A PROBLEM OF COMPLETE INTERSECTIONS

LORENZO ROBBIANO

Let X be a non-singular projective surface in \boldsymbol{P}_{k}^{3} (k an algebraically closed field of characteristic 0) and C an irreducible curve, which is a set-theoretically complete intersection in X; is it true that C is actually a complete intersection in X ?

In this paper we give a positive answer even in a more general hypothesis.

We note that a similar question does not arise for a variety X with $\operatorname{dim} X \neq 2$. In fact Lefschetz theorem says that, if X is a non-singular projective variety which is a complete intersection in \boldsymbol{P}_{k}^{N} and such that $\operatorname{dim} X \geqslant 3$, any positive divisor on X is a complete intersection in X.

On the other hand, if X is a non-singular conic in P_{k}^{2} and P a point on X, then P is a set-theoretically complete intersection but not a complete intersection in X.

As to the surfaces, it is a well known fact that on a "general" surface of degree $\geqslant 4$ in \boldsymbol{P}_{k}^{3} any curve is a complete intersection, but there are surfaces whose Picard group is different from Z (e.g. nonsingular quadric and cubic surfaces) (see [4]).

Nevertheless no example is known of an irreducible curve on a nonsingular surface in \boldsymbol{P}_{k}^{3}, which is a set-theoretically complete intersection in X, but not a complete intersection in X (see [1]), and in fact we are going to prove that such an example cannot exist.

For this we make use of the techniques developed by Grothendieck to prove Lefschetz theorem (see [2] and [3]).

We now state the following
THEOREM. Let k be an algebraically closed field of characteristic 0 and let $X \subset \boldsymbol{P}_{k}^{N}$ be a non-singular projective surface, which is a complete intersection. If C is an irreducible curve on X, which is a set-theoreti-

[^0]cally complete intersection in X, then C is actually a complete intersection in X.

Proof. We shall give the proof in several steps.
Step 1. Pic $\left(\boldsymbol{P}^{N}\right) \simeq \operatorname{Pic}\left(\widehat{\boldsymbol{P}^{N}}\right)$, where \boldsymbol{P}^{N} stands for \boldsymbol{P}_{k}^{N} and $\widehat{\boldsymbol{P}^{N}}$ denotes the formal completion of P^{N} along X.
The proof is in [3] Ch. IV (essentially Th. 1.5 and Th. 3.1).
Step 2. X is projectively normal.
The proof is in [6] n. 77, 78, p. 272-273.
Step 3. Pic (X) is a finitely generated group.
Indeed $H^{1}\left(X, \mathcal{O}_{X}\right)=0$ (see [6] n. $78 \mathrm{p} .273-274$), hence $\operatorname{Pic}^{0}(X)$ is just a point and, calling $N S(X)$ the Neron-Severi group of X, we get Pic (X) $=N S(X)$ which is finitely generated by classical results.

Step 4. Pic (X) is torsion-free, hence by step $3 \operatorname{Pic}(X)$ is a finitely generated free group.
Let \mathscr{T} be the sheaf of ideals defining X and call X_{n} the scheme $\left(X, \mathcal{O}_{P^{n}} / \mathscr{T}^{n}\right)$. We can use the exact sequences

$$
0 \rightarrow \mathscr{T}^{n-1} / \mathscr{T}^{n} \rightarrow\left(\mathcal{O}_{\boldsymbol{P}} / \mathscr{T}^{n}\right)^{*} \rightarrow\left(\mathcal{O}_{\boldsymbol{P}} / \mathscr{T}^{n-1}\right)^{*} \rightarrow 0
$$

where $*$ denotes the multiplicative group of units and the first map sends x to $1+x$ (for more details see [3] Ch. 4 p. 179 and [2] Exp II p. 124). We get long exact sequences

$$
\begin{align*}
\cdots & \longrightarrow H^{1}\left(\boldsymbol{P}^{N}, \mathscr{T}^{n-1} / \mathscr{T}^{n}\right) \longrightarrow \operatorname{Pic}\left(X_{n}\right) \xrightarrow{\varphi_{n}} \operatorname{Pic}\left(X_{n-1}\right) \longrightarrow \tag{1}\\
& \longrightarrow H^{2}\left(\boldsymbol{P}^{N}, \mathscr{T}^{n-1} / \mathscr{T}^{n}\right) \longrightarrow \cdots
\end{align*}
$$

