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In this paper, a concept of a floating elastic wave energy converter consisting of a
disk-shaped elastic plate is proposed. The floating plate is moored to the seabed through
a series of power take-off (PTO) units. A theoretical model based on the linear potential
flow theory and eigenfunction matching method is developed to study the hydroelastic
characteristics and evaluate wave power absorption of the device. The PTO system is
simulated as a discrete PTO, and moreover, it is also modelled as a continuum PTO to
represent the case when the PTO system is composed of a large number of PTO units. The
continuum PTO approximation is tested against the discrete PTO simulation for accuracy.
Two methods are proposed to predict the wave power absorption of the device. After
running convergence analysis and model validation, the present model is employed to
do a multiparameter impact analysis. The device adopting a continuum PTO system is
found to capture wave power efficiently in an extensive range of wave frequencies. For the
continuum PTO system, it is theoretically possible to adopt optimised PTO damper and
stiffness/mass to guarantee the absorption of 100 % of the energy flux available in one
circular component of the plane incident wave.
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1. Introduction

A large number of concepts of wave energy converters (WECs) have been proposed since
the 1790s (Clément et al. 2002; Drew, Plummer & Sahinkaya 2009), and most of them
are composed of rigid bodies. There are theoretical limits for wave power absorption of
the rigid-body-based WECs. For example, the maximum time-averaged power generated
by a heaving WEC, which is composed of an axisymmetric rigid body, in monochromatic
water waves of wavelength A, is equivalent to that contained in a /2 length of an incident
wave crest, i.e. the maximum wave power capture width is 4/2m (Budal & Falnes 1975;
Evans 1976; Newman 1976). A notable feature is that the axisymmetric heaving WEC
can be reduced in size without affecting the capture width, provided that the amplitude of
heaving motion increases simultaneously. The capture width limit (4/27) for the heaving
WEC also applies for an offshore axisymmetric oscillating water column device, which
harnesses energy from the oscillation of the water inside a chamber caused by the action
of waves (Martins-Rivas & Mei 2009). For attenuator devices, which operate parallel to
the wave direction and capture energy from the relative motion of interconnecting floats
(e.g. Pelamis; Yemm et al. 2012), the theoretical limits are less clear, although a similar
principle applies: the wave power from a much greater length of incident wave crest than
the slender width of the device is possibly harnessed, and the maximum wave power
capture width is proportional to wavelength 4 (Newman 1979). The above-mentioned
theoretical maximum wave capture width may be unobtainable for WECs in a small
size and/or oscillating in long waves since the amplitude of the device motions can
be substantial and must be constrained. Some practical considerations — e.g. a global
constraint (Evans 1981; Pizer 1993), a constraint on even and odd modes (Newman 1979),
and a relative rotation constraint (Zheng, Zhang & Sheng 2016) — can be applied to the
motion to ensure that predictions remain within the limitations of the underlying theory.

In the recent decade, there has been a growing trend towards flexible-body-based WECs,
e.g. elastic plate WECs (Renzi 2016), SQ devices (Kurniawan et al. 2017), and bulge
wave devices (Farley, Rainey & Chaplin 2012). The flexible WECs are believed to offer
improved reliability/survivability and reduced cost superior to steel/concrete alternatives
(Collins et al. 2021; Renzi et al. 2021). Moreover, they are advantageous for the larger
potential of wave power absorption. Porter, Zheng & Greaves (2021) demonstrated that
the capture width for axisymmetric WECs could be extended theoretically without bound
through the use of generalised (non-rigid-body) modes of motion. Their concept was
applied to two flexible cylinders whose surface is surrounded by an array of narrow vertical
absorbing paddles, and capture widths in excess of 41/ — which is eight times as large
as the maximum capture width of an axisymmetric heaving WEC — were reported in their
computations. The advantages of flexible attenuator WECs, which operate in ‘generalised
modes’ of motion, in wave power absorption were also reported by Newman (1979, 1994),
Mei (2014) and Ancellin et al. (2020).

To make full use of the ‘generalised modes’ of the flexible WECs in harnessing
wave power, a continuum distributed power take-off (PTO) system, or alternatively, a
discrete PTO system consisting of a series of PTO units distributed on the flexible
components of the WECs, should be adopted. Piezoelectric materials, which are able
to establish a voltage upon application of an external stress, can work as a continuum
PTO system in wave power conversion. A flexible substrate with both faces perfectly
bonded with piezoelectric layers can work as a simple flexible plate WEC. As water
waves propagate through the device, the tension variations at the plate—water interface
are converted into a voltage, owing to the piezoelectric effect. Renzi (2016) proposed a
hydroelectromechanical-coupled two-dimensional (2-D) model to evaluate the wave power
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extraction from the dynamics of a submerged piezoelectric plate WEC, which is made of
a 2-D flexible bimorph plate with both ends clamped. The device was found to extract
a significant amount of energy and could be used for low-power applications such as
supplying LEDs and sensors. His model was later extended to study the performance of
a 2-D piezoelectric plate WEC mooring on a seabed-mounted/pile-supported breakwater
(Buriani & Renzi 2017; Zheng et al. 2021a,b) and an offshore three-dimensional (3-D)
piezoelectric circular plate WEC (Zheng et al. 2020a). Soft dielectric elastomer generators
may be embedded into the tube material for continuous energy extraction of the attenuator
WECs, e.g. SBM Offshore’s S3 WEC (Jean et al. 2012) and the Electric Eel proposed
by AWS (AWS Ocean Energy Ltd 2016), which are at the early stages of development.
Compared with the continuum PTO system, the discrete PTO system has a lower technical
threshold and is closer to engineering application. The ‘Wave Carpet’ device is a flexible
WEC with the employment of a discrete PTO system (Alam 2012) — it consists of a long,
submerged elastic plate equipped with equally spaced PTO units, which are composed of
springs and dampers to harvest energy. To evaluate the performance of the Wave Carpet,
Desmars et al. (2018) developed a wave-flexible structure interaction model through
modal decomposition of the structure deformations, and determined the hydrodynamic
coefficients of each deformation mode with a boundary element method. The wave power
absorbed by the device was found to be more sensitive to the location of the PTO units than
to their damping coefficients. Michele et al. (2020) considered a 2-D flexible plate floating
on the sea surface connected to a series of linear PTO units under the water. To investigate
the wave power extraction by the device, a 2-D theoretical model was proposed based
on the dry modes and eigenfunction matching method, and each PTO unit was modelled
as a linear damper. It was revealed that the system’s overall efficiency improved with an
increasing number of PTO units.

As one of the simplest flexible WECs, the flexible plate WEC is expected to have a range
of potential applications. Indeed, many scholars have investigated and reported the water
wave interaction with floating or submerged elastic plates with applications in different
fields. Meylan & Squire (1996) developed two independent methods — an expansion in the
eigenfunctions of a disk, and a more general method of eigenfunctions adopted to construct
a Green’s function for the disk, to predict the behaviour of a circular flexible ice floe in
long-crested sea waves. Zilman & Miloh (2000) obtained a 3-D closed-form solution based
on the angular eigenfunction matching method for wave scattering an elastic disk floating
in shallow water. Their model was later extended by Peter, Meylan & Chung (2004) to
study water wave interaction with an elastic disk floating in finite-depth water. Montiel
et al. (2013a,b) carried out experimental and theoretical studies to examine the flexural
response of one or two floating elastic disks in regular waves. Meylan (2019) computed
the time-dependent vibration of floating elastic plates subject to a transient force. An
eigenfunction matching method was employed first to solve the forced harmonic motion
of the elastic plate, based on which the time-domain solution was then obtained using
the Fourier transform. In addition to the hydroelastics of the floating elastic plates, the
scattering from submerged elastic plates has also been investigated by some researchers.
Mahmood-Ul-Hassan, Meylan & Peter (2009) proposed a theoretical model to solve
hydroelastics of a submerged elastic plate by using the eigenfunction matching method.
The properties of the wavenumbers of the eigenfunctions above and below the elastic plate
were discussed. Later, Williams & Meylan (2012) adopted the Wiener—Hopf and residue
calculus techniques to solve the water scattering problem of a 2-D submerged semi-infinite
elastic plate. Additionally, the wave scattering of porous elastic plates was studied, but not
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Figure 1. Floating solar: (@) 0.5 MWp floating PV system made by Ocean Sun, owned by Statkraft on their
72 MWp hydro power dam at Banja, Albania (Photo: Ocean Sun); (b) 0.22 MWp floating PV system made
by Ocean Sun, owned by SNAP (SN-Aboitiz Power) located at the Magat hydro power reservoir at Isabela,
Philippines (Photo: Ocean Sun).

extensively, e.g. see Behera & Sahoo (2015), Koley, Mondal & Sahoo (2018) and Selvan
et al. (2021).

