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Abstract

We show that firms’ left-tail risk positively predicts future returns of crash insurance. We
proxy crash insurance with bear spreads, an option trading strategy that profits when extreme
negative returns occur. Crash insurance for high (low) left-tail risk firms earns positive
(negative) returns, suggesting that the downside protection it provides is not adequately
priced. Our results are mainly explained by two types of underreaction: volatility under-
reaction in high left-tail risk portfolios and underreaction to the persistence of left-tail risk.
Disagreement partially explains our results, but a risk-based approach does not.

I. Introduction

Loss aversion plays an important role in economic decisions. The utility of
a loss-averse investor is steeper for losses than for gains (Kahneman and Tversky
(1979), Tversky and Kahneman (1991)). Berkelaar, Kouwenberg, and Post (2004)
and Jarrow and Zhao (2006) show that optimal portfolios for loss-averse investors
include hedging and insurance against left-tail risk. Hedging demand for assets
providing insurance against left-tail risk potentially impacts their prices. A growing
body of literature investigates the impact of left-tail risk on the cross section of stock
returns. Lu andMurray (2019) use bear spread returns constructed from Standard&
Poor’s (S&P) 500 index options to capture bear market risk and find that it is priced
in the cross section of stock returns. Kelly and Jiang (2014) construct a tail-risk
factor by identifying the common fluctuation of crash events for individual firms
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and find that stocks with higher loadings on the tail-risk factor earn higher future
returns. By contrast, Atilgan, Bali, Demirtas, and Gunaydin (2020) show that the
risk–return trade-off between firms’ left-tail risk and stock returns breaks down
because firms’ left-tail risk and future stock returns have a negative relation. These
findings are explained by the persistence of left-tail risk or left-tail momentum that
indicates that equity investors underreact to firms’ left-tail risk.

In this article, we study the performance of cross-sectional crash insurance, a
financial instrument that provides coveragewhen extreme negative returns occur. In
a world with two identical firms where one has higher left-tail risk than the other, a
risk-averse investor buying crash insurance would expect returns on crash insur-
ance for the high left-tail risk firm to be lower than those for the low tail-risk firm.
Our empirical findings provide evidence against this claim.

We sort firms in deciles each month based on their left-tail risk and study the
subsequent 1-month crash insurance return. We proxy crash insurance with a
tradable option strategy (a bear put spread) that buys an out-of-the-money
(OTM) put option and sells a deeper OTM (DOTM) put option. We delta-hedge
our option strategy so that our results are not driven bymovements in the underlying
asset. Two counterintuitive findings emerge. First, we document a positive relation
between firms’ left-tail risk and future bear spread returns. Crash insurance for low
tail-risk firms earns negative returns, as onewould expect. However, the portfolio of
firms in the lowest left-tail risk, decile 1, reports the most negative bear spread
returns across all portfolios. The “10–1” long-short bear spread portfolio earns
positive and significant returns. Second, bear spread returns for firms with the
highest left-tail risk, deciles 9 and 10, as well as those for deciles 5–7 report,
positive returns. Positive average returns mean that investors profit when buying
insurance for left-tail risk, while insurance sellers incur losses on these assets.

To understand our results, we first explore potential volatility underreaction
when pricing bear put spreads. Volatility underreaction is documented by Potesh-
man (2001), Cheng (2020), Barrero (2022), and Lochstoer and Muir (2022). Since
bear spread prices depend on two implied volatilities (IVs), OTM and DOTM put
options’ IVs, we decompose these volatilities into the level of the implied volatility
smile (the at-the-money (ATM) implied volatility) and the slope of the smile (option
skew). Using ex ante measures of the ATM IVand the option skews from statistical
models, we find that bear spread prices for firms with high left-tail risk are under-
valued. This effect is generated by the underestimation of the ATM IV. Since our
forecasts do not include variance risk premia, these findings suggest the existence of
volatility underreaction for firms with high left-tail risk. For firms with low left-tail
risk, crash insurance appears to be fairly priced, with premiums exceeding their ex
ante estimates. Using naïve ex ante estimators based on the past 3-, 6-, or 12-month
averages of the OTM and DOTM, implied volatilities confirm the volatility under-
reaction effect.

An alternative explanation of our results is the potential underestimation of the
persistence of left-tail risk, our sorting variable. Atilgan et al. (2020) document that
left-tail risk is highly persistent in the cross section of stock returns. We find that
optionable stocks in our sample exhibit even stronger left-tail persistence: 77% of
the firms in the highest left-tail risk portfolio (decile 10) remain in deciles 9 and 10 a
year later. Empirically, we show that the positive relation between left-tail risk and
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crash insurance returns is more pronouncedwhen left-tail risk increases or when the
stock price is near its 52-week low. We argue that investors underestimate left-tail
risk momentum, leading to underpricing of crash insurance on high left-tail risk
stocks, thus making the positive relation stronger. These results are consistent with
Chan (2003), Easterwood and Nutt (1999), and Hong, Lim, and Stein (2000), who
document that underreaction is more pronounced for left-tail events. Furthermore,
our anomaly becomes stronger in periods of high information uncertainty or high
investor sentiment. These findings align with an underreaction explanation since
information uncertainty amplifies investors’ underreaction (Zhang (2006a),
(2006b)) and investor sentiment leads to the mispricing of risky assets (Baker
andWurgler (2006), Stambaugh, Yu, and Yuan (2012), and Byun and Kim (2016)).

Our results are robust to different methodologies and control variables such
as size, book-to-market, firm leverage, momentum, reversal, Amihud (2002)
illiquidity, and idiosyncratic volatility. The positive relation between crash insur-
ance returns and left-tail risk is not a compensation for variance risk premium,
jump risk, or uncertainty of stock volatility risk. Our findings cannot be explained
by information asymmetry, option demand pressure, option return predictors, or
ex ante exposures of individual bear spread returns to systematic factors and left-
tail factors. Using double sorting and Fama–MacBeth (1973) regressions, we
show that the positive relation between crash insurance returns and left-tail risk
is robust to all control variables. Only disagreement provides a partial explanation
of our results.

We rule out a risk-based explanation by computing risk-adjusted long-short
returns with a comprehensive list of risk factors. The alphas of long-short bear
spread returns remain positive and significant after adjusting for these risk factors,
suggesting that a risk-based explanation does not explain our findings. Our results
also hold across different time periods, portfolio weighting schemes, daily delta-
hedging, alternative definitions of the bear spread,modified Fama–MacBeth (1973)
regressions proposed by Brennan, Chordia, and Subrahmanyam (1998), and the
weighted least squares (WLS) parameter estimation proposed by Asparouhova,
Bessembinder, and Kalcheva (2013). Transaction costs reduce the performance of
our bear spread strategy, but the strategy remains profitable when disregarding
optionswith large bid–ask spreads as inHeston, Jones, Khorram, Li, andMo (2023)
and trading at effective spreads of the magnitude paid by algorithmic traders.

Our study contributes to the growing literature on tail risk and asset prices
(Campbell, Hilscher, and Szilagyi (2008), Kelly and Jiang (2014), Van Oordt and
Zhou (2016), Chabi-Yo, Ruenzi, and Weigert (2018), Lu and Murray (2019),
Atilgan et al. (2020), and Chen, Gan, and Vasquez (2023)). We document a positive
relation between firms’ left-tail risk and future crash insurance returns. Contingent
claims traded in the options market offer unique opportunities to isolate and insure
crash risk. Using the bear spread option strategy as a proxy for crash risk insurance,
we show that the risk–return trade-off breaks down as the options market underre-
acts to volatility and the persistence of firms’ left-tail risk. Our study highlights that
although investors frequently emphasize the importance of tail risk management,
crash risk insurance is likely underpriced in the optionsmarket. The underpricing of
bear spreads when downside risk is high shows that adequately pricing tail risk in
options markets can be challenging.
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The remainder of the article proceeds as follows: Section II describes the data
and the construction of bear spreads. Section III presents the main empirical results.
In Section IV, we analyze potential explanations for the main findings. Section V
presents robustness tests, and Section VI concludes.

II. Data

A. Sample Construction

Our sample period is from Jan. 1996 to Dec. 2017. We obtain stock price and
accounting data from CRSP and Compustat. Option data from OptionMetrics
include daily closing bid and ask prices, open interest, volume, implied volatility,
and option Greeks. To avoid the bid–ask bounce, the mid points of bid and ask
prices are used to compute option returns. Five filters are applied to process the
option data and are described in Section A of the Supplementary Material.

B. Bear Spread Construction

A popular form of crash insurance available in the options market is a bear
spread. A bear spread is constructed by taking a long position in one OTM put
option, denoted PUT1, with price P1, strike price K1, and delta Δ1, and a short
position in a DOTM put option, denoted PUT2, with price P2, strike price K2, and
delta Δ2 (K1 > K2 and Δ1 < Δ2). The bear spread generates a payoff of K1�K2

when the stock price at expiration is below K2 and 0 when the stock price at
expiration is above K1. The bear spread payoff linearly decreases from K1�K2

to 0 when the stock price is between K2 and K1.
Choosing K1 and K2 in empirical studies deserves careful consideration. As

discussed in Lu and Murray (2019), if the bear region boundary K2 is set to be at a
constant percentage below the forward price, the bear region would correspond
to left-tail events with different probabilities when the underlying assets possess
different volatility levels. To address this issue for index option bear spreads, Lu and
Murray (2019) set K2 and K1 to 1:5 and 1:0 standard deviations below the index
forward price.

Since equity options havemore sparse strike prices compared to index options,
we use option deltas instead of strike prices to select put options. Extensive
literature uses Black–Scholes deltas to identify options with the same moneyness
across assets because the absolute delta approximates the probability that an option
will be in the money at expiration (Bollen andWhaley (2004), Driessen,Maenhout,
and Vilkov (2009), Jin, Livnat, and Zhang (2012), Bali and Murray (2013), Kelly,
Lustig, and Van Nieuwerburgh (2016a), and, Kelly, Pástor, and Veronesi (2016b)).

The typical ranges of OTM and DOTM put option deltas are �0:40,�0:20½ Þ
and �0:20,0½ � (e.g., Kelly and Jiang (2014), Muravyev (2016)). We construct bear
spreads with a long (short) position in PUT1 PUT2ð Þ as the OTM (DOTM) put
option with Δ1 Δ2ð Þ closest to �0.30 (�0.10), the midpoint of the OTM (DOTM)
delta range. Our results hold when we consider using a simple average or a kernel-
weighted average of put options with deltas between �0:40,�0:20½ Þ and �0:20,0½ �
as reported in Table A9 in the Supplementary Material.
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A bear spread has a negative delta Δ1�Δ2ð Þ, embedding an equivalent short
position in the underlying stock. Therefore, unhedged bear spread returns also
capture movements in the underlying stock. Given that Atilgan et al. (2020)
document that stocks’ left-tail risk predicts stock returns, we delta-hedge the bear
spread position so that our results are not driven by stock price movements.1We use
static delta-hedging as in previous equity option studies (Goyal and Saretto (2009),
Bali andMurray (2013), and Byun and Kim (2016)).2 Following Goyal and Saretto
(2009) and Kelly and Jiang (2014), we use 1-month options to construct bear
spreads, and form delta-hedged bear spreads on the first trading day immediately
following the third Saturday inmonth t and close all positions at the optionmaturity
on the third Friday in month t + 1. Our methodology avoids the forward-looking
bias when selecting our options.

The delta-hedged return of the bear spread over t, t + 1½ � is

RETURN=
Δ2,t�Δ1,tð ÞSt + 1 + max K1�St + 1,0ð Þ� max K2�St + 1,0ð Þ

Δ2,t�Δ1,tð ÞSt +P1�P2
�1,

where P1 P2ð Þ,Δ1,t Δ2,tð Þ, andK1 K2ð Þ are the price, delta, and strike price of PUT1
(PUT2), the OTM (DOTM) put at time t, and St St + 1ð Þ is the price of the underlying
stock at time t t + 1,maturityð Þ.

Our sample consists of 155,003 cross-sectional monthly returns of delta-
hedged bear spreads.

C. Left-Tail Risk Measures

We estimate left-tail risk using two standard measures following Atilgan et al.
(2020): value-at-risk (VAR) and expected shortfall (ES). VARx ESxð Þ is calculated
as (the average of the observations that are less than or equal to) the x percentile
of daily returns over the past 250 trading days. As the left-tail loss measures are
typically negative, wemultiply these measures by�1 so that a higher value of VAR
or ES corresponds to higher left-tail risk.

D. Other Variables

We construct four groups of control variables. Some of these variables are
commonly used in studies of the cross section of equity option returns (Goyal and
Saretto (2009), Bali and Murray (2013), Cao and Han (2013), Byun and Kim
(2016), and Vasquez (2017)).

