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Abstract. Let � be a field and S = �[x1, . . . , xn] be the polynomial ring in n
variables over the field �. For every monomial ideal I ⊂ S, we provide a recursive
formula to determine a lower bound for the Stanley depth of S/I . We use this formula
to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals.
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1. Introduction. Let � be a field and S = �[x1, . . . , xn] be the polynomial ring
in n variables over the field �. Let M be a non-zero finitely generated �n-graded S-
module. Let u ∈ M be a homogeneous element and Z ⊆ {x1, . . . , xn}. The �-subspace
u�[Z] generated by all elements uv with v ∈ �[Z] is called a Stanley space of dimension
|Z|, if it is a free �[�]-module. Here, as usual, |Z| denotes the number of elements of
Z. A decomposition D of M as a finite direct sum of Stanley spaces is called a Stanley
decomposition of M. The minimum dimension of a Stanley space in D is called the
Stanley depth of D and is denoted by sdepth(D). The quantity

sdepth(M) := max
{
sdepth(D) | D is a Stanley decomposition of M

}
is called the Stanley depth of M. Stanley [11] conjectured that

depth(M) ≤ sdepth(M)

for all �n-graded S-modules M. This conjecture has been recently disproved in [1].
However, the study of the properties of the Stanley depth of �n-graded modules is still
interesting. For a reader friendly introduction to Stanley decomposition, we refer to
[9] and for a nice survey on this topic we refer to [2].

Let I be a monomial ideal of S. In [6], Lyubeznik associated a numerical invariant
to I which is called size and is defined as follows.

DEFINITION 1.1. Assume that I is a monomial ideal of S. Let I = ⋂s
j=1 Qj be an

irredundant primary decomposition of I , where Qj (1 ≤ j ≤ s) is a monomial primary
ideal of S. Let h be the height of

∑s
j=1 Qj, and denote by v the minimum number t such
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that there exist 1 ≤ j1, . . . , jt ≤ s with√√√√ t∑
i=1

Qji =
√√√√ s∑

j=1

Qj.

Then, the size of I is defined to be v + n − h − 1.

Lyubeznik [6] proved that for every monomial ideal I , the inequality depth(I) ≥
size(I) + 1 holds true. It is natural to ask whether the inequalities sdepth(I) ≥ size(I) +
1 and sdepth(S/I) ≥ size(I) hold, for a monomial ideal I . The first inequality was
proved by Herzog, Popescu and Vladoiu for square-free monomial ideals in [4]. In
fact, the method, which is used in [4], is the generalization of a method, started by A.
Popescu [7] and continued by D. Popescu [8]. Recently, Tang [12] proved the second
inequality for square-free monomial ideals. The aim of this paper is to extend Tang’s
method to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial
ideals containing square-free monomial ideals.

By [3, Corollary 1.3.2], a monomial ideal is irreducible if and only if it is generated
by pure powers of the variables. Also, by [3, Theorem 1.3.1], every monomial ideal
of S can be written as the intersection of irreducible monomial ideals and every
irredundant presentation in this form is unique. Assume that I = Q1 ∩ . . . ∩ Qs is the
irredundant presentation of I as the intersection of irreducible monomial ideals. Using
this presentation, we provide a recursive formula for computing a lower bound for the
Stanley depth of S/I (see Theorem 2.7). Assume moreover that for every 1 ≤ i ≤ s and
every proper non-empty subset τ ⊂ [s] with

√
Qi ⊆

∑
j∈τ

√
Qj,

we have

Qi ⊆
∑
j∈τ

Qj.

Then, we prove that sdepth(S/I) ≥ size(I) (see Theorem 2.8).
Before beginning the proof, we mention that although, the behaviour of Stanley

depth with polarization is known [5], the following example shows that one can not
use the polarization and Tang’s result to deduce Theorem 2.8.

EXAMPLE 1.2. Let I = (x2
1, x2x3) be a monomial ideal of S = �[x1, x2, x3]. Then,

I satisfies the assumptions of Theorem 2.8 and one can easily check that size(I) = 1.
Thus, Theorem 2.8 implies that sdepth(S/I) ≥ 1. On the other hand, by applying
polarization on I , we obtain the ideal Ip = (x1x4, x2x3) as a monomial ideal in
the polynomial ring T = �[x1, x2, x3, x4]. One can check that size(Ip) = 1. Now, [5,
Corollary 4.4] and [12, Theorem 3.2] imply that sdepth(S/I) = sdepth(T/Ip) − 1 ≥
1 − 1 = 0. Note that this inequality is weaker than one obtained by Theorem 2.8.

