

)(
2n

n + 1
− β

)
,

we know that ūt � (|ūx|m−1ūx)x, v̄t � (|v̄x|n−1v̄x)x in R
+ × R

+ and −|ūx|m−1ūx(0, t) �
ūα(0, t)v̄p(0, t), −|v̄x|n−1v̄x(0, t) � ūq(0, t)v̄β(0, t) for t > 0.

Therefore, (ū, v̄) is a supersolution of (1.1)–(1.3), which implies that every solution
of (1.1)–(1.3) is global provided that

α � 2m

m + 1
, β � 2n

n + 1
and pq �

(
2m

m + 1
− α

)(
2n

n + 1
− β

)
.

The proof of Theorem 1.2 is complete. �

3. Critical Fujita exponents

Using some ideas in [7], in this section, we will prove Theorem 1.3. However, the fact
that we are dealing with a system instead of a single equation forces us to develop a
significantly different proof. We will organize the proof in several lemmas.

Lemma 3.1. Let

α � 2m

m + 1
, β � 2n

n + 1
and pq >

(
2m

m + 1
− α

)(
2n

n + 1
− β

)
.

There then exists a pair of compactly supported functions f1, f2, such that

u
¯
(x, t) = (T − t)−k1f1(ξ), ξ = x(T − t)−l1 ,

v
¯
(x, t) = (T − t)−k2f2(η), η = x(T − t)−l2

is a subsolution of (1.1), (1.2).

Proof. It is easy to see from (1.12), (1.13) that

k1 + 1 = mk1 + (m + 1)l1, k2 + 1 = nk2 + (n + 1)l2,

m(k1 + l1) = k1α + k2p, n(k2 + l2) = k1q + k2β.
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After some computation, we obtain

u
¯t = (T − t)−(k1+1)[k1f1(ξ) + l1f

′
1(ξ)ξ],

|u
¯x|m−1u

¯x = (T − t)−m(k1+l1)|f ′
1(ξ)|m−1f ′

1(ξ),

(|u
¯x|m−1u

¯x)x = m(T − t)−mk1−(m+1)l1 |f ′
1(ξ)|m−1f ′′

1 (ξ),

v
¯t = (T − t)−(k2+1)[k2f2(η) + l2f

′
2(η)η],

|v
¯x|n−1v

¯x = (T − t)−n(k2+l2)|f ′
2(η)|n−1f ′

2(η),

(|v
¯x|n−1v

¯x)x = n(T − t)−nk2−(n+1)l2 |f ′
2(η)|n−1f ′′

2 (η),

|u
¯x|m−1u

¯x(0, t) = (T − t)−m(k1+l1)|f ′
1(0)|m−1f ′

1(0),

|v
¯x|n−1v

¯x(0, t) = (T − t)−n(k2+l2)|f ′
2(0)|n−1f ′

2(0),

u
¯

α(0, t)v
¯

p(0, t) = (T − t)−(k1α+k2p)fα
1 (0)fp

2 (0),

u
¯

q(0, t)v
¯

β(0, t) = (T − t)−(k1q+k2β)fq
1 (0)fβ

2 (0).

To satisfy (2.1) we need

m|f ′
1(ξ)|m−1f ′′

1 (ξ) � k1f1(ξ) + l1f
′
1(ξ)ξ,

n|f ′
2(η)|n−1f ′′

2 (η) � k2f2(η) + l2f
′
2(η)η,

}
(3.1)

−|f ′
1(0)|m−1f ′

1(0) � fα
1 (0)fp

2 (0),

−|f ′
2(0)|n−1f ′

2(0) � fq
1 (0)fβ

2 (0).

