A PROBLEM OF COMPLETE INTERSECTIONS

LORENZO ROBBIANO

Let X be a non-singular projective surface in P_k^3 (k an algebraically closed field of characteristic 0) and C an irreducible curve, which is a set-theoretically complete intersection in X; is it true that C is actually a complete intersection in X?

In this paper we give a positive answer even in a more general hypothesis.

We note that a similar question does not arise for a variety X with $\dim X \neq 2$. In fact Lefschetz theorem says that, if X is a non-singular projective variety which is a complete intersection in P_k^N and such that $\dim X \geqslant 3$, any positive divisor on X is a complete intersection in X.

On the other hand, if X is a non-singular conic in P_k^2 and P a point on X, then P is a set-theoretically complete intersection but not a complete intersection in X.

As to the surfaces, it is a well known fact that on a "general" surface of degree ≥ 4 in P_k^3 any curve is a complete intersection, but there are surfaces whose Picard group is different from Z (e.g. non-singular quadric and cubic surfaces) (see [4]).

Nevertheless no example is known of an irreducible curve on a non-singular surface in P_k^3 , which is a set-theoretically complete intersection in X, but not a complete intersection in X (see [1]), and in fact we are going to prove that such an example cannot exist.

For this we make use of the techniques developed by Grothendieck to prove Lefschetz theorem (see [2] and [3]).

We now state the following

THEOREM. Let k be an algebraically closed field of characteristic 0 and let $X \subset \mathbf{P}_k^N$ be a non-singular projective surface, which is a complete intersection. If C is an irreducible curve on X, which is a set-theoreti-

Received July 19, 1973.

This work was supported by CNR (Consiglio Nazionale delle Ricerche).

cally complete intersection in X, then C is actually a complete intersection in X.

Proof. We shall give the proof in several steps.

Step 1. Pic $(\mathbf{P}^N) \simeq \operatorname{Pic}(\widehat{\mathbf{P}}^N)$, where \mathbf{P}^N stands for \mathbf{P}_k^N and $\widehat{\mathbf{P}}^N$ denotes the formal completion of \mathbf{P}^N along X.

The proof is in [3] Ch. IV (essentially Th. 1.5 and Th. 3.1).

Step 2. X is projectively normal.

The proof is in [6] n. 77, 78, p. 272-273.

Step 3. Pic(X) is a finitely generated group.

Indeed $H^1(X, \mathcal{O}_X) = 0$ (see [6] n. 78 p. 273-274), hence $\operatorname{Pic}^0(X)$ is just a point and, calling NS(X) the Neron-Severi group of X, we get $\operatorname{Pic}(X) = NS(X)$ which is finitely generated by classical results.

Step 4. Pic (X) is torsion-free, hence by step 3 Pic (X) is a finitely generated free group.

Let \mathcal{T} be the sheaf of ideals defining X and call X_n the scheme $(X, \mathcal{O}_{P^N}/\mathcal{T}^n)$. We can use the exact sequences

$$0 \to \mathcal{T}^{n-1}/\mathcal{T}^n \to (\mathcal{O}_{\mathbf{P}}/\mathcal{T}^n)^* \to (\mathcal{O}_{\mathbf{P}}/\mathcal{T}^{n-1})^* \to 0$$

where * denotes the multiplicative group of units and the first map sends x to 1+x (for more details see [3] Ch. 4 p. 179 and [2] Exp II p. 124). We get long exact sequences

(1)
$$\cdots \longrightarrow H^{1}(\mathbf{P}^{N}, \mathcal{F}^{n-1}/\mathcal{F}^{n}) \longrightarrow \operatorname{Pic}(X_{n}) \xrightarrow{\varphi_{n}} \operatorname{Pic}(X_{n-1}) \longrightarrow H^{2}(\mathbf{P}^{N}, \mathcal{F}^{n-1}/\mathcal{F}^{n}) \longrightarrow \cdots$$

But $\mathcal{F}^{n-1}/\mathcal{F}^n \simeq \bigoplus_i \mathcal{O}_X(m_i)$ for suitable integers m_i (see [3] proof of coroll. 3.1. p. 180). Hence $H^1(\mathbf{P}^N, \mathcal{F}^{n-1}/\mathcal{F}^n) = H^1(X, \mathcal{F}^{n-1}/\mathcal{F}^n) = 0$ (see [6] n. 78 p. 273–274).

On the other hand $H^2(\mathbf{P}^N, \mathcal{F}^{n-1}/\mathcal{F}^n)$ is a vector space over a field of characteristic 0, hence torsion-free. If T_n denotes the torsion subgroup of $\mathrm{Pic}(X_n)$ and $T=T_1$, we get $T_n=T_{n-1}=\cdots=T$. Hence $T=\mathrm{Tors}(\mathrm{lim}\,\mathrm{Pic}\,(X_n))=\mathrm{Tors}\,\mathrm{Pic}\,(\widehat{\mathbf{P}^N})=\mathrm{Tors}\,\mathrm{Pic}\,(\mathbf{P}^N)=0$.

Step 5.
$$\lim \operatorname{Pic}(X_n) \simeq \operatorname{Pic}(X_{n_0})$$
 for $n_0 \gg 0$.