First, we construct three variables related to firm characteristics. Firm size
SIZEð Þ is the natural logarithm of the firmmarket capitalization observed at the end
of month t�1. Book-to-market ratio BTMð Þ is the ratio of a firm’s net assets’ book
value at the previous fiscal year-end to the market capitalization of the stock at the
end of month t�1. Firm leverage DTAð Þ is the ratio of a firm’s total liability to the

1Lu and Murray (2019) show in a theoretical model that only delta-hedged bear spread returns are
exposed to the left-tail risk. We empirically confirm that the predictability of the right-tail measure is
subsumed by the left-tail measure as reported in Table A1 in the Supplementary Material.

2Our results are robust to daily delta-hedging as reported in Table A9 in the SupplementaryMaterial.
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book value of total assets at the previous fiscal year-end. Vasquez and Xiao (2024)
find a negative relation between leverage and future option returns.

Second, we construct six variables related to stock returns and stock trading
activities. Momentum MOMð Þ is the cumulative stock return from month t�6
to month t�2. Short-term reversal REVð Þ is the stock return in month t�1. Stock
return skewness SKEWð Þ and kurtosis KURTð Þ are calculated using last year’s
daily stock return data. Two additional variables (illiquidity and idiosyncratic
volatility) predict the cross section of delta-hedged option returns according to
Zhan,Han, Cao, and Tong (2022) andCao andHan (2013). Illiquidity ratio ILLIQð Þ
is defined as the natural logarithm of the average ratio of the absolute daily stock
return to its daily dollar trading volume multiplied by 108 in month t�1. Idiosyn-
cratic volatility of stock returns IVOLð Þ is the standard deviation of the residuals of
the daily stock excess returns regressed on daily market excess returns in month
t�1.

Third, we construct variables related to options. Variance risk premium VRPð Þ
is the difference between the average implied volatility of ATM short-term options
(with moneyness between 0.95–1.05 and 10–60 day-to-maturity) and the annual-
ized last-quarter’s daily stock return standard deviation observed at the end of
month t�1. Goyal and Saretto (2009) show that VRP predicts future option returns.
Volatility of volatility VOVð Þ, which predicts option returns (Cao, Vasquez, Xiao,
and Zhan (2023)), is calculated following Baltussen, Van Bekkum, and Van Der
Grient (2018) by scaling the standard deviation of ATM short-term option implied
volatility by the averageATMshort-term option implied volatility overmonth t�1.
Risk-neutral skewness RNSð Þ at the end of month t�1 is calculated using OTM
call and put option prices following Bakshi, Kapadia, and Madan (2003). Option
demand is computed as the log difference between the total market value of all
options and the market value of underlying stocks.

Fourth, we construct six systematic risk exposure measures, three of which
are exposed to systematic left-tail risk. These beta exposures are computed using
60-month rolling windows up to month t�1 where we regress the bear spread
return of each firm on each of the systematic risk measures. The beta exposures to
the systematic risk measures are βBEAR, the beta exposure to the bear market risk
calculated following Lu and Murray (2019); βSTRAD, the beta exposure to the
zero-beta straddle return of the S&P 500 computed as in Coval and Shumway
(2001); βJUMP and βVOL, the beta exposures to the market jump and market
diffusive volatility calculated following Cremers, Halling, and Weinbaum
(2015); βTAIL, the beta exposure to the tail-risk factor calculated following Kelly
and Jiang (2014); and βDOWNSIDE, the beta exposure to the downside risk factor
calculated following Ang, Chen, and Xing (2006). In Section C of the Supple-
mentaryMaterial, we describe the construction of each of these beta exposures in
detail.

From option prices in the bear spread strategy, we can compute the Arrow–
Debreu state price (AD_PRICE) of left-tail events (Lu and Murray (2019)). If
we scale the option positions in the bear spread by K1�K2, we get a price of
P1�P2ð Þ= K1�K2ð Þ and a payoff of $1 when ST <K2. Therefore, the price of the
scaled bear spread should be equal to e�rT bE 1 ST <K2f g

� �
, where 1 is the indicator

function and bE represents the expected value under the risk-neutral probability.
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The scaled bear spread price can be interpreted as the discounted risk-neutral state
probability of left-tail events.

We also report the quoted half bid–ask spread (BA_SPREAD) of the bear
spread strategy. Since the bear spread involves buying an OTM put option and
selling a DOTM put option, we compute its half bid–ask spread as

PUT1,ASK�PUT1,MIDð Þ+ PUT2,MID�PUT2,BIDð Þ½ �= PUT1,MID�PUT2,MIDð Þ:

E. Summary Statistics

Table 1 reports summary statistics of variables in Panel A and characteristics of
decile portfolios in Panel B. The cross-sectional correlation matrix is reported in
Table A2 in the Supplementary Material.

In Panel A of Table 1, both the mean and median of delta-hedged bear spread
returns are negative, consistent with the negative risk premium carried by the bear
spreads as they provide insurance against left-tail risk. The 75th percentile is 6.77%,
indicating that at least 25% of return observations are positive. PUT1 and PUT2

have median deltas of �0.304 and � 0.116 with moderate standard deviations,
suggesting a satisfactory selection of option pairs in our bear spread sample. PUT1’s
mean implied volatility is 48%, which is smaller than PUT2’s mean implied
volatility of 53%. This is consistent with the typical shape of the option skew for
put options (Xing, Zhang, and Zhao (2010)). VAR5 VAR1ð Þ has a mean of 4.2%
(7.0%), implying that on average there is a 5% (1%) probability that the daily loss
that a firm experiences over the following day is 4.2% (7.0%) or higher. ES5 ES1ð Þ
has a mean of 6.2% (9.3%), which is larger than the mean of VAR5 VAR1ð Þ, as
expected.

As for the summary statistics of the control variables, the median momentum
and reversal are of similar magnitude to that reported by Byun andKim (2016). The
medians of illiquidity and idiosyncratic volatility are also similar to those reported
by Cao and Han (2013) and Atilgan et al. (2020). The average AD_PRICE (the
Arrow–Debreu security price implied by the bear spread strategy) is 21 cents, which
is the crash insurance premium paid by investors to receive one dollar when extreme
negative returns occur. The beta exposures to systematic tail-risk factors are, on
average, positive for bear market risk, zero-beta market straddles, jump risk, and
volatility market risk, and are negative for the market tail-risk factor and the
downside risk factor.

In Panel B of Table 1, we present the mean values of characteristics across
decile portfolios sorted by VAR5. VAR5 increases from 2.1% for decile 1 to 7.5%
for decile 10. Firm size decreases from decile 1 to 10, while book-to-market,
momentum, reversal, idiosyncratic volatility, and kurtosis increase from decile
1 to 10. The quoted half bid–ask spread is similar across decile portfolios and to
its mean at around 22%. As expected, AD_PRICE increases from 17.6 cents for
decile 1 to 26.1 cents for decile 10. As left-tail risk increases, the price of crash
insurance against bear states becomes more expensive. Note that our article focuses
on crash insurance returns, not prices.

Finally, beta exposures to themarket bear spread, the jump factor, the volatility
factor, and the tail factor report a monotonic pattern across decile portfolios.
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TABLE 1

Summary Statistics

Panel A of Table 1 presents descriptive statistics for delta-hedged bear spread returns (in %), characteristics of put options
in the bear spreads, the left-tail risk measures, and other variables that include control variables. Panel B reports the
characteristics of 10 portfolios sorted by the 5% value-at-risk, VAR5, that corresponds to �1 times the 5th percentile of
daily returns in the past year. The left-tail risk measures are the 5% (1%) value-at-risk, VAR5 VAR1ð Þ, that corresponds to 5th
(1st) percentile of daily returns in the past year, and the expected shortfall, ES5 ES1ð Þ, is calculated as�1 times the average of
the returns below the 5th (1st) percentile of daily returns in the past year. The characteristics are SIZE (market capitalization),
BTM (book-to-market ratio), DTA (firm leverage), MOM (momentum computed as the return over the previous 6 months),
REV (reversal which is the return over the previous month), ILLIQ (logarithm of Amihud illiquidity), IVOL (idiosyncratic
volatility), and SKEW and KURT (skewness and kurtosis from 1 year of daily returns). We use 60-month rolling windows to
compute the exposures of individual bear spread returns to the following systematic risk factors: the bear market factor
βBEARð Þ following Lu and Murray (2019), zero-beta straddle βSTRADð Þ from Coval and Shumway (2001), jump and volatility
factors βJUMPð and βVOLÞ as in Cremers et al. (2015), the tail factor βTAILð Þ as in Kelly and Jiang (2014), and the downside
factor (βDOWN) following Ang et al. (2006). We also report the AD_PRICE (the Arrow–Debreu security price implied by
bear spread strategy) and HALF_BA_SPREAD (the quoted half bid–ask spread of bear spread computed as
PUT1,ASK �PUT1,MIDð Þ+ PUT2,MID �PUT2,BIDð Þ½ �= PUT1,MID �PUT2,MIDð Þ). Statistics are computed as the time-series

averages of the monthly cross-sectional means, standard deviations, and percentiles. The sample period is from Jan.
1996 to Dec. 2017 for stocks in the OptionMetrics database.

Panel A. Summary Statistics

Variables Mean Std. Dev. 25th Median 75th

Delta–hedged bear spread returns
�0.166 13.224 �8.556 �1.740 6.775

Option characteristics
PUT1
Delta �0.304 0.047 �0.339 �0.304 �0.268
Implied volatility 0.476 0.204 0.333 0.439 0.574
PUT2
Delta �0.116 0.032 �0.136 �0.111 �0.092
Implied volatility 0.527 0.221 0.374 0.487 0.629

Left–tail risk variables
VAR5 0.042 0.016 0.030 0.040 0.052
VAR1 0.070 0.028 0.049 0.064 0.085
ES5 0.062 0.024 0.043 0.057 0.075
ES1 0.093 0.044 0.061 0.083 0.113

Other variables
SIZE 22.230 1.576 21.094 22.179 23.303
BTM 4.507 49.701 0.349 0.689 1.427
DTA 0.185 0.194 0.023 0.143 0.281
MOM 0.151 0.338 �0.041 0.126 0.306
REV 0.028 0.133 �0.045 0.020 0.090
IILLQ �7.960 1.563 �9.033 �8.017 �6.886
IVOL 0.022 0.013 0.013 0.019 0.026
SKEW 0.235 1.217 �0.176 0.181 0.590
KURT 8.605 11.117 4.156 5.464 8.635
βBEAR 0.155 1.043 �0.356 0.097 0.624
βSTRAD 0.042 0.099 �0.002 0.041 0.085
βJUMP 0.052 0.464 �0.134 0.048 0.232
βVOL 0.027 0.825 �0.277 0.021 0.337
βTAIL �0.045 0.949 �0.462 �0.023 0.400
βDOWN �0.604 2.981 �1.203 �0.621 �0.018
AD_PRICE 0.210 0.054 0.174 0.206 0.241
HALF_BA_SPREAD 0.225 0.267 0.104 0.173 0.277

Panel B. Characteristics of Decile Portfolios

Variables 1 2 3 4 5 6 7 8 9 10

VAR5 0.021 0.026 0.029 0.033 0.037 0.041 0.046 0.051 0.059 0.075
SIZE 23.551 23.308 23.023 22.674 22.371 22.091 21.849 21.633 21.348 20.865
BTM 2.628 3.148 3.598 3.352 3.022 2.974 2.809 3.208 6.540 11.399
DTA 0.212 0.201 0.196 0.190 0.183 0.182 0.173 0.172 0.172 0.165
MOM 0.106 0.112 0.116 0.122 0.138 0.151 0.165 0.168 0.180 0.237
REV 0.021 0.022 0.025 0.026 0.032 0.034 0.034 0.040 0.038 0.050
ILLIQ �9.072 �8.798 �8.557 �8.256 �8.018 �7.791 �7.563 �7.390 �7.150 �6.847
IVOL 0.011 0.013 0.015 0.017 0.019 0.021 0.023 0.026 0.030 0.037
SKEW 0.194 0.151 0.134 0.121 0.177 0.202 0.213 0.247 0.331 0.533
KURT 7.863 8.091 8.413 8.759 8.774 8.689 8.914 8.735 9.521 10.073
βBEAR 0.090 0.083 0.119 0.110 0.133 0.144 0.172 0.198 0.205 0.301
βSTRAD 0.037 0.041 0.041 0.040 0.041 0.043 0.043 0.046 0.047 0.044
βJUMP 0.032 0.043 0.046 0.029 0.033 0.049 0.062 0.061 0.063 0.104
βVOL 0.026 0.021 0.031 0.011 0.013 0.002 �0.008 0.026 0.061 0.090
βTAIL �0.021 �0.002 �0.026 �0.009 �0.010 �0.033 �0.049 �0.105 �0.085 �0.108
βDOWN �0.486 �0.556 �0.567 �0.619 �0.732 �0.654 �0.670 �0.622 �0.681 �0.450
AD_PRICE 0.176 0.183 0.189 0.196 0.204 0.211 0.218 0.227 0.239 0.261
HALF_BA_SPREAD 0.242 0.218 0.222 0.217 0.217 0.223 0.225 0.223 0.225 0.233
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In Fama–MacBeth (1973) regressions and double sorts, we show that this mono-
tonic relation does not subsume the predictability of VAR5 on bear spread returns.