}
(3.2)

We choose

f1(ξ) = A1(C1 − ξ)m/(m−1)
+ and f2(η) = A2(C2 − η)n/(n−1)

+ ,

where

C1 =
1
k1

(
m

m − 1

)m+1

Am−1
1 , C2 =

1
k2

(
n

n − 1

)n+1

An−1
2

and A1 and A2 will be determined later. Inserting them in (3.1), we get

m|f ′
1(ξ)|m−1f ′′

1 (ξ) − k1f1(ξ) − l1f
′
1(ξ)ξ

= (C1 − ξ)1/(m−1)
+

[
Am

1

(
m

m − 1

)m+1

− k1A1(C1 − ξ)+ + l1A1
m

m − 1
ξ

]
� 0,

n|f ′
2(η)|n−1f ′′

2 (η) − k2f2(η) − l2f
′
2(η)η

= (C2 − η)1/(n−1)
+

[
An

2

(
n

n − 1

)n+1

− k2A2(C2 − η)+ + l2A2
n

n − 1
η

]
� 0.

The assumption that

pq >

(
2m

m + 1
− α

)(
2n

n + 1
− β

)
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implies that
(n + 1)p

2m − mα − α
>

2n − nβ − β

(m + 1)q
.

Therefore, for any positive constants λ1 and λ2, there exist positive constants A1 and A2

sufficiently large that

λ1A
(2n−nβ−β)/(m+1)q
2 < A1 < λ2A

((n+1)p)/(2m−mα−α)
2 .

By taking suitable λ1, λ2, we have(
m

m − 1

)m(
mm+1

k1(m − 1)m+1

)(m−mα)/(m−1)

A2m−mα−α
1

�
(

nn+1

k2(n − 1)n+1

)np/(n−1)

A
(n+1)p
2 ,

(
n

n − 1

)n(
nn+1

k2(n − 1)n+1

)(n−nβ)/(n−1)

A2n−nβ−β
2

�
(

mm+1

k1(m − 1)m+1

)mq/(m−1)

A
(m+1)q
1 ,

which means that (3.2) is also true for large A1, A2. The proof of Lemma 3.1 is complete.
�

Corollary 3.2. Let

α � 2m

m + 1
, β � 2n

n + 1
and pq >

(
2m

m + 1
− α

)(
2n

n + 1
− β

)
.

If li > ki, i = 1, 2, then the solutions of (1.1)–(1.3) blow up in finite time provided that
either the altitudes or the supports of u0(x), v0(x) are large enough.

Proof. Assume that u0(x) � G1 > 0 in [0, x1] and v0(x) � G2 > 0 in [0, x2]. We
claim that u

¯
(x, 0) � u0(x), v

¯
(x, 0) � v0(x) in R

+ provided that either Gi, i = 1, 2 (the
altitudes of u0(x), v0(x)), or xi, i = 1, 2 (the supports of u0(x), v0(x)), are large enough.

In fact, for any x1, x2 > 0, we can choose T > 0 sufficiently small that

1
k1

(
m

m − 1

)m+1

Am−1
1 � x1

T l1
,

1
k2

(
n

n − 1

)n+1

An−1
2 � x2

T l2
, (3.3)

with li > ki > 0, i = 1, 2. For such fixed small T > 0, by taking G1 and G2 large enough,
we have

T−k1Am+1
1

(
mm+1

k1(m − 1)m+1

)m/(m−1)

� G1, T−k2An+1
2

(
nn+1

k2(n − 1)n+1

)n/(n−1)

� G2.

(3.4)
Analogously, (3.4) is true for any G1, G2 > 0 by taking T > 0 sufficiently large. For

such large T > 0, (3.3) also holds whenever x1 and x2 are large enough.
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It follows from (3.3) that the support of u
¯
(x, 0) (or v

¯
(x, 0)) is smaller than that of u0

(or v0). Moreover, ‖u
¯
(· , 0)‖∞ � G1, ‖v

¯
(· , 0)‖∞ � G2 due to (3.4). So we know from (3.3)

and (3.4) that u
¯
(x, 0) � u0(x), v

¯
(x, 0) � v0(x) in R

+.
Combining this result with Lemma 3.1, we have shown that (u

¯
, v
¯
) is a subsolution

of (1.1)–(1.3) and blows up in finite time. The proof of Corollary 3.2 is complete. �

Lemma 3.3. Let

α � 2m

m + 1
, β � 2n

n + 1
and pq >

(
2m

m + 1
− α

)(
2n

n + 1
− β

)
.