In this paper, an offshore floating elastic disk-shaped WEC is considered. The device
is composed of a disk-shaped floating elastic plate moored to the seabed through a series
of PTO units. The present work is also motivated by the potential integration of wave
power with offshore floating flexible solar photovoltaic (PV) farms (Bjgrneklett 2018) (see
figure 1). The integration can be achieved easily by deploying PTO systems below the
floating flexible solar PV farms. The advantages of integrating wave power into floating
solar power include but are not limited to: (1) it enables the device to not only capture
power from solar radiation but also absorb wave power from water waves, which would
efficiently improve the overall power output; (2) the wave attenuation due to wave power
absorption weakens the dynamic response of the solar panels, providing benefits for solar
power absorption and structural survivability; (3) the wave power device and floating
solar share the floating foundation, bringing cost-sharing benefits, including construction,
installation and maintenance; (4) the floating solar cannot work during the night, whereas
the wave power device is able to work continuously provided that there are incoming
waves, which would effectively ensure the continuous and stable power output of the whole
power generation system.

To evaluate the hydrodynamics of a floating flexible circular WEC, a theoretical model
was developed by Michele, Zheng & Greaves (2022) based on free-edge dry mode
expansion of plate motion. The PTO units in their model were distributed symmetrically
about the incident wave direction, and the response of the plate was expanded into heave
mode, pitch mode, and a series of flexible modes, with each treated as a generalised
mode in solving the wave radiation problems. The flexible WEC was found to have
larger efficiency than rigid devices. Yet there are still many fundamental questions to be
addressed, e.g. how the incident wave direction affects wave power absorption of the elastic
disk-shaped WEC, what if there are a large number of PTO units, and how to optimise
the PTO system. In this paper, a theoretical model based on the dispersion relation and
eigenfunction matching method is developed to study the hydroelastic characteristics and
wave power absorption of the device, and meanwhile to address unanswered questions
including but not limited to the above ones.

The remainder of this paper is structured as follows. The mathematical model is
outlined in §2. The convergence analysis and model validation are supplied in §3.
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Figure 2. Sketch of a floating elastic disk-shaped WEC with a discrete PTO system (N = 4): (a) bird’s-eye
view, (b) top view, (c¢) side view.

A multiparameter study is carried out with the validated model, the results of which can
be found in § 4. Finally, § 5 outlines the conclusions.

2. Mathematical model

The elastic disk with radius R is floating on water of depth % (see figure 2). A local
cylindrical coordinate system Or6z is chosen, with the mean free surface coinciding with
the plane z = 0, and Oz coinciding with the vertical axis of the disk and pointing upwards.
The device is subjected to a train of regular waves propagating in the direction g relative
to the positive Ox axis with amplitude A and angular frequency w. The PTO system
is composed of N discrete PTO units, which are distributed all over the circle r = ry
below the disk. Each PTO unit consists of a linear damper and a linear stiffness/mass.
The damping and stiffness/mass of the nth PTO unit is denoted as ¢, € Rt + iR (units
of Nsm™!), where the real part is positive and associated with the damping, whereas
the imaginary part is related to the stiffness/mass. The stiffness and mass play opposite
roles in affecting the motions response of the device. For simplicity, it is assumed that
either stiffness or mass is vanishing in the PTO system. If Im(c,) > 0, then there is no
mass in the PTO system, and the stiffness is w Im(c,); if Im(c,) < O, then there is no
stiffness in the PTO system, and the mass is —Im(c;)/w. The nth PTO unit is located
at (r, 0) = (ro, 6,), with 6,, = 27t (n — 1) /N, unless specified otherwise. When N is large
enough, it is assumed that the discrete PTO system may be represented by a continuum
PTO system, the damping and stiffness/mass of which can be denoted as c¢(#) (units of
Ns m_z). This assumption will be tested later, in § 3.

The fluid domain is divided into three regions (figure 2a): Region 1 is the interior region
below the disk with r € [0, ro] and z € [—h, 0]; Region 2 is the annular region below the
disk with r € [rg, R] and z € [—h, 0]; and Region 3 is the exterior region extending from
Region 2 to infinity horizontally, with r € [R, c0) and z € [—h, 0].
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2.1. Governing equation and boundary conditions

The velocity potential is defined as @ (x,y, z,f) = Re[¢(x, y, 2) e*i“”], where ¢ is the
spatial potential, w is the angular frequency of oscillation, and ¢ is the time. The spatial
velocity potential ¢ is a solution of the governing equations

07+ 07 +3)p =0 2.1)
in the fluid domain, with
99 =0, z=—h, (2.2)
on the seabed,
¢
—K¢+a—=0, z=0, r> R, (2.3)
z

at the water surface of the exterior region, where K = w?/g, in which g represents the
acceleration of gravity, and

3
8—¢+iwn:0, z=0, r <R, (2.4)
Z

at the the lower surface of the disk, in which n denotes the complex deflection of the disk.
Additionally, the dynamic equation of the elastic disk should also be satisfied.
For the discrete PTO system, the dynamic equation may be written as

N
. 1
g[xa* 1=Ky |n—ioglog = — Y Fbr—r0)80 -6), r<R @25
prn:l

where y and x denote the mass per unit area and the flexural rigidity of the disk,
respectively, scaled with respect to the water density; A is the Laplacian operator in the
horizontal plane; p denotes the water density; and & denotes the Dirac delta function. Note
that in the cylindrical coordinates, we divide the Dirac delta function by r because we
multiply by » when we integrate in cylindrical coordinates. Here, F,, denotes the unknown
PTO force due to the nth PTO unit acting on the disk at (r, 8) = (rg, 6,), and satisfies

Fl’l = iwcnn, (r’ 9) = (r()’ 9’1)9 (26)

forn=1,2,...,N.

When N is large and the width of the interval, 2mry/N, is small with respect to
the wavelength and the radius of the disk, we assume that the discrete PTO system
may be represented by a continuum PTO system, hence F, may be replaced by a
discrete evaluation 27rg F(6,)/N of the continuous function F(6) (units of Nm™!), and
cn = 27rg c(6,)/N, resulting in

N 21t 21
Z N 86 —6,) F(6,) — /0 80 —6,) F(6,)d8, = F(@), 2.7)

n=1

and allowing (2.5) and (2.6) to be approximated by

. |
g [XAZ F1- Ky] 1= ioflmg = FO)3¢—r0), r<R. (2.8)
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and
FO)=iwc@®)n, r=ry, (2.9)

respectively. Here, ¢ may be non-dimensionalised as ¢ = ¢/(pR+/gh). Functions F(6) and
¢(0) can be further expanded into

0,0) o0
FO) = Y fue™, c@)= Y e, (2.10a,b)

m=—00 m=—00

where f;, are unknown coefficients to be determined, and ¢ are the Fourier coefficients
of ¢(0) that can be obtained from ¢ = (1/2m) ffn c(0) e M0 dg.

With the employment of the Laplace equation as given in (2.1), the kinematic and
dynamic conditions as given in (2.4) and (2.5) or (2.8) for r € [0, rp) U (rg, R] can be
combined into

[X8?+1 — Kylo,¢ — K¢ =0. (2.11)

Additionally, in the far field horizontally, the scattered wave potential ¢s = ¢ — ¢y,
where ¢; is the velocity potential of the undisturbed incident waves whose expression
will be given in § 2.2, is subject to the Sommerfeld radiation condition.