Table A2 in the Supplementary Material reports the cross-sectional correla-
tions of firm characteristics. The correlation among the four left-tail measures is
high at above 75%. VAR5, the main left-tail measure used in our article, displays a
high correlation with firm size (�51%), Amihud (2002) illiquidity (43%), idiosyn-
cratic volatility (60.5%), and AD_PRICE (44%). The correlations (in absolute
value) with the relative bid–ask spread, variance risk premium, and beta exposures
to systematic left tail risk are below 10%.

In summary, we show that left-tail risk measures appear to be related to control
variables including firm size, illiquidity, and idiosyncratic volatility. In Section III,
we attempt to establish a cross-sectional relation between left-tail risk and bear
spread returns.

III. Empirical Analysis

A. Univariate Portfolio Analysis

We conduct univariate portfolio analysis to examine the relation between left-
tail risk and delta-hedged bear spread returns. In month t, we form decile portfolios
of delta-hedged bear spreads by sorting firms based on one of the left-tail risk
measures: VAR1, VAR5, ES1, and ES5:Decile 10 (decile 1) contains delta-hedged
bear spreads on stocks with the highest (lowest) left-tail risk.

We report dollar-open-interest-weighted (DOI-weighted) returns. Our results
are robust for equal-weighted returns, as reported in Table A3 in the Supplementary
Material. The DOI-weighted returns put more weight on option strategies with
higher dollar value and liquidity (open interest). Following Cao and Han (2013)
and Gao, Xing, and Zhang (2018), we compute the DOI weight on the bear
spread formation date by multiplying the bear spread cost with the minimum
open interests of the two put options comprising that bear spread: DOI =
PUT1�PUT2ð Þ× min OIPUT1 ,OIPUT2ð Þ:

Table 2 reports a systematic pattern in which returns of DOI-weighted delta-
hedged bear spreads generally increase across decile portfolios. Portfolios with low
left-tail risk (deciles 1 and 2) report negative returns, while those with high left-tail
risk (deciles 9 and 10) exhibit positive returns. In the first row, decile 1 portfolio
(with the lowest VAR5) has an average monthly return of �0.59%, while decile
10 portfolio (with the highest VAR5) has an average monthly return of 0.45%. The
“10–1” monthly return spread is 1.04% (t-stat = 2.44), and it is economically
significant. The option dollar open interest percentage of portfolios 1 and 10 repre-
sents 23.1% of the total DOI, as reported in Panel A of Table A4 in the Supple-
mentary Material. If all firms were identical, portfolios 1 and 10 should represent
20% of the total DOI. The returns and alphas of portfolios sorted on VAR1, ES5,
and ES1 exhibit a similar pattern.

Crash insurance provided by bear spreads offers protection against stock price
crashes. In theory, option traders should pay a fair price for such protection, accept a
negative risk premium, and expect negative future returns. However, we find that
high decile portfolios generate positive and higher returns than low decile portfolios
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and the “10–1” returns are statistically and economically significant for all left-tail
riskmeasures. These results indicate underpricing of bear spreads when left-tail risk
is high.

We conclude that DOI- and equal-weighted bear spread returns are positively
related to left-tail risk. For the remainder of the article, we report results only for
VAR5 given the high correlation among the four left-tail risk measures and that
VAR5 is the measure with a distribution closest to normal compared to the other
measures (Atilgan et al. (2020)). In Section III.B, we study risk-adjusted returns of
bear spread portfolios when sorting by VAR5.

B. Risk-Adjusted Bear Spread Returns

We now compute the risk-adjusted returns and risk exposures of the decile
portfolios and the “10–1” portfolio. The positive relation between VAR5 and bear
spread returns potentially represents the presence of market-wide risk, systematic
left-tail risk, or option-based systematic risk.

We regress the returns of decile portfolios and the “10–1” DOI-weighted bear
spread returns on various linear pricing models. We include traditional equity
pricing models consisting of the Fama and French (1993) three factors and the
Carhart (1997) momentum factor. We also include four systematic option factors:
i) the aggregate volatility factor measured by the zero-beta S&P 500 index ATM
straddle return from Coval and Shumway (2001), ii) the jump and iii) volatility
factors calculated as in Cremers et al. (2015), and iv) the VIX volatility index.

TABLE 2

Univariate Portfolio Analysis

Table 2 reports the time-series averagemonthly returns (in%) for the dollar-open-interest-weighted delta-hedgedbear spread
decile portfolios sorted on left-tail risk measures (VAR5, VAR1, ES5, and ES1), alongwith the return spreads (“10–1”) between
decile 10 and decile 1. Panel A reports the time-series averagemonthly returns for decile portfolios sorted by VAR5, alongwith
their time-series standard deviation (in%), skewness, and kurtosis. Panel B reports the time-series averagemonthly returns for
decile portfolios sorted by VAR1, ES5, and ES1. The left-tail risk measures are the 5% (1%) value-at-risk, VAR5 VAR1ð Þ, that
corresponds to�1 times the 5th (1st) percentile of daily returns in the past year, and expected shortfall, ES5 ES1ð Þ, calculated
as �1 times the average of the returns below the 5th (1st) percentile of daily returns in the past year. Each month t , decile
portfolios of delta-hedged bear spreads are formed and held to maturity by sorting underlying stocks on one of the left-tail risk
measures. The dollar open interest weight is calculated as the minimum of the open interests of the two puts in each bear
spread, multiplied by the cost of the bear spread. Newey–West (1987) adjusted t-statistics are presented in parentheses. The
sample period is from Jan. 1996 to Dec. 2017 for stocks in the OptionMetrics database.

Panel A. Sorted by VAR5

Statistics 1 2 3 4 5 6 7 8 9 10 10–1

Mean �0.59 �0.38 �0.23 �0.18 0.16 0.06 0.12 �0.14 0.01 0.45 1.04
(�3.99) (�2.29) (�1.24) (�0.77) (0.58) (0.26) (0.41) (�0.40) (0.04) (1.02) (2.44)

Std. Dev. 2.61 2.71 3.08 3.44 3.96 3.81 4.14 4.39 5.03 6.10 6.25
Skew 1.03 0.42 0.85 0.77 0.77 0.71 0.15 0.42 0.68 1.04 0.97
Kurt 5.74 4.49 4.13 4.86 4.60 3.95 5.03 3.85 3.61 5.72 5.72

Panel B. Sorted by VAR1, ES5, and ES1

VAR1 �0.55 �0.53 �0.25 �0.05 0.33 0.13 �0.14 �0.15 0.52 0.27 0.83
(�3.92) (�3.23) (�1.17) (�0.23) (1.20) (0.44) (�0.54) (�0.52) (1.43) (0.71) (2.26)

ES5 �0.53 �0.41 �0.40 0.10 �0.10 0.21 �0.10 0.09 0.12 0.46 0.99
(�3.75) (�2.67) (�1.96) (0.45) (�0.42) (0.67) (�0.30) (0.27) (0.37) (1.02) (2.35)

ES1 �0.56 �0.38 �0.15 �0.04 0.07 �0.25 0.01 0.27 0.50 0.29 0.85
(�3.96) (�1.77) (�0.86) (�0.18) (0.28) (�0.93) (0.02) (0.88) (1.36) (0.80) (2.61)
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To control for systematic left-tail risk, we risk-adjust the returns with the bear
market factor (AD_BEAR) computed as in Lu and Murray (2019), the tail factor by
Kelly and Jiang (2014), the downside factor of Ang et al. (2006), and a factor
constructed using coskewness following Harvey and Siddique (2000). Finally, we
control for factors that explain the cross section of option returns. These include the
illiquidity factor from options by Zhan et al. (2022), and three factors from options
(size, idiosyncratic volatility, and variance risk premium) as suggested byHorenstein,
Vasquez, and Xiao (2022). The last four factors, not to be confused with the stock
factors, are computed as the long-short return of decile delta-hedged option returns
sorted on each characteristic. We also risk-adjust using the coskewness model of
Vanden (2006), which uses the market return, the square of the market return, as well
as the bear spread return of the S&P 500 and its square, and the product of themarket
return and the market bear spread return. Section B of the Supplementary Material
contains a detailed description of the construction of these factors.

Panel A of Table 3 reports that the alphas of the “10–1” returns are all larger in
magnitude than the “10–1” DOI-weighted bear spread return reported in Table 2.
Panel B reports that only the exposures tomarket risk are consistently significant for
all decile portfolios including the long-short portfolio. These exposures are all
negative and that of decile 10 is the most negative among all deciles. In market
downturns, the portfolio with the riskiest stocks in terms of left-tail risk, decile
10, would deliver the highest return.

We conclude that stock and option systematic factors, left-tail systematic risk
factors, and factors from the cross section of option returns do not explain the “10–
1” DOI-weighted bear spread returns. The alphas for all models are larger than the
raw returns. The exposures of decile portfolios to systematic factors show no
consistent patterns. Only the exposures to the market factor show a monotonic
relation with bear spread decile portfolio returns. However, the CAPM alpha of the
“10–1” portfolio remains positive and significant. Similar results are obtained for
equal-weighted returns, as reported in Table A5 in the Supplementary Material.

C. Bivariate Portfolio Analysis

We investigate whether the positive relation between the underlying stocks’
left-tail risk measures and future bear spread returns can be explained by firm
characteristics using the bivariate portfolio sorting method. In month t, we form
decile portfolios by sorting based on one of the control variables. Then, within each
decile, we further sort based on the left-tail risk measure VAR5. Each left-tail risk
decile portfolio is then averaged across the control variable deciles. Control vari-
ables are SIZE (market capitalization), BTM (book-to-market ratio), DTA (firm
leverage), MOM (momentum computed as the return over the previous 6 months),
REV (reversal, which is the return over the previous month), ILLIQ (logarithm of
Amihud illiquidity), IVOL (idiosyncratic volatility), and SKEW and KURT
(skewness and kurtosis from 1 year of daily returns).

Table 4 reports that the “10–1” portfolio returns and their corresponding alphas
are positive and statistically significant for all control variables. The “10–1” 5-
factor alphas are statistically significant and range from 0.65% to 1.36% per month.
The results for equal-weighted returns display a similar pattern to theDOI-weighted
returns and are reported in Table A6 in the Supplementary Material.
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The results indicate that after controlling for firm characteristics, the strong
positive relation between firms’ left-tail risk measure VAR5 and future returns of
delta-hedged bear spreads remains. The return predictability of VAR5 cannot be
explained by control variables commonly used in the literature nor by bear spread
exposures to systematic and left-tail risk factors.

TABLE 3

Risk-Adjusted Returns and Exposures to Systematic Factors

Table 3 reports the risk-adjusted returns and the exposures to systematic factors for the delta-hedged bear spread decile
portfolios sorted on the left-tail risk measure VAR5. Panel A reports the time-series average dollar-open-interest-weighted
monthly returns and alphas (in %) for the delta-hedged bear spread decile portfolios, along with the return spreads and the
associated alpha spreads (“10–1”) between decile 10 and decile 1. Panel B reports the post-formation exposures to the
systematic left-tail risk measures of each delta-hedged bear spread decile portfolio sorted by VAR5 and the associated
difference between the post-formation betas (“10–1”) of decile 10 and decile 1 portfolios. The post-formation beta exposures
are calculated froma regression of the delta-hedgedbear spreadportfolio returns on the contemporaneousmarket return and
each factor return. VAR5 is the 5%value-at-risk that corresponds to�1 times the 5th percentile of daily returns in the past year.
CAPM alphas are calculated after adjusting for CAPMmarket risk factor; 4-factor (4F) alphas are calculated after adjusting for
Fama–French three factors and Carhart (1997) momentum factor; the ZB Straddle is the zero-beta straddle return from Coval
and Shumway (2001); the jump and volatility factors (JUMP and VOL) are computed as in Cremers et al. (2015); the bear
market factor (AD_BEAR) is calculated following Lu andMurray (2019); VIX is the monthly return of the VIX volatility index; the
Tail factor is calculated following Kelly and Jiang (2014); Downside is calculated following Ang et al. (2006); Coskewness
factor (COSKEW) is computed following Harvey and Siddique (2000); Illiquidity factor on options is calculated following Zhan
et al. (2022); the three factors from options are the size, idiosyncratic volatility, and variance risk premium factors from delta-
hedged option returns calculated following Horenstein et al. (2022); Vanden’s alpha is computed following Vanden (2006).
Newey–West (1987) adjusted t-statistics are presented in parentheses. The sample period is from Jan. 1996 to Dec. 2017 for
stocks in the OptionMetrics database.