If li > ki, i = 1, 2, then the solutions of (1.1)–(1.3) are global, provided that both the
altitudes and the supports of u0(x), v0(x) are small enough.

Proof. In a manner similar to the proof of Lemma 3.1 we construct

ū(x, t) = (τ + t)−k1f(ξ), ξ = x(τ + t)−l1 ,

v̄(x, t) = (τ + t)−k2g(η), η = x(τ + t)−l2 ,

where f(ξ) and g(η) are non-negative functions to be determined which satisfy

m|f ′(ξ)|m−1f ′′(ξ) + k1f(ξ) + l1f
′(ξ)ξ � 0,

n|g′(η)|n−1g′′(η) + k2g(η) + l2g
′(η)η � 0,

}
(3.5)

−|f ′(0)|m−1f ′(0) � fα(0)gp(0),

−|g′(0)|n−1g′(0) � fq(0)gβ(0).

}
(3.6)

We choose
f(ξ) = A[(d1a1)(m+1)/m − (ξ + a1)(m+1)/m]m/(m−1)

+ ,

g(η) = B[(d2a2)(n+1)/n − (η + a2)(n+1)/n]n/(n−1)
+ .

}
(3.7)

Let us show that such f(ξ), g(η) defined in (3.7) with suitable constants A, B, ai, di,
i = 1, 2, satisfy (3.5) and (3.6).

Since l1 > k1, l2 > k2, we can choose A, B such that[
k1

(
m − 1
m + 1

)m]1/(m−1)

< A <

[
l1

(
m − 1
m + 1

)m]1/(m−1)

,

[
k2

(
n − 1
n + 1

)n]1/(n−1)

< B <

[
l2

(
n − 1
n + 1

)n]1/(n−1)

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.8)

The assumption (m + 1)(n + 1)pq > (2n − nβ − β)(2m − mα − α) implies that

2m − mα − α

(n + 1)p
<

(m + 1)q
2n − nβ − β

.

Therefore, for any positive constants µ1, µ2, there exist positive constants a1, a2 small
enough (0 < a1, a2 < 1) that

µ1a
(m+1)q/(2n−nβ−β)
1 < a

(m−1)/(n−1)
2 < µ2a

(2m−mα−α)/(n+1)p
1 .
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Thus,

(
m + 1
m − 1

)m

Am−αa
2m/(m−1)
1 (d(m+1)/m

1 − 1)(m−mα)/(m−1)

� a
(m+1)α/(m−1)
1 Bpa

(n+1)p/(n−1)
2 (d(n+1)/n

2 − 1)np/(n−1),(
n + 1
n − 1

)n

Bn−βa
2n/(n−1)
2 (d(n+1)/n

2 − 1)(n−nβ)/(n−1)

� a
(n+1)β/(n−1)
2 Aqa

(m+1)q/(m−1)
1 (d(m+1)/m

1 − 1)mq/(m−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

hold for constants a1, a2 small enough and d1, d2 large enough.
From (3.7)–(3.9) it is easy to check that f(ξ) and g(η) defined in (3.7) satisfy (3.5)

and (3.6). Together with (1.12) and (1.13), we know that ūt � (|ūx|m−1ūx)x and v̄t �
(|v̄x|n−1v̄x)x in R

+ × R
+ and −|ūx|m−1ūx(0, t) � ūα(0, t)v̄p(0, t), −|v̄x|n−1v̄x(0, t) �

ūq(0, t)v̄β(0, t) for t > 0. Moreover, it is easy to see from (3.7) that ū(x, 0) � u0(x),
v̄(x, 0) � v0(x) for x > 0, provided that both the altitudes and the supports of the initial
data are sufficiently small. Thus, (ū, v̄) is a global supersolution of (1.1)–(1.3), which
implies the global existence of solutions to (1.1)–(1.3) with small initial data. The proof
of Lemma 3.3 is complete. �

Lemma 3.4. Let

α � 2m

m + 1
, β � 2n

n + 1
and pq >

(
2m

m + 1
− α

)(
2n

n + 1
− β

)
.