The boundary conditions at the free edge of the disk should be satisfied as well. For a
free edge, both moment and shearing stresses vanish at the edge, providing

l—v/d 19
[A_ r (a_r“L?an)}":O 212
3 l—v/ 8 1)\ 9°
w2 Tt ) e =0 -13)

in which v denotes the Poisson ratio, and a typo of the item (1 — v) 83n/r? 8r 320 as
derived by Meylan (2019) has been corrected.

and

2.2. Expression of the velocity potential
In Region 1, the velocity potential may be expressed as

$1(r.0.0= > Y ApiInlar) i)™, (2.14)

m=—0o0 [=—2

where A, ; are the unknown coefficients to be determined, J,, denotes the Bessel function
of the mth order, Y; = cosh[x;(z + h)]/cosh(x;h), and «; for [ = -2, —1,0,1,2,... are
the roots of the dispersion relation for the interior region,

[x:c;‘ +1- Ky] i tanh(icsh) = K. (2.15)

Here, ko € R™ and «; € iR™ for [ =1,2,3,... can be obtained, which support the
propagating waves and evanescent waves, respectively. The remaining two roots, k_» and
k_1, support damped propagating waves, and satisfy k_; € RT +iR" and k_» = —«*,,
in which * denotes the complex conjugate.
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In Region 2, the velocity potential may read

$2(r,0.2) = Y Y [BuiIn(ar) + CuiHu(an] Vi)™, (2.16)

m=—o0 [=—2

where By, ; and C,,; are the unknown coefficients to be determined, and H,, = J,;, + 1Y),
is the mth-order Hankel function of the first kind.
In Region 3, the velocity potential can be written as

$3=¢r+ > D DuiHnlkir) Zi(z) ™, 2.17)

m=—00 [=0

where the accumulative term denotes the scattered wave potential ¢g, D,,; are the
unknown coefficients to be determined, Z;(z) = cosh[k;(z + h)]/cosh(k;h). Here, kg € R
and k; € iR™ for [ =1,2,3, ... support the propagating waves and evanescent waves,
respectively, for the exterior region, and they are the roots of the dispersion relation in
the open water:

K = k;tanh(k;h). (2.18)

For simplicity, we define k = ko. Here, ¢; denotes the undisturbed incident wave velocity
potential, which can be expressed as

igA
r(x,y,2) = — 1‘% Zy(z) exp(ik(x cos B + ysin B)) (2.19)
and
¢1(r,0,z) = _lsA Zo(2) Z ime By, (kr)e™?, (2.20)
w m=—0o0

in the general Cartesian coordinate system Oxyz and the local cylindrical coordinate
system Orfz, respectively.

2.3. Expressions of the deflection of the disk and the free surface response
After inserting (2.14) and (2.16) into (2.4), we have the deflection of the disk expressed as

o0 [o.¢]

i Al :

0§ § Al o

8 m=—0o0 [=-2 XK[ + - KV (2 21)
n= 1) 1) .

i B, 1] CniH :

E Z Z m,l m(Kl4r) + Cm,1 m(Kir) elm‘g, ro <r<R.

g xk +1—Ky

Mm=—00 |=—2

The response of the free surface approximately z = 0, 1,,, can be expressed as

. . o0 o0
1w . . 1w .
e = ¢3l:=0 = Aexp(ik(xcos B+ ysinB)) + — > > Dy Hulkir) ™.
m=—0o0 [=0

(2.22)
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2.4. Solution of the unknown coefficients

The velocity potentials and the deflection of the disk should satisfy the following
continuity conditions.

(i) Continuity of pressure at the boundary r = ry:

¢1=¢2, r=ro. (2.23)
(i1) Continuity of radial velocity at the boundary r = ry:
g1 ¢
—_ == = 1. 2.24
ar ar rero ( )
(iii) Continuity of pressure at the boundary r = R:
$2=¢3, r=R (2.25)
(iv) Continuity of radial velocity at the boundary r = R:
d 0
92 _0ds  _p (2.26)
ar ar
(v) Continuity of the deflection of the disk at the boundary r = ry:
n|r:r0_ = n|r:r3" (2'27)
(vi) Continuity of the first derivative of the disk deflection at the boundary r = ry:
ad a
an _a (2.28)
or|,—,—  0r|,_,+

(vii) Continuity of the second derivative of the disk deflection at the boundary r = ry:
8277 8277

. = — (2.29)
ar? r—rs ar2|,_,+

(viii) A jump in A%7 due to the PTO forces at the boundary r = ro:

A2

2
r=rf T AT

ZF §(r —ro) 8(6 — 6y) (2.30)

r—ry perx
and

2 2
A r:rg—A n

= LF(9)6(r—r0), (2.31)
r=r, PEX

for discrete and continuum PTO systems, respectively, which are derived by using
the dynamic equations, i.e. (2.5) and (2.8), together with the continuity conditions
of the hydrodynamic pressure and disk deflection at the PTO systems, i.e. (2.23) and
(2.27).

The continuity conditions, i.e. (2.23)—(2.31), together with the free-edge condition, i.e.
(2.12) and (2.13), and the PTO system related equation, i.e. (2.6) or (2.9) depending
on discrete or continuum PTO system, can be used to derive a complex linear matrix
equation by using the orthogonality characteristics of Z;(z) and ¢ and the eigenfunction
matching method. The unknown coefficients A, ;, By.1, Cm,1s Dy, and Fy, or f,, can
then be calculated by solving the complex linear matrix equation. Detailed derivation and
calculations for the unknown coefficients are given in Appendix A.
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2.5. Wave power absorption

2.5.1. Direct method
The time-averaged wave power absorption can be evaluated in a straightforward manner,
which is named the ‘direct method’ in this paper, by accumulating/integrating the power
absorbed by each PTO unit.

For a discrete PTO system, the absorbed wave power can be written as the sum of the
power absorbed by the N PTO units (Michele et al. 2022):

N
2 1 Re(cy) 2
= — F,|°. 2.32
2n§_1ﬁ o (2.32)

C()2 N
= 7 ZRC(Cn) |7]|r:r0,9=9n
n=1

The wave power captured by a continuum PTO system may be expressed as

row?

2

™ Re(c())

2 @R [F(6)> do. (2.33)

P=

2n
/O Re(c(0)) [nlr=r,|” d6 =
For an angular-independent PTO system, i.e. c(9) = ¢©, (2.33) gives
B Re(c(o)) ) /2“
o207 o

The power absorption of the device can be measured using the dimensionless wave
power capture factor, defined as

o0

f eim@
E m
m=—00

2
Re(c©@) rom
do = — " o Z finl?. (2.34)

kP

—, (2.35)
Pin

Ne =
where P;, = (pgA? /2)cg denotes the incoming wave power per unit width of the wave
front, in which ¢, represents the group velocity,

P (2.36)
Co = — -— | . .
§7 2k sinh(2kh)

2.5.2. Indirect method

At the far field with kr large enough, only propagating modes of the velocity potential
exist, and the velocity potential can be expressed in terms of incoming waves, ¢;,, and
outgoing waves, .y, as (Porter et al. 2021)

igA
PR 70 Z " e 1, (kr) e + Z Do Hyn(kr) Zo(2) &

m=—00 m=—00

(oA 00 ) '
= —f—w 0@ Y i"me ™ HP (kr) ™

m=—00

¢in incoming waves

igA o o [(imp | 200" imo
— ——20(2) E imle + Do | Hu(kr) e™, (2.37)
w gA

Pour OULtZOINg Waves
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in which H,S% ) — Jw — 1Y, is the mth-order Hankel function of the second kind, with

the asymptotic forms of H (kr) — /2/7 exp(i(mm/2 + 7/4))(kr)~ /2 e~ when
kr — o0.