2. Stanley depth and size. In this section, we prove the main results of this paper.
Using the irredundant primary decomposition of a monomial ideal I , we first provide
a decomposition for S/I in Corollary 2.5. Then, we use this decomposition to obtain
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a lower bound for the Stanley depth of S/I (see Theorem 2.7). This lower bound
and an inductive argument help us to prove the inequality sdepth(S/I) ≥ size(I) for a
particular class of monomial ideals (see Theorem 2.8).

REMARK 2.1. We emphasize that every decomposition in this paper is valid only
in the category of �-vector spaces and not in the category of S-modules.

To obtain a decomposition for S/I , we first need to have decompositions for S
and I . The following proposition, provides the required decomposition for S. Before
beginning the proof, we remind that for every subset S′ of S, the set of monomials
belonging to S′ is denoted by Mon(S′). Also, for every monomial u ∈ S, the support of
u, denoted by Supp(u) is the set of variables which divide u.

PROPOSITION 2.2. Let S′ = �[x1, . . . , xr], S′′ = �[xr+1, . . . , xn], S = �[x1, . . . , xn]
and I be a monomial ideal of S. Assume that

I = Q1 ∩ . . . ∩ Qs, s ≥ 2 (†)

is the unique irredundant presentation of I as the intersection of irreducible monomial
ideals. Suppose that Q = ∑s

i=1 Qi. For every proper subset τ ⊂ [s], set

Sτ = �

[
xi

∣∣∣∣ 1 ≤ i ≤ r, xi /∈
∑
j∈τ

√
Qj

]

and

Mτ =
{

u
∣∣∣∣ u ∈ Mon(S′) \

∑
j∈τ

Qj

} ⋂
�

[
xi

∣∣∣∣ xi ∈
∑
j∈τ

√
Qj

]
.

Then,

(∗) S =
( ⊕

u∈Mon(S′\Q)

uS′′
)

⊕
( ⊕

τ⊂[s]

⊕
w∈Mτ

(( ⋂
j∈[s]\τ

Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn]

))
.

Proof. We first prove that every monomial of S belongs to the right-hand side of
(∗). Let α ∈ S be a monomial. Then there exist monomials u ∈ S′ and v ∈ S′′ such that
α = uv. If u /∈ Q, then since α ∈ uS′′, it belongs to the first summand. Thus, assume
that u ∈ Q.

Let τ = {i ∈ [s] | u /∈ Qi}. Since u ∈ Q, it follows that τ is a proper subset of [s].
Now, there exist monomials

w ∈ �

[
xi

∣∣∣∣ 1 ≤ i ≤ r, xi ∈
∑
j∈τ

√
Qj

]
and w′ ∈ Sτ

such that u = ww′. Since for every j ∈ τ , we have u /∈ Qj, it follows that w /∈ Qj, for
every j ∈ τ . This shows that w ∈ Mτ . On the other hand, u ∈ ⋂

j∈[s]\τ Qj and hence
u ∈ ⋂

j∈[s]\τ Qj ∩ wSτ . Therefore,

α = uv ∈
( ⋂

j∈[s]\τ
Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn].
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It turns out that

S =
∑

u∈Mon(S′\Q)

uS′′ +
∑
τ⊂[s]

∑
w∈Mτ

(( ⋂
j∈[s]\τ

Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn]

)
.

We now show that the sum is direct. We consider the following cases.

CASE 1. For every pair of monomials u1, u2 ∈ S′ \ Q, we have u1S′′ ∩ u2S′′ = 0,
since

S′′ ∩ Supp(u1) = S′′ ∩ Supp(u2) = ∅.

CASE 2. We prove that for every subset τ of [s] and every pair of monomials
u ∈ S′ \ Q and w ∈ Mτ , we have

uS′′ ∩
(( ⋂

j∈[s]\τ
Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn]

)
= 0.

Indeed, assume by the contrary that there exists a monomial

v ∈ uS′′ ∩
(( ⋂

j∈[s]\τ
Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn]

)
.