If l1 < k1 or l2 < k2, then every non-negative, non-trivial solution of (1.1)–(1.3) blows
up in finite time.

Proof. In the spirit of [7], we construct a self-similar solution to (1.1) in the form of
a Zel’dovich–Kompaneetz–Barenblatt profile [9]:

uB(x, t) = (τ + t)−1/2mh1(ξ),

vB(x, t) = (τ + t)−1/2nh2(η),

ξ = x(τ + t)−1/2m,

η = x(τ + t)−1/2n,

h1(ξ) = Cm(C(m+1)/m − ξ(m+1)/m)m/(m−1)
+ ,

h2(η) = Cn(C(n+1)/n − η(n+1)/n)n/(n−1)
+ .

By taking

Cm =
[

1
2m

(
m − 1
m + 1

)m]1/(m−1)

, Cn =
[

1
2n

(
n − 1
n + 1

)n]1/(n−1)

,

https://doi.org/10.1017/S0013091505001537 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001537


798 J. Zhou and C.-L. Mu

it is easy to check that h1, h2 satisfy

(|h′
1|m−1h′

1)
′(ξ) +

ξ

2m
h′

1(ξ) +
1

2m
h1(ξ) = 0, h′

1(0) = 0,

(|h′
2|n−1h′

2)
′(η) +

η

2n
h′

2(η) +
1
2n

h2(η) = 0, h′
2(0) = 0.

It follows from h′
1(0) = h′

2(0) = 0 that the self-similar solution (uB(x, t), vB(x, t)) satisfies
(uB)x(0, t) = (vB)x(0, t) = 0 on the boundary.

By using well-known properties of weak solutions of problem (1.1)–(1.3) (see [9]), we
deduce that u(0, t0), v(0, t0) � 0 for some t0 � 0 and u(x, t0), v(x, t0) are continuous. So,
there exists τ > 0 large enough and C > 0 small enough such that

u(x, t0) � uB(x, t0), v(x, t0) � vB(x, t0) for x > 0.

Thus, the self-similar solution (uB(x, t), vB(x, t)) is a subsolution to (1.1)–(1.3) in R
+ ×

(t0, T ) and, hence,

u(x, t) � uB(x, t), v(x, t) � vB(x, t) for x > 0, t � t0.

Without loss of generality, we assume that l1 < k1. Then T l1 � T k1 for large T . So
there exists t∗ � t0 such that

T l1 � (τ + t∗)(2m+1)/(4m2+2m−2) � T k1 . (3.10)

Let u
¯
(x, t) be as defined in Lemma 3.1. The inequality (3.10) implies that u

¯
(x, 0) �

uB(x, t∗) for x > 0. Observing that (3.10) holds for general non-trivial u0(x), we know
that every non-negative, non-trivial solution of (1.1)–(1.3) blows up in finite time. The
proof of Lemma 3.4 is complete. �

Lemma 3.5. Let

α � 2m

m + 1
, β � 2n

n + 1
and pq >

(
2m

m + 1
− α

)(
2n

n + 1
− β

)
.

If li = ki, i = 1, 2, then every non-negative, non-trivial solution of (1.1)–(1.3) blows up
in finite time.