The power lost to the device can be expressed as the difference between the incoming
wave power coming towards the device and the outgoing wave power propagating away
from the device (Zheng et al. 2020a):

1 0 27 do* do*
P=— Re/ / ia),O Pin ¢m — Gour ¢0ut r
2 —h JO or ar r—00
. 2
pgA?c ad 2wil "
:7I§Z<“ , (2.38)
=—00

gA
which is named the ‘indirect method’ in this paper. This expression can also be derived by
using Green’s theorem (e.g. see Mei, Stiassnie & Yue 2005).
The corresponding wave power capture factor can be written as

00 2
ne= Y. (1— ) (2.39)

m=—00

dzdf

e—imﬂ +

Dm,O

2wil—m

—imp
e + 2A

Dm,O

regardless of the type of PTO system.

Compared with the ‘direct method’ for the angular-dependent continuum PTO system,
i.e. (2.33), which includes an angular integral that needs to be solved numerically, the
‘indirect method’ as given in (2.38) gives a more straightforward and accurate evaluation
of the wave power absorption.

2.6. Optimisation of the angular-independent continuum PTO system

The performance of the device applying an angular-independent continuum PTO system
G.e. c(®) = cD)is independent of incident wave direction. For the sake of convenience,
here we assume = 0, hence the response of the device and the wave field are symmetric
about the plane of Oxz, giving D_, 0 = (—1)" D,, 0. Correspondingly, (2.39) can be

rewritten as
00 [ l—m 2
2wi
m=Zw=ZmCﬁw ADM), (2.40)
m=0 m=0

8
where €,, = 1 and 2 for m = 0 and m > 0, respectively. Here, 7, denotes the contribution
of the wave power extracted from the mth circular component of the wave field:

2wil—™m

Dino fonl?, (2.41)

¢ 2Py

2
Re(c©) k
nm:€m<1_‘1+ )_M

in which the right-hand side term after the second equals sign follows from (2.34).

The maximum dimensionless wave power that could be captured from the mth circular
component of the wave field is '71(\/'172X = ¢, if its dynamics can be orchestrated to meet
the condition Dy, o = (—gA) /2wi' ™. For a rigid heaving disk-shaped WEC, the device
radiates waves in the zeroth circular mode (17, = 1¢), and the maximum theoretical wave

power capture factor is 1, = n](‘f[)ix = 1. For a rigid pitching disk-shaped WEC, the device
948 A38-11
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radiates waves in the first circular mode (1, = 1), and the maximum theoretical wave
power capture factor is n, = ’U(éjtx = 2. Combined heave and pitch provides a maximum

£ @ 0 _3
Of Mysax + Myax = 3 _ . .
The elastic disk-shaped WEC is expected to have the capacity to absorb energy in excess

of these limits due to its ability to radiate in multiple circular modes.

The value of ¢ that maximises the power absorbed in any individual circular mode can
be predicted by using the theoretical framework developed in § 2.4. This can be done by
imposing D, 0 = (—gA)/2wi' ™ as a known condition for maximum power absorption
from the mth circular wave component, and treating ¢ as an unknown coefficient to be

determined. An alternative way to determine nmx is to express 7, in terms of ¢(*) and
then set 97,/ dRe(c®) = 0 and 9, / Im(c®) = 0. The latter method can be applied
to evaluate the optimised PTO damping of a device with a fixed PTO stiffness/mass for
maximising wave power absorption from the mth circular wave component by setting
3nm/0Re(c?) = 0 and Im(c?) = constant, resulting in the corresponding dimensionless
wave power denoted as n,(,:”a)x To express the optimised PTO coefficients and the maximum
wave power absorption, the key is to separate ¢©) from the complicated terms of the
expression for fj,.

After setting T = m and rearranging (A12)-(A15), (A18)—(A20), (A22)—(A24) and
(A28), we have

4 ) el -] aon
(m) ©0) - ’ '
Co Ve Jurmxarsm I f s O arrinx

where we truncate all infinite series of vertical eigenfunctions at L, i.e. (L + 1) terms
(l=0,1,...,L) for Dy, , and (L 4+ 3) terms (/ = -2, —1,0, 1, ..., L) for A, ;, B, and
Cyn,1. Here, X, denotes the vector of the unknown coefficients Ay, j, By.1, Cin,p and Dy, 3

the subscript ‘0’ means the matrix/vector is independent of ¢(?.
Using the formulae for the block matrix inversion, we have

-1
) (4" g (0
ey (a)")  Fye©

Jm = ) (2.43)
cim (AY) 1By ¢ — 1
with which (2.41) can be rewritten as
2
(m)
em Re(cO) krom ’bo )
= B . (2.44)
m e -1

where a(()m) _ C(()m) (A(()m))—l B(()m) and b(()m) _ C(()m) (A(()m))—lF(()m)‘

For any certain value of PTO stiffness/mass (Im(c®)) there is a corresponding
maximum of absorbed power from the mth component when 97,/ dRe(c®) = 0, which
occurs if

‘a(()m) Im(c®) 4+ i’

(m)
")

Re(c?) = =i, (2.45)
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resulting in

2
i
my _ €mkroT 0

_ . (2.46)
max 2P;, ‘a(()m)‘ ‘a(()m) Im(C(O)) + i} — Re(a(()m))

This n,%l can be further enlarged with an optimal PTO stiffness/mass, satisfying
dnm/dRe(c?) = 0 and 87,,/0Im(c?) = 0, which gives

—Re —Im
Re(c?) = # =Re(c)), Im(c?) = # =Im(c),  (247ab)
lap| laol
and
(m) 2
emkromt |bpy |
Ny = —— ! €m, (2.48)

4Pin Re(ai™) a
as expected (e.g. see Porter et al. 2021).

3. Convergence analysis and model validation

Prior to case studies with the present analytical model, a convergence analysis is carried
out, and the model is validated by the results documented in the literature. Hereinafter,
x/h* =y /h=0.01 is adopted following Meylan, Bennetts & Peter (2017) and Zheng
et al. (20200), and for the sake of simplification, N = 1, 2, 3, ... denotes the device with
a discrete PTO system consisting of N PTO units, whereas N = oo represents the device
applying a continuum PTO system. We also assume that the PTO units are identical, and
the continuum PTO system is angular-independent, unless otherwise specified, i.e. ¢, =
271roc@ /N, and ¢© may be non-dimensionalised as ¢ = ¢?)/(pR/gh).

3.1. Convergence analysis

Figure 3 illustrates the impact of the angular and vertical truncated cut-offs (i.e. terms of
M and L) on the frequency response of the wave power capture factor of a flexible floating
WEC with N = 4 or N = o0. In order to obtain the converged results, M > 20 and L > 10
are suggested. Hereinafter, M = 20 and L = 10 are adopted.

3.2. Model validation

If the PTO damping coefficient is rather small, i.e. ¢ — 0, then the constraint that is
induced by the PTO system, regardless of whether it is discrete or continuum, can be
neglected. Therefore, the response of the device will be close to that of a free-floating
elastic disk. Figure 4 illustrates the theoretical and experimental (Montiel e al. 2013b)
deflection of four markers (M1-M4) placed on a free-floating elastic disk. The present
model is found to be able to well predict the frequency response of the disk motion,
although a slight overestimation of the deflection is observed due to the ignorance of
the fluid viscosity in the potential flow theory. The difference may also be caused by
the presence of constraints and possible viscous-elastic behaviour of real materials in the
experimental model. We have also predicted the deflection of a floating flexible WEC
for R/h = 2.0, B = 1 and hw?/g = 2.0 with either a discrete PTO system (N = 4) or
a continuum PTO system (N = oo) for ¢ = 103, the results of which show excellent
agreement with those of Meylan et al. (2017). In addition, we have evaluated the wave
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Figure 3. Frequency response of the wave power capture factor 1, for R/h = 2.0, ro/R = 0.5, § = /6 and
¢ = 0.2: (a) impact of the angular cut-offs in terms of M for N =4 and L = 10; (b) impact of the vertical
cut-offs in terms of L for N = 4 and M = 20; (c¢) impact of the angular cut-offs in terms of M for N = oo and
L = 10; (d) impact of the vertical cut-offs in terms of L for N = oo and M = 20.