Panel A. Risk-Adjusted Returns

Alphas 1 2 3 4 5 6 7 8 9 10 10–1 (t-Stat)

Raw return �0.59 �0.38 �0.23 �0.18 0.16 0.06 0.12 �0.14 0.01 0.45 1.04 (2.44)
CAPM alpha �0.47 �0.28 �0.10 �0.03 0.38 0.21 0.30 0.01 0.22 0.80 1.28 (3.02)
4F alpha �0.50 �0.44 �0.16 �0.09 0.23 0.13 0.13 �0.20 0.03 0.86 1.35 (3.16)
4F + ZB Straddle alpha �0.34 �0.28 0.00 0.08 0.39 0.27 0.23 �0.05 0.21 0.97 1.31 (3.15)
4F + Jump + Vol alpha �0.41 �0.35 �0.10 0.06 0.41 0.17 0.26 �0.09 0.19 0.91 1.31 (3.13)
4F + AD_BEAR alpha �0.45 �0.42 �0.06 �0.05 0.37 0.08 0.27 �0.16 0.23 0.94 1.39 (3.26)
4F + VIX alpha �0.49 �0.42 �0.10 �0.04 0.31 0.20 0.15 �0.18 0.14 0.84 1.33 (3.15)
4F + Tail factor alpha �0.49 �0.44 �0.14 �0.15 0.25 0.12 0.06 �0.23 0.03 0.83 1.32 (3.09)
4F + Downside alpha �0.46 �0.40 �0.13 �0.07 0.29 0.13 0.16 �0.16 0.07 0.96 1.43 (3.28)
4F + Coskew alpha �0.54 �0.43 �0.18 �0.07 0.25 0.12 0.11 �0.19 0.04 0.86 1.39 (3.27)
4F + Illiquidity alpha �0.59 �0.76 �0.35 �0.45 0.04 0.11 �0.08 �0.07 0.07 1.24 1.83 (2.41)
4F + 3F Option’s alpha �0.18 �0.38 0.45 �0.45 0.61 0.45 0.01 0.23 0.33 2.10 2.28 (2.33)
All factors’ alpha 0.21 �0.02 0.70 �0.02 1.12 0.46 0.58 0.88 0.71 3.12 2.90 (2.70)
Vanden’s alpha �1.09 �1.12 �0.54 �1.06 �0.39 �0.61 �0.07 �0.65 �0.29 0.30 1.39 (2.37)

Panel B. Exposures to Systematic Factors

Exposures 1 2 3 4 5 6 7 8 9 10 10–1

MKT �0.177 �0.161 �0.195 �0.222 �0.320 �0.222 �0.272 �0.228 �0.308 �0.534 �0.357
(�3.10) (�2.43) (�2.97) (�2.28) (�3.41) (�3.37) (�2.93) (�2.63) (�2.43) (�4.47) (�2.95)

ZB_
STRADDLE

0.021 0.020 0.016 0.019 0.022 0.011 0.019 0.026 0.017 0.023 0.002
(3.69) (3.80) (2.45) (3.23) (3.01) (1.57) (2.50) (2.69) (2.02) (2.31) (0.19)

JUMP 0.020 0.023 0.008 0.038 0.048 0.006 0.041 0.033 0.045 0.007 �0.014
(1.69) (2.01) (0.58) (2.04) (2.22) (0.30) (1.74) (0.92) (1.84) (0.22) (�0.42)

VOL 0.051 0.045 0.065 0.045 0.052 0.031 0.049 0.034 0.079 0.050 �0.001
(2.18) (1.94) (2.32) (1.34) (1.58) (0.94) (2.00) (0.74) (1.94) (0.88) (�0.02)

AD_BEAR 0.052 0.006 0.115 0.046 0.151 �0.066 0.149 0.031 0.216 0.102 0.050
(0.95) (0.13) (1.99) (0.69) (2.16) (�0.98) (1.94) (0.41) (2.13) (1.12) (0.61)

VIX 0.047 0.059 0.167 0.153 0.247 0.210 0.084 0.103 0.294 �0.033 �0.079
(0.79) (0.81) (3.31) (1.90) (2.84) (2.43) (1.06) (0.94) (3.08) (�0.27) (�0.71)

TAIL �0.037 �0.026 �0.057 0.068 �0.086 �0.001 0.093 �0.006 �0.043 0.065 0.102
(�0.96) (�0.62) (�1.66) (1.50) (�2.05) (�0.02) (2.11) (�0.09) (�0.57) (0.93) (1.18)

DOWNSIDE 0.058 0.032 0.048 0.039 0.082 �0.004 0.010 0.025 0.024 0.164 0.106
(2.47) (1.14) (1.83) (1.11) (2.60) (�0.11) (0.36) (0.68) (0.52) (3.32) (1.87)

COSKEW �0.071 �0.014 �0.033 �0.013 �0.023 �0.044 �0.017 �0.012 �0.002 0.001 0.071
(�2.02) (�0.45) (�0.93) (�0.22) (�0.32) (�0.69) (�0.39) (�0.20) (�0.04) (0.01) (0.74)
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TABLE 4

Bivariate Portfolio Analysis: Dollar-Open-Interest-Weighted

Table 4 presents results (in %) for dollar-open-interest- (DOI-) weighted delta-hedged bear spread portfolios based on bivariate dependent sorts of one characteristic variable and VAR5. In month t , decile portfolios of
delta-hedged bear spreads are formed by sorting underlying stocks based on one of the characteristic variables. Then, within each decile, additional decile portfolios of delta-hedged bear spreads are formed by
sorting underlying stocks based on VAR5. Each VAR5 decile portfolio is then averaged over the control characteristic deciles. This table reports the DOI-weighted returns for each decile portfolio, the “10–1” return
spread, and the associated 5-factor alpha spreads (5F_ALPHA) of the “10–1”portfolio. 5F_ALPHA is calculated after adjusting for Fama–French three factors, Carhart (1997)momentum factor, andCoval andShumway
(2001) systematic volatility factor. VAR5 is the 5% value-at-risk that corresponds to �1 times the 5th percentile of daily returns in the past year. Firm characteristic and beta control variables include SIZE (market
capitalization), BTM (book-to-market ratio), DTA (firm leverage), MOM (momentum computed as the return over the previous 6months), REV (reversal is the return over the previous month), ILLIQ (logarithm of Amihud
illiquidity), IVOL (idiosyncratic volatility), and SKEW and KURT (skewness and kurtosis from 1 year of daily returns). We use 60-month rolling windows to compute the exposures of individual bear spread returns to the
following systematic risk factors: the bear market factor βBEARð Þ following Lu andMurray (2019), zero-beta straddle βSTRADð Þ fromCoval and Shumway (2001), jump and volatility factors (βJUMP and βVOL) as in Cremers et
al. (2015), the tail factor βTAILð Þ as in Kelly and Jiang (2014), and the downside factor βDOWNð Þ followingAnget al. (2006). Newey–West (1987) adjusted t-statistics are presented in parentheses. The sample period is from
Jan. 1996 to Dec. 2017 for stocks in the OptionMetrics database.

Variables 1 2 3 4 5 6 7 8 9 10 10–1 (t-Stat) 5F_ALPHA (t-Stat)

SIZE �0.76 �0.41 �0.28 �0.30 �0.39 �0.23 �0.11 0.08 0.17 0.21 0.97 (3.26) 1.07 (3.62)
BTM �0.42 �0.38 0.01 0.04 �0.09 0.03 �0.12 0.12 0.08 0.28 0.50 (1.49) 0.65 (2.18)
DTA �0.54 �0.20 0.06 �0.28 0.00 0.42 0.07 �0.01 0.08 0.18 0.62 (2.27) 0.68 (2.54)
MOM �0.29 �0.32 �0.13 �0.14 �0.40 0.14 �0.08 �0.02 �0.26 0.56 0.85 (2.45) 1.04 (3.02)
REV �0.45 �0.40 �0.17 �0.22 0.27 �0.21 0.12 0.01 0.07 0.60 1.06 (2.91) 1.17 (3.31)
ILLIQ �0.90 �0.14 �0.42 �0.37 �0.28 0.06 �0.11 0.13 0.15 0.26 1.16 (3.44) 1.26 (3.92)
IVOL �0.46 0.06 �0.32 �0.14 �0.07 �0.04 �0.27 �0.29 0.12 0.57 0.58 (2.42) 0.81 (3.11)
SKEW �0.35 �0.27 �0.40 �0.16 0.05 0.04 0.14 0.03 0.01 0.47 0.82 (1.94) 1.09 (2.83)
KURT �0.42 �0.29 �0.32 �0.25 0.01 0.35 0.14 0.13 0.06 0.21 0.63 (1.60) 0.96 (2.60)
βBEAR �0.57 �0.58 �0.42 �0.19 �0.26 �0.08 �0.17 �0.34 �0.39 0.26 0.82 (2.19) 1.20 (3.34)
βSTRAD �0.59 �0.41 �0.26 �0.31 �0.30 �0.07 �0.37 �0.23 �0.26 0.14 0.73 (1.96) 1.04 (2.79)
βJUMP �0.49 �0.63 �0.33 �0.33 �0.01 �0.19 �0.20 �0.06 �0.44 0.05 0.55 (1.43) 0.93 (2.45)
βVOL �0.57 �0.31 �0.47 �0.47 0.18 �0.15 �0.32 �0.43 �0.44 0.28 0.86 (2.35) 1.36 (3.88)
βTAIL �0.51 �0.61 �0.21 �0.16 �0.39 �0.04 �0.24 �0.41 �0.10 0.12 0.63 (1.70) 0.78 (2.15)
βDOWN �0.60 �0.46 �0.52 �0.17 �0.42 �0.27 0.06 0.03 �0.56 0.11 0.71 (2.03) 1.12 (3.32)
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D. MacBeth Regressions

We perform Fama–MacBeth (1973) regressions to formally test the positive
cross-sectional relation between VAR5 and future bear spread returns. The depen-
dent variable is the delta-hedged bear-spreadmonthly return formed inmonth t, and
the variable of interest is VAR5.We use the same variables from the double sorting
analysis.

Table 5 presents the regression results. In the first row, we perform a
univariate regression on VAR5. The coefficient is 0.201 (t-stat = 4.58),

TABLE 5

Fama–MacBeth Regressions

Table 5 presents the results of Fama–MacBeth (1973) regressions of monthly delta-hedged bear spread returns on VAR5 and
control variables. VAR5 is the 5% value-at-risk that corresponds to�1 times the 5th percentile of daily returns in the past year.
Control variables are SIZE (market capitalization), BTM (book-to-market ratio), DTA (firm leverage), MOM (momentum
computed as the return over the previous 6 months), REV (reversal is the return over the previous month), ILLIQ (logarithm
of Amihud illiquidity), IVOL (idiosyncratic volatility), and SKEWandKURT (skewness and kurtosis from 1 year of daily returns).
We use 60-month rolling windows to compute the exposures of individual bear spread returns to the following systematic risk
factors: the bear market factor βBEARð Þ following Lu and Murray (2019), zero-beta straddle βSTRADð Þ from Coval and Shumway
(2001), jump and volatility factors (βJUMP and βVOL) as inCremers et al. (2015), the tail factor βTAILð Þas inKelly and Jiang (2014),
and the downside factor (βDOWN) following Ang et al. (2006). The first 2 columns report univariate and bivariate regressions of
delta-hedged bear spread returns on VAR5 and one control variable. The last 2 columns report the results of the multivariate
regressions of delta-hedged bear spread returns on VAR5 and all the control variables using the full sample and the
subsample with beta exposure measures. Coefficients are time-series averages, and the associated Newey–West (1987)
t-statistics are reported in parentheses. The sample period is from Jan. 1996 to Dec. 2017 for stocks in the OptionMetrics
database.