Let v′ be the monomial obtained from v by applying the map xi 
→ 1, for every
r + 1 ≤ i ≤ n. Then, v′ = u and on the other hand,

v′ ∈
⋂

j∈[s]\τ
Qj ∩ wSτ .

Therefore, u ∈ ⋂
j∈[s]\τ Qj, which is a contradiction by u /∈ Q.

CASE 3. We prove that for every subset τ of [s] and every pair of distinct monomials
w1, w2 ∈ Mτ ,(( ⋂

j∈[s]\τ
Qj ∩ w1Sτ

)
Sτ [xr+1, . . . , xn]

)
∩

(( ⋂
j∈[s]\τ

Qj ∩ w2Sτ

)
Sτ [xr+1, . . . , xn]

)
= 0.

Indeed, assume by the contrary that there exists a monomial

v ∈
(( ⋂

j∈[s]\τ
Qj ∩ w1Sτ

)
Sτ [xr+1, . . . , xn]

)
∩

(( ⋂
j∈[s]\τ

Qj ∩ w2Sτ

)
Sτ [xr+1, . . . , xn]

)
.

Let v′ be the monomial obtained from v by applying the map xi 
→ 1, for every i with
xi ∈ Sτ [xr+1, . . . , xn]. Since v ∈ w1Sτ [xr+1, . . . , xn] and

w1 ∈ �

[
xi

∣∣∣∣ 1 ≤ i ≤ r, xi ∈
∑
j∈τ

√
Qj

]
,
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we conclude that v′ = w1. Similarly, v′ = w2, which implies that w1 = w2 and this is a
contradiction.

CASE 4. We prove that for every pair of proper subsets τ1, τ2 of [s] with τ1 �= τ2 and
every pair of monomials w1 ∈ Mτ1 and w2 ∈ Mτ2 ,

(( ⋂
j∈[s]\τ1

Qj ∩ w1Sτ1

)
Sτ1 [xr+1, . . . , xn]

)
∩

(( ⋂
j∈[s]\τ2

Qj ∩ w2Sτ2

)
Sτ2 [xr+1, . . . , xn]

)
= 0.

Indeed, assume by the contrary that there exists a monomial

v ∈
(( ⋂

j∈[s]\τ1

Qj ∩ w1Sτ1

)
Sτ1 [xr+1, . . . , xn]

)
∩

(( ⋂
j∈[s]\τ2

Qj ∩ w2Sτ2

)
Sτ2 [xr+1, . . . , xn]

)
.

Since τ1 �= τ2, without loss of generality, we may assume that τ1 � τ2. Thus, there exists
an integer j0 ∈ τ1 \ τ2. Let v′ be the monomial obtained from v by applying the map
xi 
→ 1, for every r + 1 ≤ i ≤ n. Then,

v′ ∈
( ⋂

j∈[s]\τ1

Qj ∩ w1Sτ1

)
∩

( ⋂
j∈[s]\τ2

Qj ∩ w2Sτ2

)
,

in particular v′ ∈ Qj0 . On the other hand, by v′ ∈ w1Sτ1 , we conclude that there exists
a monomial w0 ∈ Sτ1 , such that v′ = w0w1. Since w1 ∈ Mτ1 , we see that w1 /∈ Qj0 .
Also, by the definition of Sτ1 , we conclude that w0 /∈ √

Qj0 . Since Qj0 is a primary
ideal, v′ = w0w1 /∈ Qj0 , which is a contradiction. This completes the proof of the
proposition. �

REMARK 2.3. Notice that in the decomposition of Proposition 2.2, the summand
corresponding to τ = ∅ is equal to (I ∩ S′)S, because M∅ = {1} and S∅ = S′.

In the following proposition, we provide a decomposition for I .