2.4

T i T & T
$ 24 Incident waves

20 Ml B=m e - M2 ]

nl/4

Figure 4. Deflection of four markers (M1-M4) placed on a free-floating elastic disk with R =0.72m,
h=19m, ¥ =3.55x 107 and y = 2.79 x 1073 as a function of frequency. Lines represent the present

theoretical results with N = 4, ry/R = 0.5, ¢ = 107>; symbols represent the experimental data (Montiel ef al.
2013b).

power capture factor of a specific system by using both the direct and indirect methods,
and their results are found to agree perfectly with one another, as expected.

Figure 5 compares the variations of the wave power capture factor with ki and ¢ for
devices with a discrete PTO system consisting of a different number of PTO units and
with a continuum PTO system, respectively. As expected, the larger the number () of the
PTO units composed in the discrete PTO system, the closer the wave power capture factors
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Figure 5. Comparison of the wave power capture factors of the devices with discrete and continuum PTO
systems, with R/h = 2.0, ro/R = 0.5 and B = 1/6: (a) frequency response of 7, for ¢ = 0.2; (b) variation of
ne with ¢ for kh = 4.0.

are to those of the continuum PTO. In the examined cases, the results of the discrete PTO
system with N = 16 nearly overlap with those of the continuum ones.

The excellent agreement of the results, together with those plotted in figures 4 and 5,
gives confidence in the present theoretical model for solving water wave interaction with
a floating flexible WEC.

4. Results and discussions

The validated model is applied to a series of case studies to investigate the influence of
multiparameters, e.g. incident wave direction, wave frequency and the position of the PTO
system, on wave power absorption of the device.

4.1. Effect of incident wave direction

Figure 6 presents the contour of the wave power capture factor (7,) as a function of incident
wave direction (8) and PTO damping coefficient (c¢) for R/h = 2.0, ro/R = 0.5 and kh =
4.0. The panels represent the device with a discrete PTO system consisting of a different
number of PTO units and the device with a continuum PTO system. Since the PTO system
is distributed symmetrically about the x axis, the examined S are limited to the range
[0, t]. For the discrete PTO system consisting of N PTO units, the property of the device
is symmetric about § = § =0, /N, 2n/N, ..., hence the results for g € [0, T/N] can
be used to generate the results for the remaining range of 8 by placing a mirror on each of
the lines of symmetry, which is also observed in figure 6.

For any specified value of 8, there is an optimal ¢ to maximise wave power absorption
of the device, and the optimised value of ¢ is insensitive to 8; for any specified value
of ¢, there are one or two optimised § in the interval range 8 € [0, m/N] such that the
wave power can be captured most efficiently. For N = oo, the performance of the device
is independent of S.

The peak values of n, and the peak positions in the interval range g € [0, w/N] for
different N are listed in table 1. In each case, except N = 1, for which there are two peaks
of n, observed, there is merely one peak for g € [0, t/N]. As N increases from 1 to oo,
the area of the field of n, > 1.0 plotted in figure 6, including the peak value of n,, presents
an overall increase trend. The 1, value for N = 4 is the most sensitive one to the change
of B among the six examined cases, making the peak value of 7, even larger than that for
N =5.
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Figure 6. Contour plots for the variation of 7, as a function of incident wave direction 8 and PTO damping
coefficient ¢, for R/h = 2.0, ro/R =0.5and kh =4.0: (@) N =1,(b) N=2,(c) N=3,d)N =4,(¢) N =5,
and (f) N = oo.

4.2. Effect of wavenumber k

The performance of the device with different values of ¢ for different wave frequencies
in terms of kh ranging from 0.05 to 10.0 and B = m/6 is also examined, the
result of which is plotted in figure 7. In the computed range of wave conditions
and PTO damping coefficients, the peak value of wave power capture factor and
the corresponding wavenumber and PTO damping coefficient in terms of (1., kh, c)
for N=1,2,...,5, 00 are (1.239,4.28,0.04), (1.826,3.91,0.06), (3.114, 7.64, 0.08),
(3.677,5.51, 0.20), (3.695,4.65,0.12) and (5.397, 5.03, 0.24), respectively. The device
deflection and the near-field wave response for those optimised circumstances are plotted
in figure 8.

As N varies from 1 to 5, apart from the peak of the 7, contour, the overall contour shape
changes as well, which, to some extent, may be explained with the flexural wave interaction
induced by the relative motion between the PTO units. Due to the water wave interaction
with the floating elastic disk, a train of propagating flexural waves, which correspond
to the root kg, are excited on the elastic disk by the incident waves. The wavelength of
the propagating flexural waves (1p) may be evaluated by 1o = 27 /kg. When the distance
between two PTO units is an integer multiple of 1p/2, a local resonance of the flexural
waves between the two PTO units may occur, stimulating the response of the PTO units and
providing benefits to wave power absorption. The wavenumber of the propagating flexural
waves can be evaluated with kg = 27/Ag, and the corresponding non-dimensionalised
wavenumber k& can be determined by using the dispersion relation for the interior region,
i.e. (2.15). Table 2 reports the wavenumbers in the computed range of wave conditions
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Figure 7. Contour plots for the variation of 7, as a function of wavenumber k4 and PTO damping coefficient

¢, for R/Ih=2.0, r90/R=05and B=7m/6: (@) N=1, (b)) N=2,(c) N=3, (d) N=4, () N=5, and

()N = o0.

associated with the local resonant flexural waves between the PTO units for the devices
with N = 2, 3, 4 and 5. The values of Ay smaller than 1.7/ are not included in the table
because the corresponding k/ are larger than 10.0, which is out of the computed range of
wave frequencies. The predicted wavenumbers are found to agree well with the horizontal
positions, i.e. kh, where the ‘crests’ of n, generally happen (see figure 7), indicating that
the propagating component of the flexural waves travelling on the disk plays a significant
role on the behaviour of the device. When a continuum PTO system is adopted, the device
is found to capture wave power efficiently in a large range of wave frequencies.

4.3. Effect of PTO position ry

The effect of the PTO position rg is examined for R/h = 2.0, § = 7/6, and ¢ varying
from 0.01 to 0.8. The results in terms of the contours of 7, as a function of ry/R and
¢ for the device consisting of different number of PTO units are plotted in figure 9.
For the device with any specified N, the optimised PTO damping coefficient generally
presents an overall declining trend as ryp/R increases from 0.05 to 0.95. For N =1,
there is only one peak of 7, observed at ro/R = 0.44. As N increases, two or more
peaks of the 1, contour are excited in the computed range of ro/R, and the contour
shape changes accordingly. This may also be explained by the local resonant flexural
waves between the PTO units. The non-dimensionalised wavenumber and wavelength of
the propagating flexural waves travelling on the disk for kh = 4.0 are xoh = 2.70 and
Ao = 2.33h, respectively. As discussed in §4.2, a local resonance of the flexural waves
between two PTO units may happen when the distance between them is 1.16A, 2.33h or
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Figure 8. Deflection of the floating elastic disk, Re(ne™'®’)/A, and the near-field wave motion,
Re(n,e /A, at t =0 for R/h = 2.0, ro/R=0.5 and = 71/6: (@) N =1, (kh, &) = (4.28,0.04); (b)
N =2, (kh,c) = (3.91, 0.06); (c) N = 3, (kh,c) = (7.64,0.08); (d) N = 4, (kh,c) = (5.51,0.20); (¢) N =5,
(kh, c) = (4.65,0.12); and (f) N = oo, (kh,c) = (5.03,0.24).