Univariate/Bivariate Regressions Multivariate

Variables Coefficient on VAR5 Coefficient on Control Adj. R2 Regressions

VAR5 0.201 1.32% 0.158 0.163
(4.58) (3.38) (3.05)

SIZE 0.210 0.0002 1.47% �0.003 �0.002
(4.64) (0.82) (�3.74) (�2.24)

BTM 0.118 0.0001 1.33% 0.0001 0.0001
(2.63) (1.04) (0.58) (1.63)

DTA 0.128 �0.002 1.41% �0.002 0.0001
(2.74) (�1.16) (�1.13) (0.00)

MOM 0.172 �0.002 1.90% �0.001 �0.004
(3.98) (�1.43) (�0.85) (�1.76)

REV 0.186 �0.004 1.83% �0.001 �0.005
(4.26) (�1.03) (�0.15) (�1.51)

ILLIQ 0.239 �0.001 1.54% �0.003 �0.002
(5.13) (�3.55) (�4.44) (�2.79)

IVOL 0.235 �0.113 1.81% �0.135 �0.205
(5.11) (�2.85) (�3.25) (�4.58)

SKEW 0.182 �0.001 1.50% 0.0002 0.0005
(4.18) (�1.80) (0.52) (0.97)

KURT 0.183 �0.0001 1.53% 0.00001 0.00001
(4.15) (�2.53) (�0.58) (0.87)

βBEAR 0.141 0.001 1.93% 0.001
(2.78) (2.12) (1.18)

βSTRAD 0.163 �0.002 1.64% 0.0003
(3.00) (�0.43) (0.06)

βJUMP 0.159 0.0001 1.69% �0.002
(2.91) (0.07) (�1.75)

βVOL 0.159 0.0003 1.80% 0.001
(2.92) (0.60) (1.13)

βTAIL 0.163 0.001 1.72% 0.001
(2.98) (1.89) (2.17)

βDOWN 0.164 0.0004 1.70% 0.001
(2.99) (1.15) (1.94)

Adj. R2 3.14% 4.32%
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confirming the positive relation between VAR5 and future delta-hedged bear
spread returns. In bivariate regressions with control variables, the coefficient of
VAR5 decreases in most cases but remains positive and statistically significant.
In the last 2 columns, we perform multivariate regressions on VAR5 and all
control variables and risk exposures. The coefficient on VAR5 remains positive
and statistically significant in all models.

The results in Table 5 indicate a strong and robust positive relation between
firms’ left-tail risk and future delta-hedged bear spread returns after controlling
for various combinations of control variables. We also show that beta exposures
of bear spread returns to systematic left-tail risk factors do not explain our
results.

IV. Potential Explanations

Above, we document a positive relation between firms’ left-tail risk and the
returns of crash risk insurance measured with bear spreads. Our results cannot be
explained by risk-based factor models, beta exposures to systematic left-tail risk or
traditional control variables. In this section, we investigate potential explanations of
our findings. Themain potential explanations are reported below, and the remaining
ones are reported in the Supplementary Material.

A. Volatility Underreaction

Underreaction to volatility is widely documented in the literature. Poteshman
(2001) documents that investors underreact to individual daily changes in instan-
taneous variance and more so when there are daily changes with the opposite sign.
Theoretical support is provided by Barberis, Shleifer, and Vishny (1998), Daniel,
Hirshleifer, and Subrahmanyam (2001), and Hong and Stein (1999). Lochstoer and
Muir (2022) find that expectations about volatility underreact to news about vol-
atility. Cheng (2020) documents that volatility markets underreacted in the early
stages of the COVID-19 pandemic. Trading strategies based on this underreaction
profited from the subsequent increase in volatility.

In this analysis, we produce statistical estimates of DOTM and OTM implied
volatilities to generate ex ante forecasts of bear spread prices that we compare with
the actual observed prices in the market. Note that this statistical forecast can be
generated by the investor before setting up the trade and contains no forward-
looking bias. We expect our forecasted prices to be lower than those observed in
the market since we do not include any risk premium in the forecasted price. By
comparing our statistical forecasts with actual prices, we aim to determine whether
there is potential volatility underreaction.

We construct our statistical forecasts of bear spread prices in two steps.We first
estimate the ATM implied volatility by forecasting the underlying stocks’ realized
volatility over the options’ life. This implied volatility forecast is the lower bound of
what this volatility should be since we do not include a volatility risk premium.
Next, we estimate the option implied volatility skews of the OTM and DOTM puts
relative to the ATM options. Adding the estimated ATM volatility to the estimated
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option skews, we obtain estimatedOTMandDOTM implied volatilities to compute
statistical forecasts of the bear spread price.3

First, statistical forecasts for the ATM implied volatility are obtained from
forecasting physical volatility for each stock Et RVt + 1½ �. We use the heterogeneous
autoregressive model of Corsi (2009).We regress 1-month realized volatilities onto
lagged realized volatilities computed over different frequencies:

RVM
t,t + 1 = γ0,i + γ1,iRV

M
t�1,t + γ2,iRV

W
t + γ3,iRV

D
t + ϵt,t + 1,

where RVM
t�1,t is the realized volatility over the past month, and RVW

t and RVD
t

denote realized volatilities over the past week and day, respectively.We estimate the
coefficients using a 5-year rolling window. Each month, we estimate the model up
to date t and estimate Et RVM

t + 1

� �
, the out-of-sample forecast of the 1-month-ahead

realized volatility. We use Et RVM
t + 1

� �
as the statistical forecast of the ATM implied

volatility Et IVATM,t + 1½ �.
Second, we estimate the OTM and DOTM option skews with an ARMA(2,2)

model using daily data over 5 years.4 We first calculate the OTM (DOTM) option
skews as the difference between OTM (DOTM) put implied volatility and the ATM
option implied volatility, IVOTM� IVATM IVDOTM� IVATMð Þ.We separatelymodel
both option skews, OTM and DOTM, to capture the slope as well as the convexity
of the implied volatility surface. We obtain the ARMA(2,2) model parameter
estimates for each month. Using the estimated parameters, we compute the
1-month-ahead option skew forecasts on day t as Et IVOTM,t + 1� IVATM,t + 1½ � and
Et IVDOTM,t + 1� IVATM,t + 1½ �. Option skews are reestimated for each observation
day t using a 5-year rolling window.5

We compute statistical forecasts of bear spread prices using the estimated
OTM and DOTM put implied volatilities by adding ATM implied volatilities to
the estimated OTM and DOTM put option skews for each option observation day t.

Table 6 reports actual and statistical forecasts of bear spread prices along with
their corresponding implied volatilities. Panel A displays the actual and estimated
OTM and DOTM implied volatilities; Panel B reports the actual and estimated IV
spreads computed as the difference between the DOTM and OTM option skews;
Panel C presents the actual and estimated ATM implied volatilities; and Panel D
includes the actual and estimated scaled bear spread prices.

The main takeaway from Table 6 is that fair statistical forecasts of scaled bear
spread prices are higher than actual prices for high left-tail risk portfolios as reported
in Panel D. In particular, statistical forecasts of bear spread prices for deciles 7–10
are above actual prices by as much as 6:84%. For example, decile 10 bear spread
forecasted prices are 2:24% higher than actual prices. Note that these statistical
forecasts are conservative sincewe do not include any volatility risk premium in our

3Using a naïve estimator based on the average of the OTM and DOTM implied volatilities of the last
3, 6, or 12 observations observed in the previous 3, 6, or 12 months produces similar results. Table A7 in
the Supplementary Material reports these results.

4We work with ARMA(2,2) instead of other specifications like ARMA(1,1) since it produces the
lowest root-mean-squared error.

5Our results hold when using a 1-year rolling window as reported in Table A8 in the Supplementary
Material.
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volatility estimates. As for low left-tail risk portfolios, they are overpriced com-
pared with our statistical forecasts as one would expect. The underpricing of bear
spread prices for high left-tail risk portfolios could come from the underestimation
of IV spreads and/or ATM implied volatility. Although IV spreads are overesti-
mated (Panel B), the underestimation of ATM implied volatility (Panel C) domi-
nates, causing bear spread prices to be underpriced in deciles 7–10. Statistical
forecasts of ATM implied volatility are higher than actual ATM volatilities for high
left-tail risk portfolios. In summary, we conclude that the positive relation between
left-tail risk and bear spread returns can potentially be explained by volatility
underreaction for high left-tail risk portfolios.

B. Underreaction to Left-Tail Return Momentum

A behavioral explanation for the positive relation between firms’ left-tail risk
and future bear spread returns is that option traders underestimate the persistence of
losses. In Table 7, we examine the transition matrix of the average 12-month-ahead
left-tail risk portfolios. We compute the average probability that a firm in decile i
(rows) in month t will be in decile j (columns) in month t + 12.6 If VAR5 were
random across firms, all probabilities should be around 10%. However, left-tail risk

TABLE 6

Volatility Underreaction

Table 6 reports thecomparison of the statistical forecasts of scaled bear spreadprices,Et AD_PRICEt + 1½ �, and theactual scaled bear
spread prices, AD_PRICEt . Panel A reports actual OTM and DOTM put implied volatilities IVOTM,tð and IVDOTM,t Þ and the estimated
OTM and DOTM put implied volatilities Et IVOTM,t + 1½ �ð and Et IVDOTM,t + 1½ �Þ. The estimated volatilities are obtained by adding the
estimated volatilities in Panel C with the estimated OTM and the DOTM option skews defined as Et IVOTM,t + 1 � IVATM,t + 1½ � and
E t IVDOTM,t + 1� IVATM,t + 1½ � (not reported). Panel B reports the volatility spread obtained as the difference between DOTM and OTM
put implied volatilities SPREADt = IVDOTM,t � IVOTM,tð Þ. The expected volatility spread, Et SPREADt + 1½ �, is the difference between the
estimatedDOTMandOTMoption skewsobtained fromanARMA (2,2)model usinga 5-year rollingwindowof daily volatilities. PanelC
reports ATM implied volatility, IVATM,t , and the estimated volatility, Et IVATM,t + 1½ �, that is obtained from a heterogeneous autoregressive
model using a 5-year rollingwindowof daily volatilities. PanelD reports the actual scaled bear spreadprice and the forecasted scaled
bear spread price computedwith the expectedOTMandDOTM volatilities from Panel A. The sample period is from Jan. 1996 to Dec.
2017 for stocks in the OptionMetrics database.

Statistics 1 2 3 4 5 6 7 8 9 10

Panel A. OTM and DOTM IV Estimation

IVOTM,t 0.243 0.286 0.315 0.346 0.375 0.408 0.445 0.491 0.550 0.687
E t IVOTM,t + 1½ � 0.242 0.285 0.314 0.345 0.376 0.408 0.445 0.491 0.550 0.685
IVDOTM,t 0.285 0.331 0.362 0.395 0.426 0.462 0.501 0.550 0.614 0.765
E t IVDOTM,t + 1½ � 0.287 0.333 0.365 0.397 0.429 0.457 0.500 0.544 0.612 0.758

Panel B. IV Spread Estimation

SPREADt 0.042 0.045 0.046 0.049 0.051 0.053 0.056 0.059 0.064 0.078
E t SPREADt + 1½ � 0.045 0.048 0.050 0.053 0.053 0.050 0.056 0.054 0.062 0.073
E t SPREADt + 1½ ��SPREADt 0.32% 0.35% 0.39% 0.36% 0.21% �0.34% �0.02% �0.51% �0.13% �0.52%

Panel C. ATM Volatility Estimation

IVATM,t 0.221 0.263 0.292 0.322 0.352 0.384 0.420 0.465 0.520 0.649
E t IVATM,t + 1½ � 0.216 0.260 0.290 0.318 0.348 0.383 0.424 0.468 0.530 0.653
E t IVATM,t + 1½ �� IVATM,t �0.55% �0.37% �0.28% �0.37% �0.36% �0.19% 0.47% 0.33% 0.99% 0.42%

Panel D. Scaled Bear Spread Prices

AD_PRICEt 0.159 0.168 0.175 0.181 0.187 0.193 0.201 0.207 0.217 0.238
E t AD_PRICEt + 1½ � 0.147 0.159 0.167 0.174 0.185 0.209 0.211 0.225 0.226 0.245
E t AD_PRICEt + 1½ �=AD_PRICEt �1 �6.04% �4.28% �4.32% �3.42% �2.04% �4.55% 2.89% 6.84% 1.36% 2.24%

6We use a 12-month gap to avoid overlapping observations given that we compute value-at-risk
using the previous 12 months of daily data.
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is very persistent for deciles 1 and 10: 57% (51%) of the firms in decile 1 (10) remain
in that decile 12 months later. Moreover, firms in decile 10 (1) have a 77% (80%)
chance of being in deciles 9 and 10 (1 and 2) after 12months.We conclude that left-
tail risk is an extremely persistent characteristic in our option sample.