But $\mathscr{T}^{n-1} / \mathscr{T}^{n} \simeq \oplus \mathcal{O}_{X}\left(m_{i}\right)$ for suitable integers m_{i} (see [3] proof of coroll. 3.1. p. 180). Hence $H^{1}\left(\boldsymbol{P}^{N}, \mathscr{T}^{n-1} / \mathscr{T}^{n}\right)=H^{1}\left(X, \mathscr{T}^{n-1} / \mathscr{T}^{n}\right)=0$ (see [6] n. 78 p. 273-274).

On the other hand $H^{2}\left(\boldsymbol{P}^{N}, \mathscr{T}^{n-1} / \mathscr{T}^{n}\right)$ is a vector space over a field of characteristic 0 , hence torsion-free. If T_{n} denotes the torsion subgroup of $\operatorname{Pic}\left(X_{n}\right)$ and $T=T_{1}$, we get $T_{n}=T_{n-1}=\cdots=T$. Hence $T=$ Tors $\left(\lim _{\leftarrow} \operatorname{Pic}\left(X_{n}\right)\right)=$ Tors Pic $\left(\widehat{\boldsymbol{P}^{N}}\right)=$ Tors Pic $\left(\boldsymbol{P}^{N}\right)=0$.

Step 5. $\quad \lim _{\longleftarrow} \operatorname{Pic}\left(X_{n}\right) \simeq \operatorname{Pic}\left(X_{n_{0}}\right)$ for $n_{0} \gg 0$.
From the proof of step 4 we get that $\operatorname{Pic}\left(X_{n}\right) \simeq Z^{\rho_{n}}\left(\rho_{n}=\operatorname{rank}\left(\operatorname{Pic}\left(X_{n}\right)\right)\right.$), the canonical map $\operatorname{Pic}\left(X_{n}\right) \xrightarrow{\varphi_{n}} \operatorname{Pic}\left(X_{n-1}\right)$ is injective, and coker φ_{n} is torsion-free. Hence via $\varphi_{n} \operatorname{Pic}\left(X_{n}\right)$ is a direct factor subgroup of Pic $\left(X_{n-1}\right)$ and therefore φ_{n} must be an isomorphism for n large.

Step 6. $\quad\left[\mathcal{O}_{X}(1)\right]$ belongs to a basis of the free group Pic (X).
If \mathscr{L} is an invertible sheaf on a scheme, we call $[\mathscr{L}]$ its class in the Picard group. It is well-known that $\operatorname{Pic}\left(P^{N}\right) \simeq Z$ is generated by $\left[\mathcal{O}_{P^{N}}(1)\right]$; since by the previous steps we can write the following exact sequence

$$
Z \simeq \operatorname{Pic}\left(\boldsymbol{P}^{N}\right) \simeq \operatorname{Pic}\left(\widehat{\boldsymbol{P}^{N}}\right) \simeq \operatorname{Pic}\left(X_{n_{0}}\right) \xrightarrow{\varphi_{n_{0}}} \cdots \longrightarrow \operatorname{Pic}(X) \simeq Z^{\rho}
$$

where the maps are canonical, the composite map from Pic (\boldsymbol{P}^{N}) to Pic (X) sends $\left[\mathcal{O}_{P^{N}}(1)\right]$ to $\left[\mathcal{O}_{X}(1)\right]$ and, since $\operatorname{Pic}\left(X_{n}\right)$ is a direct factor subgroup of $\operatorname{Pic}\left(X_{n-1}\right)$, we are through.