3.49h, satisfying jlo/2 (j = 1,2, 3, .. .). Table 3 lists the values of ry/R for which the local
resonance of the propagating flexural waves is likely to happen. For some examined cases,
e.g. N = 3, the values of ry/R reported in table 3 and the corresponding results plotted
in figure 9 agree well with one another. However, for some of the other circumstances, a
deviation between them is observed, e.g. N = 2, for which the predicted ry/R are slightly
larger than those observed in figure 9. Despite this, the data reported in table 3 may help
to bring some insight into the performance of the floating flexible device. The peak value
of 7, is found to increase with the increase of N. For N = oo, the peak of 1, occurs at
(ro/R, ¢) = (0.80, 0.14), and the peak value can be as large as 8.90.

For a traditional single WEC consisting of an axisymmetric rigid heaving body, the
theoretical maximum wave power capture factor is 7, = 1.0. If the rigid body is also
allowed to oscillate in pitch/surge mode, i.e. the axisymmetric rigid body captures wave
power in both heave and surge/pitch, then the theoretical limit of 7, increases further to
3.0. The present floating elastic WEC is demonstrated to be able to extend the limit for a
large range of circumstances (e.g. see figures 6, 7 and 9).

4.4. Optimisation of the angular-independent continuum PTO system

As reported in the previous subsections, wave power absorption of the device is affected
significantly by the PTO damping coefficient. The maximum wave power capture factor
and the corresponding optimised PTO damping coefficient (¢,p,) can be determined by
using a trial-and-error method.

Instead of applying the trial-and-error method, in this subsection, we implement the
optimisation outlined in § 2.6, which provides a recipe for equal damper settings of the
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Figure 9. Contour plots for the variation of 7, as a function of PTO position r9/R and PTO damping
coefficient ¢, forR/h = 2.0, 8 = /6 andkh = 4.0: (@) N = 1;(b) N =2,(c) N =3,(d)N =4,(¢) N =5, and
()N = oo.

angular-independent continuum PTO system to extract the available power from any
given circular mode component, m in the incident wave as much as possible. Results

are illustrated in figure 10, where figure 10(b) shows the variation of the value of Egl':,)
with frequency, resulting in the capture factor in figure 10(a). Although the PTO damping
coefficient is designed to capture the wave power contained in a specific circular mode
component, the capture factor can be much larger than the available power in this circular
mode, since power is absorbed from all the circular wave components in the incident wave
other than the one being targeted. In the computed range of kA, the envelope of the n.,—kh
curves with ¢ = af,’",) form =0, 1, 2, 3 is found to agree well with that for ¢ = Cp;.

Figure 11 presents the contribution of the capture factor from different circular wave
components (n, different curves) when PTO dampers have been tuned to extract the
available power in a particular mode m as much as possible. There is significant wave
power absorption across multiple circular modes, indicating and explaining how the
elastic disk-shaped WEC can capture more wave power compared to that of the rigid
axisymmetric WECs.

It is noted from figure 10(a) that there is a trough of the ,—kh curve occurring at kh =~ 3.
This can be explained from the point of view of natural vibration mode shapes. At kh
approaches 3.1, for the dominant axisymmetric natural vibration mode of the disk excited
by the incident waves, the angular nodal line could be rather close to the circle r = ryp,
where the PTO units are located, resulting in a trough of the wave power absorption related
to that mode (i.e. see ng in figure 11) around kh = 3.1 regardless of the value of c. This
in turn affects the frequency response of 7, (see figure 10a), leading to a trough around
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Figure 10. (a) Capture factor against dimensionless wavenumber for R/h = 2.0, ro/R = 0.5, § =0 and
Im(c) = 0, with (b) corresponding damper values optimised in order to capture the available power in the
mth circular mode component as much as possible.
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Figure 11. The partition of capture factor into contributions from different circular mode components for
operation tuned to be optimal for the mth mode, with R/h = 2.0, ro/R = 0.5, 8 = 0 and Im(c) = 0: (@) m = 0,
bym=1,(cym=2,dm=3,(e)ym=4,and (f)m=>5.

kh = 3.1, except in the case with ¢ = (_:((,0)

pr» for which the trough occurs at kh = 2.9. This
is because the damping coefficient to maximise the power captured wave power from the
zeroth mode at kh = 2.9 is too large (see figure 10b), and it makes the response of the
high-order modes repressed, which is reflected from the wave power absorption related to
those modes as shown in figure 11(a), and ultimately results in a sudden drop of the overall
wave power capture factor 7,.

Apart from the pure damping continuum PTO system, the one consisting of both damper
and stiffness/mass is also considered. Figure 12 illustrates the frequency response of 7,
and the corresponding optimised setting of the continuum PTO system in terms of PTO
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Figure 12. (a) Capture factor against dimensionless wavenumber for R/h = 2.0, ro/R = 0.5 and g = 0, with
(b,c) corresponding damper and stiffness/mass values optimised in order to capture all the available power in
the mth circular mode.
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Figure 13. The partition of capture factor into contributions from different circular modes for operation tuned
to be optimal for the mth mode, with R/h = 2.0, rp/R=05and B =0: (@) m=0, (b)) m=1, (¢c) m=2,
dm=3,(e)m=4,and (f)ym=>5.

damping (Re(E(OmP)T)) and PTO stiffness/mass (Im(E(O"}J)T)) to extract all the available power
from any given circular mode component m in the incident wave. The contribution of the
capture factor from different circular wave components (n, different curves) is plotted in
figure 13. As expected, n, = €, is achieved when n = m (see figure 13). Although the
device is able to capture all the available power from the mth circular mode component, its
performance in capturing wave power from some of the other circular mode components
is low, resulting in a lower envelope of the n,—kh curves (figure 12a) compared to that for
the pure damper PTO system (figure 10a) at kh > 6.0.

The theoretical optimisation method of the PTO damping coefficient is applied to
examine the scalability of the device in terms of R/h with N = oo, Im(c) =0 and
ro/R = 0.5 on the wave power extraction. Figure 14 illustrates the frequency response
of the maximum wave power capture factor 7, for R/h = 2.0, 2.5, 3.0, 3.5 and 4.0. For
each case, the 1,,,—kh curve is represented by the corresponding envelope of the n.—kh
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Figure 14. Frequency response of 7,4, for different values of R/h, with N = oo, ro/R = 0.5 and Im(c) = 0.

curves with ¢ = E((,Zl,) form=0,1,...,5. Itis observed that in the computed range of wave

conditions, more power can generally be captured from water waves for a larger diameter
of the device.

4.5. Non-uniformly distributed discrete PTO system

The results presented in the previous subsections all concern cases with the PTO units
uniformly distributed over a circle below the disk. The model proposed in this paper
can also be applied to cases with the PTO units uniformly distributed within a sector
of the circle. In this subsection, the device consisting of N =5 units is selected as a
case to demonstrate the effect of the non-uniform distribution on wave power absorption.
Six configurations, as illustrated in figure 15, are considered. The five PTO units in the
configurations in figures 15(a,d) are both distributed on a quarter of a circle, in which the
PTO units for figure 15(a) are located at the sea-side of the disk whereas those for figure 15
(d) are positioned at the lee-side. Similar arrangements are used in the configurations in
figures 15(b,e), except that the PTO units are deployed on a half-circle. The configurations
in figures 15(c,f) are the control cases, with the five PTO units uniformly distributed
around the full circle, in which 6; = 7 and 0, respectively. Each device is subjected
to incident waves propagating from the left-hand side to the right-hand side (8 = 0).
Figure 16 plots the variation of the wave power capture width ratio with ¢ and kh for
these six configurations correspondingly.

For the PTO units clustered at the sea-side of the device, the device presents a better
performance at kh € [7.0, 10.0] in terms of a more significant wave power capture factor
and less sensitivity to the change of kh compared to those with the PTO units located at
the lee-side. For the PTO units clustered at the lee-side of the device, a dramatic peak of
ne is observed at kh € [4.0, 6.0]. The optimised PTO damping coefficient for the device
with the PTO units clustered at the lee-side is larger than that for the case with the PTO
units distributed at the sea-side.