PROPOSITION 2.4. Under the assumptions as in Proposition 2.2, suppose further that
one of the irreducible monomial ideals in the decomposition (†) of I is (xa1

1 , . . . , xar
r ), where

a1, . . . , ar are positive integers. Then, there is a decomposition of I:

I =
(

(I ∩ S′)S
)
⊕

⊕
∅�=τ⊂[s]

⊕
w∈Mτ

((( ⋂
j∈[s]\τ

Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn]

)

∩
(( ⋂

j∈τ

Qj ∩ wS′′
)

Sτ [xr+1, . . . , xn]

))
,

where τ runs over all non-empty proper subsets of [s].
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Proof. It is clear that every monomial of the sum(
(I ∩ S′)S

)

+
∑

∅�=τ⊂[s]

∑
w∈Mτ

((( ⋂
j∈[s]\τ

Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn]

)

∩
(( ⋂

j∈τ

Qj ∩ wS′′
)

Sτ [xr+1, . . . , xn]

))
,

belongs to I . Thus, we prove that every monomial of I belongs to the above sum.
Assume that α ∈ I is a monomial. Then there exist monomials u1 ∈ S′ and u2 ∈ S′′

such that α = u1u2. Since I ⊆ (xa1
1 , . . . , xar

r ), we conclude that u1 ∈ (xa1
1 , . . . , xar

r ) ⊆ Q
and hence

α /∈
⊕

u∈Mon(S′\Q)

uS′′.

Therefore, Proposition 2.2 shows that there exists a proper subset τ of [s] and a
monomial w ∈ Mτ such that

α ∈
( ⋂

j∈[s]\τ
Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn].

If τ = ∅, then Remark 2.3 implies that α ∈ (I ∩ S′)S.
Thus, assume that τ �= ∅. It is sufficient to prove that

α ∈ (
( ⋂

j∈τ

Qj ∩ wS′′
)

Sτ [xr+1, . . . , xn]

)
.

Remind that α = u1u2, where u1 ∈ S′ and u2 ∈ S′′. It is clear that u1 ∈ wSτ . Therefore,
there exists a monomial u′ ∈ Sτ such that u1 = wu′. Hence, α = wu′u2. It follows from
the definition of Sτ that for every j ∈ τ , we have u′ /∈ √

Qj. Since for every j ∈ τ , we
have α ∈ I ⊆ Qj and Qj is a primary ideal, we conclude that wu2 ∈ ⋂

j∈τ Qj. This shows
that wu2 ∈ ⋂

j∈τ Qj ∩ wS′′. Hence,

α = wu′u2 ∈ (
( ⋂

j∈τ

Qj ∩ wS′′
)

Sτ [xr+1, . . . , xn]

)
,

and it implies that

I =
(

(I ∩ S′)S
)

+
∑

∅�=τ⊂[s]

∑
w∈Mτ

((( ⋂
j∈[s]\τ

Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn]

)

∩
(( ⋂

j∈τ

Qj ∩ wS′′
)

Sτ [xr+1, . . . , xn]

))
.

It now follows from Proposition 2.2 that the sum is in fact a direct sum. �
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The following corollary is an immediate consequence of Propositions 2.2, 2.4 and
Remark 2.3. It provides a decomposition for S/I and helps us to determine a lower
bound for the Stanley depth of S/I .

COROLLARY 2.5. Under the assumptions as in Proposition 2.2, suppose further that
one of the irreducible monomial ideals in the decomposition (†) of I is (xa1

1 , . . . , xar
r ), where

a1, . . . , ar are positive integers. Then, there is a decomposition of S/I:

S/I =
( ⊕

u∈Mon(S′\Q)

uS′′
)
⊕

⊕
τ⊂[s]

⊕
w∈Mτ

(( ⋂
j∈[s]\τ Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn]

)
(( ⋂

j∈[s]\τ Qj ∩ wSτ

)
Sτ [xr+1, . . . , xn]

)
∩

(( ⋂
j∈τ Qj ∩ wS′′

)
Sτ [xr+1, . . . , xn]

) ,

where τ runs over all non-empty proper subsets of [s].

The following lemma is a modification of [12, Lemma 2.3]. In fact, for w = 1, it
implies [12, Lemma 2.3]. Using this lemma, we are able to find a lower bound for the
Stanley depth of summands appearing in Corollary 2.5.

LEMMA 2.6. Let S1 = �[x1, . . . , xn] and S2 = �[y1, . . . , ym] be polynomial rings
with disjoint set of variables and assume that S3 = �[x1, . . . , xn, y1, . . . , ym]. Assume also
that S = �[x1, . . . , xn, y1, . . . , ym, z1, . . . , zt] is a polynomial ring containing S3. Suppose
that I, J ⊂ S are monomial ideals and w ∈ S \ J is a monomial. Set I1 = I ∩ wS1 and
J1 = J ∩ wS2. Then,

sdepthS3

( I1S3

I1S3 ∩ J1S3

)
≥ sdepthS1

(
(I : w) ∩ S1

)
+ sdepthS2

( S2

(J : w) ∩ S2

)
.