Proof. Assume that there exists a global non-negative non-trivial solution (u, v)
of (1.1)–(1.3). We make the following change of variables:

ϕ(ξ, τ) = (1 + t)k1u(ξ(1 + t)l1 , t),

ψ(η, τ) = (1 + t)k2v(η(1 + t)l2 , t),

τ = log(1 + t).
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These functions satisfy

ϕτ = (|ϕξ|m−1ϕξ)ξ + l1ξϕξ + k1ϕ,

ψτ = (|ψη|n−1ψη)η + l2ηψη + k2ψ,

}
(3.11)

−|ϕξ|m−1ϕξ(0, τ) = ϕα(0, τ)ψp(0, τ),

−|ψη|n−1ψη(0, τ) = ϕq(0, τ)ψβ(0, τ).

}
(3.12)

As (u, v) is, by hypothesis, global, so is (ϕ, ψ). On the other hand, we will construct (ϕ
¯
, ψ
¯
)

to system (3.11), (3.12) increasing in time, with initial data (ϕ
¯

0, ψ
¯

0) such that ϕ
¯

0(ξ) �
u(ξ, 0), ψ

¯
0(η) � v(η, 0). We will prove that (ϕ

¯
, ψ
¯
) cannot exist globally, thus contradicting

the global existence of (u, v). In order to achieve our goal, we use an adaptation for
systems of the general monotonicity approach for single quasilinear equations described
in [6].

We take initial data (ϕ
¯

0, ψ
¯

0) satisfying

(|ϕ
¯

0
ξ
|m−1ϕ

¯
0
ξ
)ξ + l1ξϕ

¯
0
ξ

+ k1ϕ
¯

0 � 0,

(|ψ
¯

0
η
|n−1ψ

¯
0
η
)η + l2ηψ

¯
0
η

+ k2ψ
¯

0 � 0,

⎫⎬
⎭ (3.13)

and the compatibility condition

−|ϕ
¯

0
ξ
|m−1ϕ

¯
0
ξ
(0) = (ϕ

¯
0)α(0)(ψ

¯
0)p(0),

−|ψ
¯

0
η
|n−1ψ

¯
0
η
(0) = (ϕ

¯
0)q(0)(ψ

¯
0)β(0).

⎫⎬
⎭ (3.14)

Following an idea for scalar equations from [7], we get

ϕ
¯

0(ξ) = h1(ξ + b1) = Cm[C(m+1)/m − (ξ + b1)(m+1)/m]m/(m−1)
+ ,

ψ
¯

0(η) = h2(η + b2) = Cn[C(n+1)/n − (η + b2)(n+1)/n]n/(n−1)
+ ,

⎫⎬
⎭ (3.15)

where Cm, Cn are defined in Lemma 3.4. Since l1 = k1, l2 = k2, we know from (1.13) that
l1 = k1 = 1/2m and it is easy to check that (ϕ

¯
0, ψ

¯
0) satisfies (3.13), (3.14) for suitable

b1, b2 ∈ (0, C).
Since u0(0) > 0, v0(0) > 0 with the continuity of u0(x) and v0(x), it follows from (3.11)

and (3.15) that

u0(x) = ϕ(ξ, 0) � h1(ξ + b1) = ϕ
¯

0(ξ),

v0(x) = ψ(η, 0) � h2(η + b2) = ψ
¯

0(η),

on R
+ provided that C > 0 is sufficiently small. Denote by (ϕ

¯
(ξ, τ), ψ

¯
(η, τ)) the solution

of (3.11), (3.12) with the initial data (ϕ
¯

0(ξ), ψ
¯

0(η)).
Since |ϕ

¯ξ
|m−1ϕ

¯ξ
� 0 on the boundary and ϕ

¯
0
ξ

� 0, we know that ϕ
¯
(ξ, τ) is nonincreas-

ing in ξ. Moreover, we can show that ϕ
¯
(ξ, τ) is non-decreasing in τ on R

+ × R
+. The

proof is similar to the proof of [7, Proposition 3.1] and we omit it.
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Next we claim that there exists a non-trivial function Φ(ξ), such that

+∞ > lim
τ→+∞

ϕ
¯
(ξ, τ) = Φ(ξ) for any ξ > 0.