This persistence of left-tail risk combined with the anomalous relation
between left-tail risk and bear spread returns indicates that investors may underes-
timate the persistence, which is documented in the transition matrix of Table 7. We
analyze the impact of two effects to gauge whether investors underestimate the left-
tail risk persistence: the left-tail momentum effect and the anchoring effect.

Atilgan et al. (2020) show that investors underestimate loss persistence and
such underestimation contributes to the left-tail return momentum, a negative
relation between firms’ left-tail risk and expected equity returns. George and
Hwang (2004) show that anchoring behavior helps explain loss momentum around
the 52-week low, albeit with the anchoring effect being weaker than the 52-week
high. Driessen, Lin, and Van Hemert (2013) show that option implied volatilities
decrease when stock prices approach their 52-week low, suggesting that investors
underestimate persistence in risk due to the anchoring bias. The anchoring effect
alone cannot directly explain ourmain finding.We examine the combined impact of
the anchoring effect and the left-tail momentum effect on bear spread returns to
uncover potential investor underestimation of left-tail persistence.

To analyze the impact of these two effects, we construct two measures:
i) ΔVAR5, change of VAR5, is the difference in VAR5 from month t�1 to month
t. A positive ΔVAR5 indicates an increase in left-tail risk. ii) NL, nearness to the
52-week low, is the current stock price divided by the lowest stock price in the
previous year. A lower NL indicates that the stock price is closer to its 52-week low.
We expect that the positive relation between firms’ left-tail risk and future bear
spread returns is stronger when ΔVAR5 is positive or when NL is low.

Previous results from the multivariate Fama–MacBeth (1973) regression in
Table 5 show that firm size is a significant predictor of bear spread returns in the
presence of VAR5 and additional control variables. In addition, there is a highly

TABLE 7

Transition Matrix

Table 7 presents transition probabilities (in%) for VAR5 at a lag of 12months. At eachmonth t, all stocks are sorted into deciles
based on an ascending ordering of VAR5. The procedure is repeated inmonth t+12. Decile 1 is the portfolio of stockswith the
lowest value-at-risk, and decile 10 is the portfolio of stocks with the highest value-at-risk. For each VAR5 decile in month t, the
percentage of stocks that fall into each of the month t + 12 VAR5 decile is calculated. Time-series averages of these transition
probabilities are reported. Each row corresponds to a different month t VAR5 portfolio, and each column corresponds to a
different month t + 12 VAR5 portfolio. The sample period is from Jan. 1996 to Dec. 2017 for stocks in the OptionMetrics
database.

Statistics 1 2 3 4 5 6 7 8 9 10

Decile 1 57 23 10 5 3 1 1 0 0 0
2 25 30 21 13 6 3 1 1 0 0
3 11 23 24 18 11 6 3 2 1 0
4 5 14 21 20 17 11 7 4 2 1
5 2 6 13 19 20 16 11 7 4 2
6 0 3 6 13 19 20 16 11 7 4
7 0 1 3 7 13 18 21 17 13 7
8 0 0 1 3 7 14 19 23 19 12
9 0 0 0 1 3 8 14 22 27 23
Decile 10 0 0 0 0 1 3 6 13 26 51
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negative correlation between firm size and VAR5 of �51%. For this reason, we
control for firm size in our subsequent analyses. To test the impact of the two effects,
we first sort portfolios into terciles by size and then by ΔVAR5 ΔVAR5> 0ð and
ΔVAR5≤ 0Þ or by NL (Low NL and high NLÞ. Then, within each subsample, we
further sort bear spreads into deciles based on the left-tail risk measure VAR5.

Table 8 reports the DOI-weighted monthly returns for the highest and lowest
VAR5 decile portfolios in each subsample, together with the return spreads
(“10–1”) and their corresponding 5-factor alphas. Newey–West (1987) adjusted
t-statistics are reported in parentheses. Panel A presents results when sorting by
ΔVAR5. When ΔVAR5> 0, the “10–1” return spreads and the alphas are positive
and statistically significant for all size levels. However, for ΔVAR5≤ 0, the “10–1”
return spreads and alphas remain positive but are statistically insignificant in almost
all cases. We conclude that the positive relation between VAR5 and future bear
spread returns is only significant when ΔVAR5> 0.

Panel A of Table 8 reports a strong and consistent positive relation between
VAR5 and future delta-hedged bear spread returns when ΔVAR5 is positive. Since
stocks that have experienced recent large losses are more likely to experience
similar large losses in the near future (stock price’s left-tail risk momentum), the
protection provided by bear spreads on these stocks should be more valuable.
However, option traders seem to underestimate the left-tail risk persistence and
underprice bear spreads on stocks with high recent extreme losses, showing a left-
tail risk momentum effect.

TABLE 8

Underreaction to Left-Tail Return Momentum

Table 8 presents the dollar-open-interest-weighted returns (in %) of delta-hedged bear spread decile portfolios dependently
sorted on firm size, themonthly change in VAR5 ΔVARð Þ in Panel A or the nearness to 52-week low NLð Þ in Panel B, and VAR5.
Delta-hedged bear spread portfolios are first sorted into terciles by size, and then intoΔVAR >0 andΔVAR≤ 0 groups or high/
low NL groups. Then decile portfolios are formed based on VAR5 within each subsample. VAR5 is the 5% value-at-risk that
corresponds to�1 times the 5th percentile of daily returns in the past year.ΔVAR is defined as the difference between VAR5 in
month t andmonth t �1. NL is calculated as the previousmonth-end stock price divided by theminimum price in the previous
year. The returns for decile 10 and decile 1 portfolios, the return spread (“10–1”), and its associated 5-factor alpha
(5F_ALPHA) within each subsample are reported. 5F_ALPHA is calculated after adjusting for Fama–French three factors,
Carhart (1997) momentum factor, andCoval and Shumway (2001) systematic volatility factor. Newey–West (1987) adjusted t-
statistics are presented in parentheses. The sample period is from Jan. 1996 to Dec. 2017 for stocks in the OptionMetrics
database.

Statistics Small Size Mid Size Large Size

Panel A. Sorts Based on ΔVAR

ΔVAR > 0 ΔVAR ≤ 0 ΔVAR > 0 ΔVAR ≤ 0 ΔVAR > 0 ΔVAR ≤ 0
1 �0.70 �0.27 �1.26 �0.50 �0.80 �0.33
10 1.35 0.26 0.85 0.15 �0.08 0.46
10–1 2.05 0.53 2.09 0.64 0.78 0.79
(t–Stat) (2.09) (0.88) (3.69) (1.47) (1.98) (1.85)
F alpha 1.81 0.57 2.52 0.86 0.83 0.47
(t–Stat) (1.83) (0.87) (4.12) (1.56) (1.99) (1.26)

Panel B. Sorts Based on Nearest to 52-Week Low (NL)

Low NL High NL Low NL High NL Low NL High NL

1 �0.61 �0.45 �0.81 �0.58 �0.56 �0.62
10 2.51 �0.10 0.41 �0.01 0.40 0.04
10–1 3.13 0.35 1.22 0.57 0.96 0.66
(t–Stat) (2.89) (0.57) (2.38) (1.22) (2.51) (1.39)
F alpha 3.06 0.08 1.29 0.84 1.03 0.62
(t–Stat) (2.83) (0.10) (2.22) (1.50) (2.50) (1.39)
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Panel B of Table 8 presents results across size terciles for two groups of NL, the
nearest to the 52-week low price. Only the lowNL subsamples report a positive and
significant “10–1” returns and alphas across all size terciles. In addition, the “10–1”
bear spread return is the largest for the small-size subgroup. In the high NL
subsample, the “10–1” return spread and alphas are positive but insignificant.

Panel B of Table 8 reports that the underestimation of left-tail risk in the
options market is stronger when the stock price is nearer to its 52-week low. Option
traders anchor their loss expectation around the 52-week low and underestimate the
persistence of stock price declines, leading to a stronger positive relation between
firms’ left-tail risk and future bear spread returns. These results are consistent with
Driessen et al. (2013) because option traders’ underestimation of the chance of
downward breakthroughs leads to a stronger underpricing of bear spreads when
stock prices approach their 52-week low, thus showing an anchoring effect.

Next, we provide evidence that the “10–1” significant alphaswithin subgroups
are also economically significant. In our main results in Table 2, the “10–1”
portfolio represents 23.1% of the total option dollar open interest percentage (%
DOI). In Table 8, only two subgroups report significant “10–1” alphas: ΔVAR5> 0
and Low NL. These two subgroups represent 51% and 48% of that 23.1% %DOI
(Panel B of Table A4 in the Supplementary Material). We conclude that the bear
spread mispricing is both statistically and economically significant across sub-
groups.

Overall, the results in Table 8 suggest that both the left-tail momentum effect
and the anchoring effect have a strong impact on the underpricing of bear spreads.
The existence of both effects indicates that one of the driving forces of the under-
reaction to firms’ left-tail risk in the options market is option traders’ underestima-
tion of left-tail return momentum. Next, we study the impact of information
uncertainty and investor sentiment on the relation between left-tail risk and bear
spread returns. Zhang (2006a), (2006b) shows that information uncertainty exac-
erbates investors’ underreaction. Baker and Wurgler (2006), Stambaugh et al.
(2012), and Byun and Kim (2016) document that investor sentiment results in
mispricing of risky assets.

1. Information Uncertainty

Prior literature (Hong et al. (2000), Jiang, Lee, and Zhang (2005), Zhang
(2006a), (2006b), and Kumar (2009)) shows that information uncertainty amplifies
investor behavioral biases. In particular, high information uncertainty may lead to
investors reacting slowly to news (especially bad news), causing predictable price
drift or momentum.

Following the literature, we construct five information uncertainty proxies:
i) SIZE is the market capitalization; ii) AC is analyst coverage; iii) DISP, analysts’
forecast dispersion, is the standard deviation of the analysts’ forecasts scaled by the
stock price in the previous quarter; iv) TURN is the stock return turnover; and
v) AGE, firm age, denotes the number of years that a firm is listed on Compustat at
the previous year-end. Zhang (2006b) uses all five proxies to measure information
uncertainty. Hirshleifer and Teoh (2003) use firm size and analyst coverage as
proxies for investor inattention. Kumar (2009) uses firm age to measure valuation
uncertainty. Taking into account conceptual overlap and mixed interpretation of
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proxies between information uncertainty, investor inattention, and valuation uncer-
tainty, we use small firm size, young firm age, low analyst coverage, and high
dispersion in analyst forecasts as proxies of high information uncertainty. We
expect that high information uncertainty amplifies the positive relation between
left-tail risk and future bear spread returns.

Panel A of Table 9 reports the returns and alphas for deciles 1 and 10, and for
the “10–1” portfolio across size quintiles. The results show that the return spreads

TABLE 9

Information Uncertainty and Disagreement

Table 9 presents the dollar-open-interest-weighted return (in %) comparisons between bear spread decile portfolios in
subsamples sorted based on quintiles by size in Panel A, and in Panel B, information uncertainty and disagreement
proxies: analyst coverage residual ACRESð Þ, firm age (AGE), analysts’ forecast dispersion residual DISPRESð Þ, turnover
residual TURNRESð Þ, and idiosyncratic volatility residual IVOLRESð Þ. ACRES, DISPRES, TURNRES, and IVOLRES are calculated
as the residuals from the cross-sectional regression of the corresponding values on the logarithm of firm’s market
capitalization in the previous quarter. Decile portfolios are formed based on the underlying stocks’ VAR5 within each
subsample. VAR5 is the 5% value-at-risk that corresponds to �1 times the 5th percentile of daily returns in the past year.
Portfolio returns, the “10–1” return spread, and their associated 5-factor alpha are reported. 5F_ALPHA is calculated after
adjusting for Fama–French three factors, Carhart (1997) momentum factor, and Coval and Shumway (2001) systematic
volatility factor. Newey–West (1987) adjusted t-statistics are presented in parentheses. The sample period is from Jan.
1996 to Dec. 2017 for stocks in the OptionMetrics database.