Proof. We note that every monomial in I1S3 is divisible by w. Thus, the S3-modules
I1S3/(I1S3 ∩ J1S3) and (I1S3 : w)/((I1S3 : w) ∩ (J1S3 : w)) are isomorphic. Hence,

sdepthS3

( I1S3

I1S3 ∩ J1S3

)
= sdepthS3

( (I1S3 : w)
(I1S3 : w) ∩ (J1S3 : w)

)
.

Moreover, by the definition of I1 and J1, we have (I1S3 : w) = ((I1S3 : w) ∩ S1)S3 and
(J1S3 : w) = ((J1S3 : w) ∩ S2)S3. Therefore, it follows from [12, Lemma 2.3] and the
above equality that

sdepthS3

( I1S3

I1S3 ∩ J1S3

)
≥ sdepthS1

(
(I1S3 : w) ∩ S1

)
+ sdepthS2

( S2

(J1S3 : w) ∩ S2

)
.

Since (I1S3 : w) ∩ S1 = (I : w) ∩ S1 and (J1S3 : w) ∩ S2 = (J : w) ∩ S2, the assertion
follows. �

In the following theorem, we determine a lower bound for the Stanley depth of
S/I . It is a generalization of [12, Theorem 2.4].
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THEOREM 2.7. Under the assumptions as in Corollary 2.5, there is an inequality

sdepthS(S/I) ≥ min

{
n − r, sdepthSτ

( ⋂
j∈[s]\τ

(Qj : w) ∩ Sτ

)

+ sdepthS′′

(
S′′

/(⋂
j∈τ

Qj ∩ S′′
))}

,

where the minimum is taking over all non-empty proper subset τ ⊂ [s] and all w ∈ Mτ

such that (∩j∈[s]\τ Qj ∩ wSτ ) �= 0.

Proof. Note that for every non-empty proper subset τ ⊂ [s] and every w ∈ Mτ ,
we have w /∈ Qj, for all j ∈ τ . Also, Supp(w) ∩ S′′ = ∅. This shows that for every j ∈ τ ,
we have (Qj : w) ∩ S′′ = Qj ∩ S′′. Now, the assertion follows from Corollary 2.5 and
Lemma 2.6. To apply Lemma 2.6, for every summand appearing in Corollary 2.5, set
I = ∩j∈[s]\τ Qj, J = ∩j∈τ Qj, S1 = Sτ , S2 = S′′ and S3 = Sτ [xr+1, . . . , xn] ⊆ S. �

We are now ready to prove the main result of this paper. In the proof of the following
theorem, we use the first statement of [4, Lemma 3.2]. Notice that a counterexample by
H. Shen shows that the second statement of this Lemma is not true for non-square-free
monomial ideals.

THEOREM 2.8. Let I be a monomial ideal of S. Assume that

I = Q1 ∩ . . . ∩ Qs

is the unique irredundant presentation of I as the intersection of irreducible monomial
ideals. Suppose that for every 1 ≤ i ≤ s and every proper non-empty subset τ ⊂ [s] with

√
Qi ⊆

∑
j∈τ

√
Qj,

we have

Qi ⊆
∑
j∈τ

Qj.

Then, sdepth(S/I) ≥ sizeS(I).

Proof. We prove the assertion by induction on s. Without loss of generality, assume
that Q1 = (xa1

1 , . . . , xar
r ), for some integer r with 1 ≤ r ≤ n. If s = 1, then I = Q1 and

it is clear that sizeS(I) = n − r. On the other hand, it follows from [10, Theorem 1.1]
that sdepth(S/I) = n − r. Thus, there is nothing to prove in this case. Hence, assume
that s ≥ 2.