In fact, if the claim is not true, we assume that limτ→+∞ ϕ
¯
(ξ, τ) = +∞ uniformly on

[0, ξ0]. Since ϕ
¯

is nonincreasing in ξ, for any G > 0, there is a positive τ0 such that
ϕ
¯
(ξ, τ0) > G on [0, ξ0]. In other words, at the time t0 = eτ0 − 1, the profile ϕ

¯
(ξ, τ) in the

original variable satisfies u(x, t0) � (1 + t0)−k1G for x ∈ [0, ξ0(1 + t0)l1 ]. Let u
¯
(x, t) be

defined in Lemma 3.1. Observing k1 = l1, we know that

G−1(1 + t0)l1Am+1
1

[
1
k1

(
m

m − 1

)m+1]m/(m−1)

� T k1 = T l1

� ξ0(1 + t0)k1

[
1
k1

(
m

m − 1

)m+1

Am−1
1

]−1

for suitable T , provided that G > 0 is large enough, which means that the first parts
of (3.3) and (3.4) hold with x1 = ξ0(1 + t0)l1 and G1 = G(1 + t0)−k1 , k1 = l1. Thus,
u(x, t0) � u

¯
(x, 0) for x > 0. This implies that u

¯
(x, t) will blow up in finite time. How-

ever, u was assumed to be global. This contradiction shows that the function Φ(ξ) is
well defined.

Finally, we will complete the proof. In view of the regularity of bounded solutions of
the degenerate equations (see [9]), by using the standard argument (see [10]), we can
pass to the limit in the first equation in (3.11) to get

(|Φξ|m−1Φξ)ξ + l1ξΦξ + k1Φ = 0. (3.16)

We know that 0 < Φ(0) < C. Because of the regularity of ϕ
¯

in the region where Φ > 0 [9],
we can pass to the limit in the boundary condition in (3.12) to obtain

−|Φξ|m−1Φξ(0) = Φα(0)Ψp(0) �= 0, (3.17)

where non-trivial Ψ(η) = limτ→+∞ ψ
¯
(η, τ). However, such a non-trivial compactly sup-

ported function dees not exist. In fact, by integrating (3.16) on (0, +∞), we have

0 =
∫ +∞

0
(|Φξ|m−1Φξ)ξ + l1ξΦξ + k1Φ dξ

= (|Φξ|m−1Φξ + l1ξΦ)|+∞
0 +

∫ +∞

0
(−l1 + k1)Φ dξ

= −|Φξ|m−1Φξ(0),

which contradicts (3.17). The proof of Lemma 3.5 is complete. �

Proof of Theorem 1.3. Lemmas 3.1 and 3.3–3.5 show that Fujita exponents for
(1.1)–(1.3) are described by li = ki, i = 1, 2, and Theorem 1.3 is proved. �
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4. Blow-up rate estimate

Proof of Theorem 1.4. Since ut � 0, we thus have that (|ux|m−1ux)x � 0 and
‖u(· , t)‖∞ = u(0, t). In the same way, we obtain ‖v(· , t)‖∞ = v(0, t).

Now let us define

M(t) = u(0, t) = max u(· , t) and N(t) = v(0, t) = max v(· , t).

Following ideas from [8], we set

ϕM (y, s) =
1

M(t)
u(ay, bs + t), y > 0, − t

b
< s < 0, t < T,

ψN (y, s) =
1

N(t)
v(cy, ds + t), y > 0, − t

d
< s < 0, t < T.

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

This pair of functions (ϕM , ψN ) satisfies

0 � ϕM , ψN � 1, ϕM (0, 0) = ψN (0, 0) = 1, (ϕM )s, (ψN )s � 0.