The control cases (figures 16c¢, f) perform rather differently from one another at kh €
[6.0, 10.0], where the configuration in figure 15(c) absorbs the least wave power, whereas
that in figure 15(f) captures the most, among the six examined cases, demonstrating the
significant effect of PTO units distribution (or incident wave direction) on wave power
absorption of the device. It should be noted that for wave conditions around ki = 9.0,
the maximum value of 1, for the configuration in figure 15(f) is even larger than that for
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(a) I ) I (¢) |

(d) I (e) l ) I
Figure 15. Different distributions of the case with N = 5 for R/h = 2.0, ro/R = 0.5 and B = 0: (a) PTO units
distributed over 6 € [0.757, 1.257]; (b) PTO units distributed over 6 € [0.57, 1.57]; (¢) PTO units uniformly

distributed all over the circle with 6; = ; (d) PTO units distributed over 6 € [—0.257, 0.257]; (¢) PTO units
distributed over 6 € [—0.57, 0.57]; (f) PTO units distributed all over the circle with 8; = 0.
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Figure 16. Contour plots for the variation of 7, as a function of wavenumber k4 and PTO damping coefficient ¢
for the six configurations of the PTO units as shown in figure 15,i.e. N =5,R/h =2.0,r9/R =0.5and B = 0:
(a) PTO units distributed over 6 € [0.757, 1.257]; (b) PTO units distributed over 6 € [0.5x, 1.57]; (¢) PTO
units uniformly distributed all over the circle with 8; = 1t; (d) PTO units distributed over 6 € [—0.257, 0.257];
(e) PTO units distributed over 8 € [—0.5m, 0.57]; (f) PTO units uniformly distributed all over the circle with
6, =0.
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Figure 17. Angular distribution of the PTO damping coefficient for six angular-dependent continuum PTO
systems.

N = oo (see figure 7f), meaning that for some specific circumstances, the discrete PTO
system could be more advantageous than the continuum one in harnessing wave power.

4.6. Angular-dependent continuum PTO system

In this section, we take six cases of the angular-dependent continuum PTO system,
the angular PTO damping distribution of which is plotted in figure 17, as an example
to examine the performance of the device in capturing wave power with different
angular-dependent continuum PTO systems. The incident waves propagate along the
Ox axis (i.e. B = 0). The PTO system for each case is located at ro/R = 0.5, and the
distribution of the PTO damping is symmetric about the Ox axis. For cases 1, 2 and
3, the PTO damping at the lee-side is smaller than that at the wind-side, and as 6
increases from 0 to 7, c(f) increases monotonically from O to the maximum, cjqy,
following linear, trigonometric and quadratic functions, respectively (see figure 17). When
the PTO system is reflected over the Oy axis, cases 1, 2 and 3 turn into cases 4, 5 and 6,
respectively.

Figure 18 illustrates the variation of 7, as a function of wavenumber and PTO damping
coefficient in terms of ¢*, which denotes the non-dimensional value of ¢, (¢* =
Cmax/ (PR+/gh)). When the lee-side PTO damping is smaller than that at the wind-side
(figures 18a—c), there are two peaks of 1, in the computed range of kh and ¢*. The main
peak occurs around kh = 7.5, and the other one around ki = 4.0, which is nearly a half
as large as that of the main peak. The corresponding optimised PTO damping in terms
of ¢* for cases 2 and 3 are smaller and larger, respectively, than that of case 1. This may
be explained with the angular distribution shape of ¢(6): for any specified ¢*, although
the ¢(0) values are the same for these three cases at & = 0 and £, ¢(0) values for cases
2 and 3 are the largest and smallest, respectively, among them for any other angle. To
have a same equivalent value of the full-angle PTO damping, smaller and larger values
of ¢pqy for cases 2 and 3 would be expected, respectively. A similar phenomenon is
observed for cases 4, 5 and 6 (see figures 18d—f) when the lee-side PTO damping is
larger than that at the wind-side. The wavenumbers where the peaks of 7, occur shift
towards smaller wave frequencies, whereas the optimised ¢* become larger. Compared
with the angular-independent continuum PTO case (see figure 7 f), wave power absorption
of the device in terms of both the peak value and bandwidth can be improved by applying
an angular-dependent continuum PTO with larger PTO damping placed at the lee-side
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Figure 18. Contour plots for the variation of 7, as a function of wavenumber kh and PTO damping coefficient
¢* for six angular-dependent continuum PTO systems as shown in figure 17, with N = oo, R/h = 2.0, ro/R =
0.5 and B = 0: (a) case 1, i.e. c(0) = cpmax|0]/7; (D) case 2, i.e. c(0) = cpax sin(|0]/2); (¢) case 3, i.e. c(0) =
Cmax(e/l'[)2; (d)case 4,i.e.c(0) = cax(1 — 10]/7); (e) case 5,1.e. c(0) = Cpax c0s(0/2); (f) case 6,1i.e. c(0) =
Cmax(1 = 101/7)%.

(figures 18d—f). On the contrary, wave power absorption can be inhibited should the larger
PTO damping be placed at the wind-side.

5. Conclusions

A concept of a floating elastic disk-based WEC is proposed in this paper. The device
captures wave power by driving a series of PTO units deployed on a circle below the
disk. To evaluate the wave power extraction from the device, a theoretical model is
developed based on the eigenfunction matching method within the framework of the linear
potential flow theory. As well as the discrete PTO system, a continuum PTO system is
considered in the model to represent the case when the discrete PTO system is composed
of a large number of PTO units. The wave power absorption is evaluated using two
approaches: one is the straightforward method by accumulating/integrating the power
absorbed by each PTO unit; the other is the indirect method expressing the wave power
by the difference between the far-field incoming wave power and outgoing wave power.
The indirect method was shown to produce the same wave power absorption as the direct
method. A multiparameter impact analysis was carried out by applying the theoretical
model.
The main findings are as follows.

(i) It is confirmed that the continuum PTO system converges as N of the discrete PTO
system increases. In the examined cases, the results of the discrete PTO system with
N = 16 are found to be commensurate with those of the continuum PTO system.
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(i) For any specified value of the incident wave direction B, there is an optimal PTO
damping coefficient ¢ to maximise wave power absorption, and the optimised value
of ¢ is insensitive to f.

(ii1) A train of propagating flexural waves is excited on the floating elastic disk. When
the distance between two PTO units is an integer multiple of 1p/2 (where 1y denotes
the wavelength of the propagating flexural waves), a local resonance of the flexural
waves between the two PTO units may occur, stimulating the response of the PTO
units and providing benefits to wave power absorption.

(iv) The device adopting a continuum PTO system is found to capture wave power
efficiently in a wide range of wave frequencies. More power can generally be
captured from water waves for a larger diameter of the device.

(v) There is an optimised PTO position in terms of ry/R to maximise wave power
absorption of the device. The optimised ry/R changes with the variation of the
number (N) of the PTO units included in the PTO system. The maximised wave
power absorption increases with the increase of V.

(vi) The present floating elastic WEC is demonstrated to achieve well in excess of the
standard limit of a capture factor of 1, = 3 for an axisymmetric rigid body. The wave
power capture factors above 1, = 8.5 are reported in computations in this paper.

(vii) It is theoretically possible to adopt optimised PTO damper and stiffness/mass for
the continuum PTO system to guarantee the absorption of 100 % of the energy flux
available in one circular component of the plane incident wave.

(viii) Wave power absorption of the device in terms of both the peak value and bandwidth
can be improved by applying an angular-dependent continuum PTO with larger PTO
damping placed at the lee-side.