From the proof of step 4 we get that $\operatorname{Pic}(X_n) \simeq Z^{\rho_n}(\rho_n = \operatorname{rank}(\operatorname{Pic}(X_n)))$, the canonical map $\operatorname{Pic}(X_n) \xrightarrow{\varphi_n} \operatorname{Pic}(X_{n-1})$ is injective, and $\operatorname{coker} \varphi_n$ is torsion-free. Hence via φ_n $\operatorname{Pic}(X_n)$ is a direct factor subgroup of $\operatorname{Pic}(X_{n-1})$ and therefore φ_n must be an isomorphism for n large.

Step 6. $[\mathcal{O}_X(1)]$ belongs to a basis of the free group $\operatorname{Pic}(X)$. If \mathscr{L} is an invertible sheaf on a scheme, we call $[\mathscr{L}]$ its class in the Picard group. It is well-known that $\operatorname{Pic}(P^N) \simeq Z$ is generated by $[\mathcal{O}_{P^N}(1)]$; since by the previous steps we can write the following exact sequence

$$Z \simeq \operatorname{Pic}(P^N) \simeq \operatorname{Pic}(\widehat{P^N}) \simeq \operatorname{Pic}(X_{n_0}) \xrightarrow{\varphi_{n_0}} \cdots \longrightarrow \operatorname{Pic}(X) \simeq Z^{\rho}$$

where the maps are canonical, the composite map from $\operatorname{Pic}(P^N)$ to $\operatorname{Pic}(X)$ sends $[\mathcal{O}_{P^N}(1)]$ to $[\mathcal{O}_X(1)]$ and, since $\operatorname{Pic}(X_n)$ is a direct factor subgroup of $\operatorname{Pic}(X_{n-1})$, we are through.

Step 7. If \mathscr{L} is an invertible sheaf on X, q, n integers and $[q\mathscr{L}] = [\mathscr{O}_X(n)]$, then there exists an integer r such that n = qr and $[\mathscr{L}] = [\mathscr{O}_X(r)]$.

Indeed, by step 6, $[\mathscr{O}_X(1)]$ belongs to a basis of $\operatorname{Pic}(X)$; let $[\mathscr{O}_X(1)]$, $[\mathscr{L}_2]$, $[\mathscr{L}_3]$, \cdots , $[\mathscr{L}_{\rho}]$ be such a basis, then $[\mathscr{L}] = r[\mathscr{O}_X(1)] + \sum\limits_i r_i [\mathscr{L}_i]$ hence $[q\mathscr{L}] = [\mathscr{O}_X(qr)] + \sum\limits_i [r_i q \mathscr{L}_i]$. But $[q\mathscr{L}] = [\mathscr{O}_X(n)]$ and therefore $qr = n, r_i = 0$.

Step 8 (conclusion). Let C be an irreducible curve on X, which is a set-theoretically complete intersection in X, and let $\mathcal{O}_X(C)$ be the associated invertible sheaf. Then $\mathcal{O}_X(qC) \simeq \mathcal{O}_X(n)$ or, which is the same, $[q\mathcal{O}_X(C)] = [\mathcal{O}_X(n)]$. By step 7 we get $[\mathcal{O}_X(C)] = [\mathcal{O}_X(r)]$; combining with step 2 we are done.

COROLLARY. Let k be an algebraically closed field of characteristic 0 and let A be the homogeneous coordinate ring of a non-singular projective surface which is a complete intersection in P_k^N . Then if A is almost factorial, A is factorial.

Proof. We recall that a ring A is called almost factorial ("fastfaktoriell" in German) if A is a Krull domain and the divisor class group C(A) is torsion (see [7]) and that for investigating C(A) it is sufficient to consider homogeneous ideals (see [5] n° 2). Let now $\mathfrak P$ be a homogeneous prime ideal of height 1. Since A is almost factorial, $\mathfrak P = \sqrt{(F)}$, F being a suitable homogeneous element. The irreducible curve associated to $\mathfrak P$ is therefore a set-theoretically complete intersection, hence a complete intersection by the theorem, and so $\mathfrak P$ is principal.

REFERENCES

- [1] Gallarati (Dionisio): Recerche sul contatto di superficie algebriche lungo curve. Académie royale de Belgique Memoires in 8° (XXXII Fascicule 3) (1960).
- [2] Grothendieck (Alexander): SGA 2 Cohomologie locale des faisceaux Cohérents et Théorèmes des Lefschetz locaux et globaux. North-Holland Publ. Comp. (Amsterdam) (1962).
- [3] Hartshorne (Robin): Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics 156 Springer (1970).
- [4] Lefschetz (Solomon): On certain numerical invariants of algebraic varieties. Trans. Amer. Math Soc., 22 (1921), p. 326-363.
- [5] Samuel (Pierre): Sur les anneaux factoriels. Bull. Soc. Math. France, 89 (1961), p. 155-173.
- [6] Serre (Jean Pierre): Faisceaux algébriques cohérents. Annals of Math., 61, n. 2 (1955), p. 197-278.
- [7] Storch (Uwe): Fastfaktorielle Ringe. Schriftenreihe des Math. Inst. (Münster) Heft 36 (1967).

Instituto Matematico dell'Università di Genova-Via