Choosing

a =
(

Mm−α

Np

)1/m

, b =
M (2m−mα−α)/m

N (m+1)p/m
, c =

(
Nn−β

Mq

)1/n

, d =
N (2n−nβ−β)/n

M (n+1)q/n
,

we have that ϕM and ψN are solutions of

(ϕM )s = (|(ϕM )y|m−1(ϕM )y)y,

(ψN )s = (|(ψN )y|n−1(ψN )y)y,

−|(ϕM )y|m−1(ϕM )y(0, s) = (ϕM )α(0, s)(ψN )p(0, s),

−|(ψN )y|n−1(ψN )y(0, s) = (ϕM )q(0, s)(ψN )β(0, s).

We observe that there exists a number s∗ such that ϕM and ψN are well defined for
every (y, s) ∈ A = {y > 0, s∗ < s < 0} with M and N sufficiently large. Indeed,
we assume −t/b → 0 otherwise. Hence, ϕM is a solution of the equation (ϕM )s =
(|(ϕM )y|m−1(ϕM )y)y, defined in a small interval of time (−t/b, 0). The flux is bounded
by

−|(ϕM )y|m−1(ϕM )y(0, s) = (ϕM )α(0, s)(ψN )p(0, s) � 1,

and the initial data are small (ϕM (y, −t/b) = u0(ay)/M(t) � ε) if M is large enough.
But this contradicts the fact that ϕM (0, 0) = 1.

Next we claim that, under the assumption of Theorem 1.4, there exist constants c and
C for sufficiently large M and N such that

c � (ϕM )s(0, 0) � C, c � (ψN )s(0, 0) � C. (4.2)
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First we will prove (ϕM )s(0, 0) � C and (ψN )s(0, 0) � C. From the results for bounded
solutions of degenerate equations in [8] we find that every sequence (ϕMj , ψNj) is equi-
continuous, where

ϕMj(y, s) =
1

M(tj1)
u(ay, bs + tj1), ψNj(y, s) =

1
N(tj2)

v(cy, ds + tj2)

and −tj1/b → s∗ as j1 → +∞, −tj2/d → s∗ as j2 → +∞. Therefore, passing to a
subsequence if necessary, we have that ϕMj → ϕ, ψNj → ψ uniformly on a compact set of
{y � 0, s∗ � s � 0}. These functions ϕ, ψ are continuous and satisfy ϕ(0, 0) = ψ(0, 0) =
1. Hence, there exists a neighbourhood U of (0, 0) and U ⊂ A, such that ϕ, ψ > 1

2 in U . As
we have uniform convergence over Ū (we can assume Ū is compact), for sufficiently large
j we have that 1

4 � ϕMj , ψNj � 1. Therefore, ϕMj and ψNj are solutions of uniformly
parabolic equations in Ū (see [18]). By using the Schauder estimate (see [11]), we have

‖ϕMj‖C2+α,1+α/2 � C, ‖ψNj‖C2+α,1+α/2 � C in Ū .

For sufficiently large M and N , we conclude that (ϕM )s(0, 0) � C and (ψN )s(0, 0) � C.
The first half of the claim is proved.

It remains to prove that c � (ϕM )s(0, 0) and c � (ψN )s(0, 0). Otherwise, there exists
a sequence {Mj} → 0 such that (ϕMj)s(0, 0) → 0. Just as before, we need to obtain that
ϕMj → ϕ and ψNj → ψ and that ‖ϕMj‖C2+α,1+α/2 � C and ‖ψNj‖C2+α,1+α/2 � C in Ū .
Since C2+α,1+α/2 is compactly included in C2+β,1+β/2, β < α, we can conclude, refining
the sequence if necessary, that ϕs(0, 0) = 0.

However, we observe that ϕ is a weak solution of

(ϕ)s = (|(ϕ)y|m−1(ϕ)y)y in R
+ × (s∗, 0),

−|(ϕ)y|m−1(ϕ)y(0, s) = (ϕ)α(0, s)(ψ)p(0, s) for s ∈ (s∗, 0).

Then W = ϕs � 0 satisfies

Ws = m(|ϕy|m−1Wy)y in R
+ × (s∗, 0),

−m|ϕy|m−1Wy = pψsψ
p−1(0, s)ϕα(0, s) + αWϕα−1(0, s)ψp(0, s) � 0 for s ∈ (s∗, 0).