The present work applied the direct approach to solving the combined diffraction
and radiation potential. An alternative model could be based on the standard dry-mode
approach, with which the response of the plate can be expanded into heave mode, pitch
mode, and a series of flexible modes, and each mode is treated as a generalised mode in
solving the wave diffraction and wave radiation problems, respectively (e.g. see Michele
et al. 2022). A comparison between the performance of the present model and the standard
dry-mode approach in terms of the accuracy and the cost of computing is an aspect of
interest. This evaluation is beyond the scope of this paper and is therefore left for future
work.
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Appendix A. Derivation process of the formulae and calculation for the unknown
coefficients

After inserting the expressions of the velocity potentials at Regions 1, 2 and 3 into
(2.23)—(2.29), we have

[e¢]
> Z[(Amz— ) In(ir0) = Cont Hyn(170)] Yy (z) €™ = 0, (A1)
m=—00 [=-2
o0 o0
0> wil(@ms — Bu) Ty (ki) — Cont Hy, (k170)1 Yi(2) €™ = 0, (A2)
=—00[=-2
o o

> D B In(iR) + Cont Hy(kiR)] Yi(2) €™

m=—o0 [=—2

0 0 . 1gA ° . .
3N DuiHu kiR Zi@ €™ — E2 2oy 3 i e 1, (kR) €, (A3)
m=—00 =0 @ m=——o0
o0 o0

>0 D «alBuad, (kiR) + Cont Hy, (kiR)] Yi(2) €™

m=—00 [=-2

— o 18kA - . i
> > Dk H,(kiR) Zi(z) €™ — 2L 20 > ime Py (kR) ™,
m=—o0 [=0 w m=—00
(A4)
2N At = B ) I (k10) — Cont Hin(K170) g
Z Z - e’ — 0, (A5)
m=—0o0 [=—2 XKI +1- KV
o KA = Bu)) T (kir0) — o HY (k170)] g
Z Z - e — 0, (A6)
S S — XK+ 1 —Ky
i i k7 [(Am,i — Bi,1) 301, (kir0) — Co Hip (1701 &m0 _ (A7)
S XKI +1—-Ky

After inserting (2.21) into (2.30) and (2.31), producing the radial delta function, and

taking the continuous 7, n" and " (i.e. (A5)-(A7)) into consideration, a jump in n”’ can

be obtained, which gives

i i K7 [(Am,i — Bi,1) 3/ (ki70) — Con1 HJY (k170) ] simb _ ZF 56 —6,)
——00l=—2 xki +1—Ky iwproy !
(A3)
and
i i K7 [(Am,1 — Bu,1) Tl (kir0) — Co Hyy (k170)] i _ Z foe
m
m=—00 |=—2 XKl +1—-Ky la),OX m=—00

(A9)
for the discrete PTO and continuum PTO, respectively.
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Using the fact that A(Ju(r)e™) = —k7 Ju(kr)e™ and  A(Hy(kr) ™) =
—Kl H,, (k1) €™ the free-floating edge conditions (2.12) and (2.13) can be rewritten as

Z Z {Bmz [—KZJmmR) Sy (Kz k)~ ™ JmmR))]
e Xt +1 - L RO R

-2

_ 2 ,
¥ Cos |:—K[2 Hyy(k/R) — — (m H. (kiR) — % Hm(KlR))] } el — 0, (A10)

2
/ (1—-v) , 1
Z Z XK, T1_ {Bm,l [ ii; 1 (kiR) + R (—/q I (R + z Jm(,(,R)ﬂ
2 - .
+ Gt [_’93 H,,(kiR) + W <—K1 H,, (R) + %Hm(K}R))} } e — 0, (A11)

respectively. .
After multiplying both sides of (A1)~(A4) by Z; (z) e 'Y, integrating in z € [—h, 0] and
0 € [0, 2], and using their orthogonality characteristics, (A1)—(A4) can be rewritten as

o
Y [(Acs — B Jr (o) — Cri He (k170)1Yie = 0, (A12)
I==2
o
> Kkil(Acs = Be) Yy (kir0) — Co Hy (k170)] Yie =0, (A13)
I==2

00 .
lgA T —ith

E [Br,1J: (kiR) + Cr 1 He (kiR)1 Y10 — Dr ¢ Hr (k¢ R)Ar = —6¢.0 o Ap1" e P I (kR),

=-2

(A14)
o0
> Bt Vo (<iR) + Cot Hy (R Yi.c — De g ke Hy (ke R) Ag
I=—2
kA
= 5.0 Lg—Aol eI I (kR), (A15)
where
0 sinh(k;h) cosh(ksh) + k:h
A;:/ Z}(2)dz = (keh) 2(4”) £ (A16)
- 2k cosh” (k¢ h)
v / 0 Yi(2) Ze (2)d ky sinh(k;h) cosh(k; h) — ki cosh(k;h) sinh(k; h) (A17)
= z 7)dz = )
b —h : ‘ (/c,2 — kg) cosh(k;h) cosh(k;h)

and §; o denotes the Kronecker delta function, which is equal to 1 if ¢ = 0 and O otherwise.
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After multiplying both sides of (A5)—(A11) by e~i*?, integrating in 6 € [0, 27t] and
using their orthogonality characteristics, (A5)—(A11) can be rewritten as

i (Ar.; — Br.) Jo (ir0) — Cry He (kg70)

=0, (A18)
P XK14 +1—-Ky
i kl(Aes = Br,) Iy (iro) = Cor HyGaro)] _
4 =0, (A19)
— Xk +1—Ky
N k7 (A — Be) VL (kiro) — Coy HY (k110)]
Z 4 =0, (A20)
P xk; +1—Ky

N k7 [(Ars — Be ) 1 (ko) — Cr i HY (ki70)] N 1

2.

[==2

N
, F,e ™ =0 (A21
xki+1—Ky 2Tiwprox ’; " (A21)

and

i K7 [(Az,s — Be ) 3 (kro) — CrlHW(Kl’”O)] fr

=0, (A22)
XKl +1—-Ky 1a),0)(

I=—2

for the discrete and continuum PTO units, respectively. Also,

Y (R — o1 R
(Kz (k1 )—; (k1 )ﬂ

—V ‘L’2
(,q H (R) — — H- (KZR)>]} =0, (A23)

o0

1 2
2 T &y {Bf,z [—x, o (iR) —

=) XK +1-—

+ Cyy |:—K12 H; (k;R) —

e (1 —

! 3y ])) , 1
2Ky (s [t + S (ot + )|

*(1—v)
R?

For the discrete PTO system, the relationship between the disk deflection and the PTO
forcing, i.e. (2.6), gives

Ami] ‘
Ko Y Lm0 s, g (A25)
m=—00 [=—2 XKI + 1- y

+ Cr |: Kj H/( IR) + (—/q H. (kiR) + %H, (K[R))]} =0. (A24)

For the continuum PTO system, (2.9) can be rewritten as

_K Z (m) 1m9 Z Z mlJm(Ker) im _ i fmeim9=0, (A26)
m=—00

m=—00 |= XKZ +1-

ith

which, after multiplying both sides by e™'*", integrating in 6 € [0, 2] and using their

orthogonality characteristics, gives

Ay 1 I (k170) C(r—m)
—K E E : —fr=0. A27
XK14 +1—-Ky fr ( )

948 A38-32


https://doi.org/10.1017/jfm.2022.701

https://doi.org/10.1017/jfm.2022.701 Published online by Cambridge University Press

Wave power extraction from an elastic disk-shaped device

For an angular-independent PTO system, (A27) gives

CAciJ (ko)
—Kc© § Actte —f, =0. (A28)
- XKI +1—-Ky

In order to evaluate the unknown coefficients Ay, ;, By.1, Cin,1, D1, and F, or f,,, which
depend on the PTO types, we truncate all infinite series of vertical eigenfunctions at L,
ie.(L+1)terms (! =0,1,...,L) for Dy, and (L +3) terms ({ = -2, —1,0,1,...,L)
for A1, B,y and Cy, g, and we take (2M + 1) angular terms (m = —M, ...,0,..., M),
resulting in 2Q2M + 1)(2L +5) + N and (2M + 1)(4L + 11) unknown coefficients to
be determined for the discrete PTO and continuum PTO, respectively. After taking
t=-M,...,0,...,M and ¢ =0,1,...,L in (A12)-(A27), 22M + 1)RL+5)+ N
and (2M + 1)(4L + 11) equations are obtained for the discrete PTO and continuum
PTO, respectively, which can be used to determine the exact same number of unknown
coefficients.
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