Panel A. Size Versus VAR5

Raw Return 5F_ALPHA

Size Quintiles 1 10 10–1 1 10 10–1

Low 1 �0.68 1.10 1.78 �0.47 1.16 1.63
(�2.84) (1.26) (1.98) (�1.99) (1.85) (2.21)

2 �0.73 0.69 1.42 �0.16 1.30 1.46
(�2.84) (1.26) (2.97) (�0.56) (2.08) (2.37)

3 �0.64 0.56 1.21 �0.28 1.13 1.41
(�3.28) (1.18) (2.21) (�1.15) (2.17) (2.35)

4 �0.68 0.03 0.71 �0.31 0.40 0.71
(�3.54) (0.07) (1.76) (�1.33) (1.03) (1.73)

High 5 �0.54 0.00 0.54 �0.25 0.45 0.70
(�2.71) (0.00) (1.46) (�1.13) (1.15) (1.45)

Panel B. Other Measures of Information Uncertainty and Disagreement

Raw Return 5F_ALPHA

Subsample 1 10 10–1 1 10 10–1

LOW_ACRES �0.62 0.74 1.36 �0.33 1.19 1.52
(�3.89) (1.19) (2.22) (�2.16) (1.97) (2.67)

HIGH_ACRES �0.37 0.49 0.86 �0.14 1.00 1.14
(�1.94) (1.26) (2.11) (�0.82) (2.47) (2.69)

LOW_AGE �0.43 1.50 1.93 �0.29 1.72 2.00
(�2.04) (3.41) (4.40) (�1.47) (4.11) (4.66)

HIGH_AGE �0.73 �0.12 0.61 �0.49 0.46 0.95
(�4.29) (�0.09) (1.26) (�2.95) (0.96) (2.03)

LOW_DISPRES �0.49 �0.53 �0.04 �0.20 �0.10 0.10
(�2.72) (�1.52) (�0.11) (�1.03) (�0.26) (0.26)

HIGH_DISPRES �0.61 0.83 1.44 �0.49 1.40 1.89
(�2.98) (1.83) (2.81) (�2.13) (2.78) (3.23)

LOW_TURNRES �0.68 �0.65 0.02 �0.44 �0.24 0.21
(�4.21) (�1.88) (0.06) (�2.52) (�0.78) (0.56)

HIGH_TURNRES �0.30 0.86 1.17 �0.02 1.42 1.45
(�1.48) (1.81) (2.55) (�0.12) (2.69) (2.76)

LOW_IVOLRES �0.74 0.24 0.98 �0.51 0.45 0.95
(�4.09) (0.64) (2.62) (�2.64) (1.26) (2.52)

HIGH_IVOLRES �0.41 0.57 0.98 �0.21 1.11 1.32
(�2.11) (1.09) (1.91) (�1.10) (1.94) (2.44)
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are more pronounced for the low size quintiles compared to the high size quintiles.
More importantly, the results show that the “10–1” spread returns are positive and
significant for all size quintiles except for the largest one. In addition, note that the
P1 portfolio consistently earns average negative returns across size quintiles when
buying crash insurance, as one would expect. However, P10 bear spread returns are
positive for all size quintiles. In addition, the average positive return on P10 shrinks
whenwemove from size quintile 1 to size quintile 5. Size quintile 1, a proxy of high
information uncertainty, reports the largest bear spread returns for P10 portfolios.
The underreaction in high left-tail risk is larger for small firms than for large firms.
Since high information uncertainty (i.e., small size) amplifies behavioral biases, the
stronger positive return among small-sized firms with high left-tail risk confirms
that our results are driven by underreaction to left-tail risk.

Next, we use the methodology of Hong et al. (2000) to compute the residual
value of three information uncertainty variables after orthogonalizing to firm size.
The three information variables are analyst coverage ACð Þ, analysts’ forecast
dispersion DISPð Þ, and stock return turnover TURNð Þ. We denote their residual
values by ACRES, DISPRES, and TURNRES.7 We compute the residual from the
cross-sectional regression of the logarithm of each variable on the logarithm of the
firm’s market capitalization in the previous quarter.

Panel B of Table 9 reports returns and alphas for deciles 1 and 10, and for the
“10–1” portfolio for the four information uncertainty measures. The “10–1” port-
folio returns remain positive and statistically significant. In addition, the positive
relation between bear spread returns and left-tail risk is larger when information
uncertainty is high. That is, when analyst coverage is low, firm age is low, analyst
forecast dispersion is high, and stock return turnover is high. Panel C of Table A4 in
the Supplementary Material also reports that the economic impact of the long-short
portfolios with low age, high analyst forecast dispersion, and high return turnover is
high given that they account for more than 50% of the option dollar open interest
percentage of the “10–1” portfolio from Table 2.

Overall, the positive relation between firms’ left-tail risk and future bear
spread returns is stronger in a high information uncertainty environment. As
information uncertainty usually amplifies investors’ behavioral biases, such as
investor underreaction to bad news, our findings suggest that the options market
underreacts to firms’ left-tail risk.

2. Investor Sentiment

Sentiment is a biased investor belief conditional on available information
(Barberis et al. (1998)). Asset mispricing and risk underestimation are more likely
to happen during high investor sentiment periods (Baker and Wurgler (2006), Yu
and Yuan (2011), Stambaugh et al. (2012), Lemmon and Ni (2014), and Byun and
Kim (2016)). Stambaugh et al. (2012) show that high investor sentiment contributes
to the significant profits from the short legs of long-short strategies building upon a
large set of anomalies. Byun and Kim (2016) document that the overvaluation of
lottery-like options is attributable to high investor sentiment. While prior literature

7We do not take the residual of AGE because firm age is only available since 1972 and it could bias
the age measure for firms created before 1972 downward.
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focuses more on the overpricing of risky assets, the underpricing of safer, protective
assets could also occur when investor sentiment is high.

Complementary to the prior literature, we analyze potential underpricing for
crash insurance in high-sentiment periods. We use the monthly market-based
sentiment index (BW sentiment index) constructed by Baker and Wurgler (2006)
to classify high and low investor sentiment months. A high (low) sentiment month
occurs when the value of the BW sentiment index in the previous month is above
(below) the median value for the sample period. Within the subsample with high
(low) sentiment months, we form decile portfolios of delta-hedged bear spreads
based on VAR5 and calculate the time-series average monthly returns for decile
portfolios.

Table A9 in the Supplementary Material reports the returns across VAR5
decile portfolios, together with the return spreads (“10–1”). Newey–West (1987)
t-statistics are reported in parentheses. The results show that the “10–1” bear spread
returns are positive and significant only during high-sentiment periods. During low-
sentiment periods, all deciles report negative returns, as one would expect. How-
ever, during high-sentiment periods,most deciles report positive bear spread returns
with decile 10 reporting the largest positive return. When market sentiment is high,
option traders might overlook downside risk and underprice the downside protec-
tion provided by bear spreads.

To further understand the relation between the “10–1” bear spread return
during high-sentiment periods, we plot the cumulative “10–1” DOI- and equal-
weighted bear spread returns in Figure 1 and highlight the periods of high senti-
ment. We observe that in periods of high sentiment, the “10–1” cumulative returns
increase as previously reported.

FIGURE 1

Sentiment and Cumulative Bear Spread Strategy Return

Figure 1 reports the time series of the cumulative “10–1” DOI- and equal-weighted bear spread returns. Each month, decile
portfolios of delta-hedgedbear spreads are formedandheld tomaturity by sorting underlying stocks byVAR5. VAR5 is the 5%
value-at-risk that corresponds to�1 times the 5th percentile of daily returns in the past year. The “10–1” portfolio is the spread
between decile 10 portfolio (with the highest left-tail risk metric) and decile 1 portfolio (with the lowest left-tail risk metric). The
shaded areas capture periods of high sentiment. Sentiment is the market-wide sentiment constructed by Baker and Wurgler
(2006). A high-sentiment period is selected when the sentiment level is above its sample median. The sample period is from
Jan. 1996 to Dec. 2017 for stocks in the OptionMetrics database.
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Our finding, together with prior research on risky asset overpricing in high-
sentiment periods, supports the economic intuition that overvaluation in risky assets
and undervaluation in safer, protective assets may happen at the same time
(Acharya and Naqvi (2019)). Han (2008) shows that when market sentiment is
high, the index option volatility smile is flatter and the risk-neutral skewness of
index returns extracted from index option prices is less negative, suggesting
decreased risk-hedging demand. Our results are consistent with Han (2008) as
low hedging demand leads to stronger underpricing of bear spreads during high
market sentiment periods.

C. Disagreement

A possible explanation of our results is that left-tail risk is a measure of
disagreement. We consider three measures of disagreement: i) dispersion of ana-
lysts’ forecasts used in Diether, Malloy, and Scherbina (2002), ii) stock turnover
used in Yu (2011), and iii) idiosyncratic volatility used in Boehme, Danielsen, and
Sorescu (2006) andChatterjee, John, andYan (2012). Panel B of Table 1 reports that
idiosyncratic volatility is increasing in decile portfolios sorted byVAR5.We use the
methodology of Hong et al. (2000) to compute the residual value of these three
variables after orthogonalizing to firm size and obtain DISPRES, TURNRES, and
IVOLRES.

Panel B of Table 9 reports the “10–1” portfolio returns for two subgroups, low
and high, of the three disagreement measures. High disagreement is proxied by high
dispersion, high turnover, and high idiosyncratic volatility. We find that, in two
cases, the long-short returns and alphas remain positive and significant only when
disagreement is high, that is, with high dispersion and high turnover. For low
dispersion and low turnover, the long-short raw returns and alphas are insignificant
and even turn negative. However, for idiosyncratic volatility, the long-short returns
and alphas are of similar magnitude for the two subgroups. We conclude that
disagreement can only partially explain our results.

V. Transaction Costs and Robustness

In this section, we analyze the profitability of the “10–1” bear spread alpha
when accounting for transaction costs. We also examine the robustness of our
results across different subsamples such as earnings announcement periods, busi-
ness cycles, and high/low volatility periods, among others. Finally, we consider
variousweightingmethods to calculate the bear spread return and performmodified
Fama–Macbeth regressions andWLS. Below we report our results during business
cycles and different volatility periods. The remaining robustness results are
reported in the Supplementary Material.

A. Transaction Costs

Transaction costs play an important role in option profitability. In this section,
we analyze whether the “10–1” delta-hedged bear spread monthly CAPM alpha of
1.28%with a t-statistic of 3.02 reported in Table 3 remains profitable after account-
ing for real bid–ask spreads and margin costs.
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Table 1 reports that the average quoted half bid–ask spread of bear spreads is
22.5%. This cost is comparable with the raw bear spread returns without delta-
hedging reported in Table A10 in the Supplementary Material. When sorting by
VAR5, the “10–1” bear spread return without delta-hedging is 9.64% with a
t-statistic of 2.44. Therefore, a profitable strategy would require an effective bid–
ask spread below 50% of the quoted spread for the “10–1” strategy to remain
profitable. Below we perform a rigorous analysis of the impact of transaction costs
on delta-hedged bear spread alphas.

To reduce the impact of transaction costs, we follow previous studies such as
Goyal and Saretto (2009), Bali and Murray (2013), and Zhan et al. (2022) and hold
the position for 1 month without rebalancing the delta hedge. We also hold the
position until maturity to avoid paying the option bid–ask spreads and receive the
underlying stock at maturity when the option is in the money. To account for
transaction costs, we buy at the ask and sell at the bid, and we measure option
transaction costs by the effective bid–ask spread when selling and buying the put
options. Thus far, we assume that the effective spread is equal to 0 (i.e., option
returns are computed with a price equal to the midpoint of the bid and ask quotes).
Since OptionMetrics does not provide effective bid–ask spread, we assume that the
effective to quoted spreads are equal to 0%, 10%, 29.6%, 50%, and 58.4%. We use
spreads of 29.6% and 58.4% given that Muravyev and Pearson (2020) document
that the average effective spread paid by algorithmic traders and all traders is 29.6%
and 58.4% of the quoted half spread.

We also account for the margin requirement necessary when writing options.
For a long bear spread position, the option strategy involves holding delta-shares of
the underlying stock for one short unit of a DOTM put option and a long unit of an
OTM put option. We follow the CBOE initial margin requirement for a delta-
hedged bear spread position, which is “for the same underlying instrument and,
as applicable, the same index multiplier; the amount by which the long put (short
call) aggregate exercise price is below the short put (long call) aggregate exercise
price. Long side must be paid for in full. Proceeds from short option sale may be
applied,” and “50% requirement on long stock position.” For a short bear spread
position, there is no requirement on the short put, only the short sale proceeds plus
50% requirement on the short sale in the underlying.We assume that themargin cost
is the cost of borrowing the additional capital to meet the margin requirement over
the holding period, which is 1 month (Weinbaum, Fodor, Muravyev, and Cremers
(2023)). We compute an adjusted return to account for the margin requirements of
the delta-hedged bear spread as follows:

RETURN=
Δ2,t�Δ1,tð ÞST + max K1�ST ,0ð Þ� max K2�ST ,0ð Þ� r

12M

Δ2,t�Δ1,tð ÞSt +PUT1�PUT2
�1,

where PUT1 PUT2ð Þ,Δ1,t Δ2,tð Þ, andK1 K2ð Þ are the price, delta, and strike price of
the OTM (DOTM) put at time t, St STð Þ is the price of the underlying stock at time t
(T , maturity), r is the 1-month Libor rate, and M is the CBOE required margin.
Section F of the Supplementary Material contains a practical example of the
computation of returns and transaction costs of delta-hedged bear spreads.