Hence, W has a minimum at (0, 0). By Hopf’s lemma, which can be applied whenever
ϕ > 0, we can conclude that W ≡ 0 (see [18]), that is ϕ does not depend on s. Hence,
ϕ = ϕ(y) is a solution of

0 = (|(ϕ)y|m−1(ϕ)y)y,

−|(ϕ)y|m−1(ϕ)y(0) = 1.

So ϕ is unbounded. This contradicts 0 � ϕ � 1. The second part of the claim is proved.
Next, by using (4.1) and (4.2), we have

c � M (m−mα−α)/m

N (m+1)p/m
M ′(t) � C, c � N (n−nβ−β)/n

M (n+1)q/n
N ′(t) � C.
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This is equivalent to

cN (m+1)p/m � M (m−mα−α)/mM ′ � CN (m+1)p/m,

cM (n+1)q/n � N (n−nβ−β)/nN ′ � CM (n+1)q/n.

}
(4.3)

Thus,

CN ((m+1)p/m)+(n−nβ−β)/nN ′(t) � cCN (m+1)p/mM (n+1)q/n

� cM (m−mα−α)/m+((n+1)q)/nM ′(t), (4.4)

which implies that

N (((m+1)p/m)+(n−nβ−β)/n)+1 � C1M
(m−mα−α)/m+((n+1)q/n)+1. (4.5)

For Theorem 1.4 (i), it follows from (4.5) that

N � C2M
[m(n+1)q−n(mα+α−2m)]/[n(m+1)p−m(nβ+β−2n)] = C2M

k2/k1 . (4.6)

Combining (4.3) with (4.6), we have

M (m−mα−α)/m−(m+1)pk2/mk1M ′(t) � C3. (4.7)

Observation yields

1 +
m − mα − α

m
− (m + 1)pk2

mk1

=
2m − mα − α

m
− (m + 1)p

m

m(n + 1)q − n(mα + α − 2m)
n(m + 1)p − m(nβ + β − 2n)

=
(2m − mα − α)n(m + 1)p − (2m − mα − α)m(nβ + β − 2n)

mn(m + 1)p − m2(nβ + β − 2n)

− m(m + 1)(n + 1)pq − n(m + 1)p(mα + α − 2m)
mn(m + 1)p − m2(nβ + β − 2n)

=
(mα + α − 2m)(nβ + β − 2n) − (m + 1)(n + 1)pq

n(m + 1)p − m(nβ + β − 2n)

= − 1
k1

.

By integrating (4.7) on (t, T ), we get

M(t) � C1(T − t)−k1 , (4.8)

By (4.6), we have

N(t) � C4(T − t)−k2 . (4.9)
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Similarly, we have from (4.3) that

cN (m+1)p/m+(n−nβ−β)/nN ′(t) � cCN (m+1)p/mM (n+1)q/n

� CM (m−mα−α)/m+((n+1)q)/nM ′(t), (4.10)

M � C4N
k1/k2 , N (n−nβ−β)/n−(n+1)qk1/nk2N ′(t) � C5, (4.11)

with

1 − (n + 1)qk1

nk2
+

n − nβ − β

n
= − 1

k2
.

From (4.11) we obtain that

N(t) � C2(T − t)−k2 , M(t) � C3(T − t)−k1 . (4.12)

For Theorem 1.4 (ii), it follows, by (4.5), that

M � C ′
2N

[n(m+1)p−m(nβ+β−2n)]/[m(n+1)q−n(mα+α−2m)] = C ′
2N

k1/k2 . (4.13)

Combining (4.3) with (4.13), we have

N (n−nβ−β)/n−(n+1)qk1/nk2N ′(t) � C ′
3.

By using a method similar to (i), we can prove that the estimate (4.8), (4.9) and (4.12)
is also true for (ii). The proof of Theorem 1.4 is complete. �
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