Set S′ = �[x1, . . . , xr] and S′′ = �[xr+1, . . . , xn]. It is obvious from the definition
of size that sizeS(I) ≤ n − r. Therefore, using Theorem 2.7, it is enough to prove that for
every non-empty proper subset τ ⊂ [s] and every w ∈ Mτ with (∩j∈[s]\τ Qj ∩ wSτ ) �= 0,
we have

sdepthSτ

( ⋂
j∈[s]\τ

(Qj : w) ∩ Sτ

)
+ sdepthS′′

(
S′′

/( ⋂
j∈τ

Qj ∩ S′′
))

≥ sizeS(I).
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Hence, we fix a non-empty proper subset τ ⊂ [s] and a monomial w ∈ Mτ such that
(∩j∈[s]\τ Qj ∩ wSτ ) �= 0. If

⋂
j∈τ Qj ∩ S′′ = 0, then

sdepthSτ

( ⋂
j∈[s]\τ

(Qj : w) ∩ Sτ

)
+ sdepthS′′

(
S′′

/( ⋂
j∈τ

Qj ∩ S′′
))

≥ n − r ≥ sizeS(I).

Thus, assume that
⋂

j∈τ Qj ∩ S′′ �= 0. In particular, 1 /∈ τ . If Sτ = �, then it follows
from the definition of Sτ that

√
Q1 ⊆

∑
j∈τ

√
Qj.

Hence, by assumption

Q1 ⊆
∑
j∈τ

Qj.

Since Sτ = �, it follows from (∩j∈[s]\τ Qj ∩ wSτ ) �= 0 and the above inclusion that

w ∈ ∩j∈[s]\τ Qj ⊆ Q1 ⊆
∑
j∈τ

Qj,

which is a contradiction by the definition of Mτ . Therefore, assume that Sτ �= �. In
other words, Sτ is a polynomial ring of positive dimension.

Since (∩j∈[s]\τ Qj ∩ wSτ ) �= 0, we conclude that
⋂

j∈[s]\τ (Qj : w) ∩ Sτ is a non-zero
ideal of Sτ . It follows from [2, Corollary 2.4] that

sdepthSτ

( ⋂
j∈[s]\τ

(Qj : w)
)

≥ 1.

Also, for every i ∈ τ and every proper subset τ ′ ⊂ τ , with

√
Qi ∩ S′′ ⊆

∑
j∈τ ′

√
Qj ∩ S′′,

we have √
Qi ⊆

∑
j∈τ ′∪{1}

√
Qj

and the assumption implies that

Qi ⊆
∑

i∈τ ′∪{1}
Qj.

Thus,

Qi ∩ S′′ ⊆
∑
i∈τ ′

Qj ∩ S′′.

https://doi.org/10.1017/S0017089516000495 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000495


714 S. A. SEYED FAKHARI

Thus, the induction hypothesis together with the first statement of [4, Lemma 3.2]
implies that

sdepthSτ

( ⋂
j∈[s]\τ

(Qj : w) ∩ Sτ

)
+ sdepthS′′

(
S′′

/(⋂
j∈τ

Qj ∩ S′′
))

≥ 1 + sizeS′′
( ⋂

j∈τ

Qj ∩ S′′
)

≥ sizeS(I).

�
REMARK 2.9.

(1) Every square-free monomial ideal satisfies the assumption of Theorem 2.8. Indeed,
assume that I is a square-free monomial ideal and I = Q1 ∩ . . . ∩ Qs is the
irredundant presentation of I as the intersection of irreducible monomial ideals.
Then, for every integer i with 1 ≤ i ≤ s, the ideal Qi is a prime ideal which is
generated by a subset of variables. Thus, Qi = √

Qi, for every 1 ≤ i ≤ s. This shows
that I satisfies the assumption of Theorem 2.8. Therefore, Theorem 2.8 is an
extension of Tang’s result [12, Theorem 3.2].

(2) Note that every monomial ideal satisfying the assumption of Theorem 2.8 has no
embedded associated prime. Indeed, assume that

√
Qi ⊆ √

Qj for i �= j. Then, the
assumption of Theorem 2.8 implies that Qi ⊆ Qj, which is contradiction, because
the intersection Q1 ∩ . . . ∩ Qs is irredundant.

REMARK 2.10. We have no example of a monomial ideal I such that sdepth(S/I) <

sizeS(I). Thus, it may be true that for every monomial ideal I , the inequality
sdepth(S/I) ≥ sizeS(I) holds. However, the method we used in this paper does not
look applicable for the general case.
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