Chen, Gan, and Vasquez 25

https://doi.org/10.1017/S0022109024000309  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109024000309


Since bear spreads may contain OTM put options with high bid–ask spreads
and low prices, the bid–ask spread will be large relative to the price, and thus the
returns are measured with potentially large errors. To reduce transaction costs, we
present results for different subsamples that include options with low bid–ask
spreads. Heston et al. (2023) restrict their sample to options with quoted half bid–
ask spreads of 0.05. We present results for different levels of the quoted half bid–
ask spreads: below 0.1, 0.2, 0.3, and for the full sample. Note that the 25th, 50th
(median), and 75th percentiles of the quoted half bid–ask spreads are 10.4%,
17.3%, and 27.7%.Our subsamples capture about the same quartiles of the sample
data. Starting fromMay 2003, we obtain observed effective bid–ask spreads from
the Options Price Reporting Authority (OPRA) as in Muravyev and Pearson
(2020).8

Table 10 examines the impact of transaction costs and margin requirements on
the profitability of the bear spread trading strategy and reports the DOI-weighted
bear spread CAPM alphas of portfolios Short, Long, and Long + Short. The Short
and Long portfolios report the CAPM alphas with transaction costs of short-selling
decile 1 and buying decile 10. The column “Full sample” with 0% effective-to-
quoted spread replicates the results from Table 3 when sorting by VAR5. When
using the full sample, the effective-to-quoted spreadmust be below 10% for the bear
spread strategy to be profitable. A similar result is observed for bear spreads with
quoted half bid–ask spread lower than 0.3. In both cases,more than 50%of the long-
short alpha is generated from portfolio 10, the Long leg, confirming the under-
reaction to left-tail risk.

For a quoted half bid–ask spread below 0.2, a positive and significant long-
short alpha is obtained when the effective-to-quoted spread is equal to or lower than
29.6%, the effective spread paid by algorithmic traders according to Muravyev and
Pearson (2020). Including an additional transaction cost, margin requirements, does
not change our conclusions. For a quoted half bid–ask spread below 0.1, the sample
period is from 2003 to 2017 so that portfolios are well populated with an average of
190 firms per month. For this subsample, the long-short alphas are positive and
statistically significant even for an effective-to-quoted spread of 58.4%, the effec-
tive spread paid by all traders according toMuravyev and Pearson (2020). Including
margin costs when paying an average effective-to-quoted spread of 29.6% does not
change our conclusions. Finally, about 70% of the long-short alpha is generated by
the Long portfolio. In the OPRA subsample, the long-short bear spread
alphas are only significant when the quoted half spread is lower than 0.1. For the
other subgroups of the quoted half spread, the “10–1” strategy is positive but
insignificant.

In practice, investors would trade bear spreads without delta-hedging.
Table A11 in the Supplementary Material reports naked bear spread CAPM alphas
with transaction costs. Overall, naked bear-spread alphas are larger than delta-
hedged ones. Alphas are positive and significant for all effective-to-quoted spreads
with a quoted half spread below 0.1. In the OPRA subsample, the long-short alphas
are significant for a quoted half spread below 0.3. Most of the long-short alphas are
generated by the Long leg.

8We thank the author for sharing the effective spreads data.
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We conclude that the delta-hedged bear spread trading strategy is profitable for
algorithmic traders and all traders that can trade at low quoted half spreads below
0.1. Naked bear spreads are profitable for algorithmic traders. The impact of margin
requirements on our trading strategy is negligible.

B. Business Cycles and Volatility

The impact of business cycles or periods with high volatility could potentially
affect our findings. We now study bear spread returns for subperiods with high/low
volatility and high/low economic growth.We choose these subsamples using cutoff
points of themedian value of the volatility index from the CBOE (VIX) and the zero
value for Chicago FedNational Activity Index (CFNAI). CFNAI is amonthly index
designed to gauge overall economic activity and related inflationary pressure.
CFNAI is used as a market-wide indicator to examine the performance of trading

TABLE 10

Transaction Costs

Table 10 examines the impact of transaction costs (bid–ask spreads andmargin requirements) on the profitability of the DOI-
weighted “10–1” delta-hedged bear spread CAPMalphas (in%) sorted on VAR5. CAPMalphas are calculated after adjusting
“10–1” delta-hedged bear spread returns for the CAPMmarket risk factor. We report “10–1” delta-hedged bear spreadCAPM
alphas for different ratios of the effective to quoted bid–ask spread: 0% (no cost), 10%, 29.6%, 50%, 58.4%, and the actual
effective option bid–ask spreadobtained from intraday options fromOPRAdata.Wealso examine subsamples of different half
quoted bid–ask spreads: lower than 0.1, lower than 0.2, lower than 0.3, and for the full sample. The margin requirement
adjusted return is computed using the initial option margin requirements of the CBOE. Following Weinbaum et al. (2023), the
margin cost equals the cost of borrowing the additional capital tomeet themargin requirement. Eachmonth t , decile portfolios
of delta-hedged bear spreads are formed and held to maturity by sorting underlying stocks on the VAR5 left-tail measure.
VAR5 is the 5% value-at-risk that corresponds to �1 times the 5th percentile of daily returns in the past year. Newey–West
(1987) adjusted t-statistics are presented in parentheses. The sample period is from 2003 to 2017 for the subsample with half
quoted bid–ask spread lower than 0.1 and for the OPRA subsample. We report the average number of stocks per month for
each subsample. The sample period is from 1996 to 2017 for stocks in the OptionMetrics database for the other
subsamples.

Subsample Statistics
0% (No
Cost) 10% 29.6% 50% 58.4% 29.6% + Margin

OPRA
(2003–
2017)

Quoted half spread < 0.1 Short 0.45 0.43 0.39 0.36 0.34 0.39 0.37
Period: 2003–2017 (2.48) (2.40) (2.23) (2.06) (1.98) (2.20) (2.12)

Long 1.09 1.03 0.90 0.77 0.72 0.90 0.75
(2.33) (2.20) (1.93) (1.65) (1.53) (1.92) (1.61)

Long + Short 1.54 1.46 1.30 1.13 1.06 1.29 1.12
(3.48) (3.30) (2.94) (2.56) (2.41) (2.91) (2.54)

Avg. stocks per month 190 190

Quoted half spread < 0.2 Short 0.56 0.52 0.45 0.38 0.35 0.44 0.28
Period: 1996–2017 (3.26) (3.06) (2.68) (2.27) (2.09) (2.60) (1.71)

Long 0.85 0.74 0.51 0.29 0.20 0.51 0.39
(1.85) (1.60) (1.12) (0.63) (0.43) (1.10) (0.87)

Long + Short 1.40 1.26 0.97 0.67 0.55 0.94 0.67
(3.08) (2.76) (2.13) (1.47) (1.20) (2.08) (1.61)

Avg. stocks per month 348 415

Quoted half spread < 0.3 Short 0.51 0.47 0.39 0.31 0.27 0.38 0.28
Period: 1996–2017 (3.30) (3.05) (2.56) (2.04) (1.79) (2.47) (1.86)

Long 0.74 0.61 0.35 0.08 �0.06 0.34 0.20
(1.68) (1.37) (0.78) (0.18) (�0.14) (0.76) (0.49)

Long + Short 1.25 1.07 0.74 0.39 0.21 0.71 0.49
(2.83) (2.44) (1.68) (0.89) (0.49) (1.63) (1.24)

Avg. stocks per month 451 537

Full sample Short 0.47 0.43 0.34 0.24 0.20 0.34 0.26
Period: 1996–2017 (3.09) (2.81) (2.25) (1.60) (1.33) (2.23) (1.83)

Long 0.80 0.63 0.33 �0.04 �0.18 0.30 �0.06
(1.90) (1.51) (0.77) (�0.10) (�0.44) (0.73) (�0.15)

Long + Short 1.28 1.06 0.67 0.20 0.02 0.64 0.20
(3.02) (2.53) (1.59) (0.48) (0.04) (1.54) (0.51)

Avg. stocks per month 587 708
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strategies during high/low economic growth periods (Bali and Murray (2013),
Atilgan et al. (2020)).

In Figure 2, we visualize the relation of the cumulative “10–1” DOI- and
equal-weighted bear spread returns with levels of volatility (Graph A) and with
business cycles (Graph B). We produce two time-series graphs where we highlight
in gray the periods of high volatility and high economic growth. In Graph A, when
the VIX level is above the sample median, we label the current month as a “high-
VIX period” and inGraph B, whenCFNAI is above 0, we label the current month as
a “high-economic growth period.”

Graphs A and B of Figure 2 show the results for the cumulative “10–1” DOI-
and equal-weighted bear spread returns under different levels of VIX and CFNAI.
From 1997 to 2004, a period of high volatility, the cumulative bear spread return
increased. However, in the two subperiods of low volatility (2004–2007 and 2012–
2017), the cumulative bear spread return also increased. A visual analysis of
economic growth does not show a clear pattern.

FIGURE 2

Volatility, Business Cycles, and Cumulative Bear Spread Returns

Graphs A and B of Figure 2 show the time series of the cumulative “10–1”DOI- and equal-weighted bear spread returns. Each
month, decile portfolios of delta-hedged bear spreads are formed and held to maturity by sorting underlying stocks by VAR5.
VAR5 is the 5% value-at-risk that corresponds to �1 times the 5th percentile of daily returns in the past year. The “10–1”
portfolio is the spreadbetweendecile 10portfolio (with the highest left-tail riskmetric) anddecile 1portfolio (with the lowest left-
tail riskmetric). The shaded areas capture periods of high volatility inGraphAand high economic growth inGraphB. VIX is the
volatility index from the CBOE, and Chicago Fed National Activity Index (CFNAI) is amonthly index designed to gauge overall
economic activity and related inflationary pressure. A high volatility period (high economicgrowth period) is selectedwhen the
VIX level (CFNAI level) is above its sample median (0). The sample period is from Jan. 1996 to Dec. 2017 for stocks in the
OptionMetrics database.
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Graph A. High Volatility (VIX) versus Low VIX
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To further understand the impact of high/low volatility and high/low economic
growth, we perform univariate sorts of bear spread returns on VAR5 for these
subperiods. Table A9 in the SupplementaryMaterial reports decile portfolio returns
and the “10–1” DOI-weighted bear spread returns. We show that the “10–1” DOI-
weighted bear spread returns remain positive and significant across all subsamples,
and returns are larger in periods of low volatility and low economic growth. We
conclude that bear spread returns hold across business cycles and volatility periods.
Equal-weighted returns confirm these findings and are reported in Table A15 in the
Supplementary Material.

VI. Conclusion

Understanding the hedging and pricing of tail risk is vital in asset pricing.
Investors are averse to portfolio losses and downside moves. Adequately pricing
firms’ left-tail risk is important for equity investors, option traders, and well-
functioning financial markets in general.

In this article, we study the profitability of crash risk insurance. We show that
firms’ left-tail risk is a strong positive predictor of future crash insurance returns.
We conduct comprehensive tests to show that risk-based explanations cannot
explain our findings.

Our results are mainly explained by two types of underreaction: volatility under-
reaction for high left-tail risk portfolios and underreaction to left-tail return momen-
tum. Using statistical forecasts of crash insurance premiums, we show that observed
crash insurance premiums in high left-tail deciles are lower than their forecasts. Since
our forecasts do not include variance risk premia, this is evidence of volatility under-
reaction. We also analyze whether investors underestimate the persistence in left-tail
risk. We show that the positive relation between crash insurance and left-tail risk is
stronger for stocks with larger recent losses or that are trading closer to their 52-week
lowest price, suggesting that investors do not adequately factor in the persistence of
losses. Additionally, higher information uncertainty amplifies investor underreaction
to bad news, leading to stronger crash insurance underpricing. Investor sentiment also
has a significant impact on left-tail risk underreaction; we show that the underreaction
mainly happens during high market sentiment periods.

We proxy crash insurance with bear put spreads, an option strategy that buys an
OTM put and sells a deeper OTM put option. Our findings suggest that, although the
loss aversion against left-tail risk plays an important role in financial markets, option
traders fail to adequately price bear spreads to compensate for firms’ left-tail risk.

Our study contributes to the literature by using an option trading strategy, bear
spread, to isolate and analyze crash insurance risk and showing that merely recog-
nizing the importance of left-tail risk is not enough, investors need to overcome
behavioral biases to adequately price crash risk insurance.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109024000309.
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