Step 7. If \mathscr{L} is an invertible sheaf on X, q, n integers and [$q \mathscr{L}$] $=\left[\mathcal{O}_{X}(n)\right]$, then there exists an integer r such that $n=q r$ and $[\mathscr{L}]$ $=\left[\mathcal{O}_{X}(r)\right]$.

Indeed, by step $6,\left[\mathcal{O}_{X}(1)\right]$ belongs to a basis of Pic (X); let $\left[\mathcal{O}_{X}(1)\right],\left[\mathscr{L}_{2}\right],\left[\mathscr{L}_{3}\right], \cdots,\left[\mathscr{L}_{\rho}\right]$ be such a basis, then $[\mathscr{L}]=r\left[\mathcal{O}_{X}(1)\right]+\sum_{i} r_{i}\left[\mathscr{L}_{i}\right]$ hence $[q \mathscr{L}]=\left[\mathcal{O}_{X}(q r)\right]+\sum_{i}\left[r_{i} q \mathscr{L}_{i}\right]$. But $[q \mathscr{L}]=\left[\mathcal{O}_{X}(n)\right]$ and therefore $q r=n, r_{i}=0$.

Step 8 (conclusion). Let C be an irreducible curve on X, which is a set-theoretically complete intersection in X, and let $\mathcal{O}_{X}(C)$ be the associated invertible sheaf. Then $\mathcal{O}_{X}(q C) \simeq \mathcal{O}_{X}(n)$ or, which is the same, $\left[q \mathcal{O}_{X}(C)\right]=\left[\mathcal{O}_{X}(n)\right]$. By step 7 we get $\left[\mathcal{O}_{X}(C)\right]=\left[\mathcal{O}_{X}(r)\right]$; combining with step 2 we are done.

COROLLARY. Let k be an algebraically closed field of characteristic 0 and let A be the homogeneous coordinate ring of a non-singular projective surface which is a complete intersection in \boldsymbol{P}_{k}^{N}. Then if A is almost factorial, A is factorial.

Proof. We recall that a ring A is called almost factorial ("fastfaktoriell" in German) if A is a Krull domain and the divisor class group $C(A)$ is torsion (see [7]) and that for investigating $C(A)$ it is sufficient to consider homogeneous ideals (see [5] $\mathrm{n}^{\circ} 2$). Let now \mathfrak{B} be a homogeneous prime ideal of height 1. Since A is almost factorial, $\mathcal{B}=\sqrt{(F)}, F$ being a suitable homogeneous element. The irreducible curve associated to \mathfrak{B} is therefore a set-theoretically complete intersection, hence a complete intersection by the theorem, and so \mathfrak{P} is principal.

References

[1] Gallarati (Dionisio) : Recerche sul contatto di superficie algebriche lungo curve. Académie royale de Belgique Memoires in 8° (XXXII Fascicule 3) (1960).
[2] Grothendieck (Alexander): SGA 2 Cohomologie locale des faisceaux Cohérents et Théorèmes des Lefschetz locaux et globaux. North-Holland Publ. Comp. (Amsterdam) (1962).
[3] Hartshorne (Robin) : Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics 156 Springer (1970).
[4] Lefschetz (Solomon): On certain numerical invariants of algebraic varieties. Trans. Amer. Math Soc., 22 (1921), p. 326-363.
[5] Samuel (Pierre) : Sur les anneaux factoriels. Bull. Soc. Math. France, 89 (1961), p. 155-173.
[6] Serre (Jean Pierre) : Faisceaux algébriques cohérents. Annals of Math., 61, n. 2 (1955), p. 197-278.
[7] Storch (Uwe) : Fastfaktorielle Ringe. Schriftenreihe des Math. Inst. (Münster) Heft 36 (1967).

Instituto Matematico
dell'Università di Genova-Via

[^0]: Received July 19, 1973.
 This work was supported by CNR (Consiglio Nazionale delle Ricerche).

