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ON THE SCATTERING OF WAVES BY NEARLY HARD OR SOFT
INCOMPLETE VERTICAL BARRIERS IN WATER OF INFINITE

DEPTH
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Abstract

In this paper the scattered progressive waves are determined due to progressive waves
incident normally on certain types of partially immersed and completely submerged vertical
porous barriers in water of infinite depth. The forms are approximate only, and are obtained
using perturbation theory for nearly hard or soft barriers having high and low porosities
respectively. The results for arbitrary porosity are difficult to obtain, in contrast to the well
known hard limit of impermeable barriers.

1. Introduction

Two problems that have received considerable attention in the theory of surface waves
involve progressive waves incident normally on impermeable incomplete vertical bar-
riers in water of infinite depth and extent, the barriers being either partially immersed
or completely submerged with a single tip in the water at a specified depth. The
effect of the barriers is to partly reflect and partly transmit the incident waves, without
loss of energy if surface tension is ignored. The linearized solutions for the velocity
potentials in these two transmission problems were obtained long ago by Ursell [6],
using Havelock's [3] classical wave-maker theory to set up integral equations for the
unknown horizontal velocity in the gap below or above the barrier; they may also be
solved by complex variable techniques. The scattered waves (only) were obtained by
an integral equation method in Williams [8] after a reformulation.

If the barriers are no longer impermeable but porous, comparable results with loss
of energy are difficult to obtain by any of these methods. A number of results involving
porous walls or barriers extending throughout the depth of water have been obtained
recently by Chakrabarti and Sahoo [1] and Rhodes-Robinson [5] to extend known
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impermeable results in simpler problems, but this does not seem possible here.
To make some progress, we consider herein the two asymptotic situations when

the barriers are nearly impermeable ('hard') or completely porous ('soft') and set up
suitable perturbation solutions involving certain hard and soft limit solutions. The
former are known from Ursell [6], Evans [2] and Rhodes-Robinson [4] to an extent
that enables the scattered waves (only) to be found to the first order; the latter are
classical and the full first-order solution is obtainable. The corresponding scattered
amplitude and energy ratios are calculated, and tabulated numerical values given for
the expansion coefficients. Two new Bessel function integrals arise for the nearly
hard barriers, and these are fully investigated also.

2. General formulation

Water occupies the region of infinite depth y > 0 and contains a single fixed vertical
barrier along part of x = 0 that has its tip (0, c) at depth c below the equilibrium free
surface y = 0; the barrier is either partially immersed or completely submerged, and
the remainder of x = 0 forms a gap either below or above the barrier. The barrier is
porous—in fact is assumed to have fine pores—and has porosity constant k > 0; in
the familiar case of an impermeable (hard) barrier k = 0, and for a completely porous
(soft) barrier k —> oo (this barrier has no effect on waves so is removable). The effect
of surface tension is omitted in this investigation so that the wave motion is under the
action of gravity alone with acceleration g. The usual tip singularity is allowed for
and there is no motion at infinite depth.

The infinitesimal motion is harmonic in time t with angular frequency a and
may be described by a velocity potential of the form Re[0(x, y)e~""], where 0 is
complex-valued. The scattered motion to be investigated is due to incident pro-
gressive waves with potential e-

Ky-'Kx
t where the wave number is K = o2/g. If

0 = 0, (x > 0), 0 = (fc (x < 0), the potentials 0,, 02 are given by the linearized
coupled boundary-value problem in the region of water

V20i = 0 = V202,

Kept + 0lv = 0 = K 02 + 02v on y = 0,

0 i , </>2 —*• 0 a s y —*• o o ,

0,x = —ik(<pi - 02) = 02.t on barrier,

0, = 02 in gap,

r [|0i, I2 + I0i, I 2 ] , r [I0Z.I2 + 102,12] are bounded as r -+ 0,

0, -»• e-Ky-'Kx + Re~Ky+iKx as x -»• oo, 02 - • Te~Ky-iKx as x -»• - o o ,

where r = [x2 + (y — c)2]1/2 is the distance from the tip and the reflected and
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transmitted amplitude constants R, T are part of the solution that involves two non-
dimensional parameters Kc, kc. More details on the barrier conditions are given in
Rhodes-Robinson [5].

A reformulation reduces this transmission problem if the incident waves are sub-
tracted out by putting (j> = <t> + e-

K>—'Kx- then the potential <I> is antisymmetric about
the gap and in x > 0 satisfies the boundary-value problem

V2cl> = 0,

AT* + <J>V = 0 on y = 0, <t> —» 0 as y -> oo,

<t>,+ 2ik<$> = iKe~Ky on barrier, <t> = 0 in gap,
r [l^.i |2 + l^.vl2] is bounded as r —> 0,

<J> -> Re-Ky+iK* as x -> oo,

where R is part of the solution and it should be noted that the barrier condition is
linear in both k and k~{.

Note also due to the antisymmetry that <p\, <p2 are related by

0i (x, y) + fci-x, y) = 2e~Ky cos Kx

and in particular

R + T = \. (2.1)

The above problem has been solved in full by Ursell [6] when k = 0 for the two
barriers envisaged, but now such an achievement seems difficult and is not attempted
herein. Instead nearly hard or soft perturbation solutions are sought corresponding to
small or large values respectively of the parameter kc, with coefficients depending on
the parameter Kc; the linear form that these expansions should have is indicated by
that of the barrier condition noted above. Emphasis is placed on the determination of
the scattered amplitude constants R, T in order to calculate the scattered amplitude
ratios \R\, \T\ and energy ratios \R\2, \T\2. Note that \R\2 + \T\2 < I, since energy is
lost with a porous barrier.

3. Perturbation formulation for nearly hard barriers

First suppose that e = kc is small and look for a perturbation solution to the above
problem of the linear form

ct> = (fco + e* , (3.1)
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to the first order in e, where 4>0, <t>i are hard limit (k -*• 0) potentials that involve Kc;
also let

R = R0 + eRu T = T0 + eTi (3.2)

and note that

R0 + T0=l, R ] + T ] = 0 (3.3)

from (2.1).
The perturbation potential <t>0 in JC > 0 satisfies the boundary-value problem

V2<D0 = 0,

K<t>0 + ^o.v = 0 o n y = 0, <t>0 ->• 0 as y -> oo,

<t>Ox = iKe~Ky on barrier, <J>0 = 0 in gap,
r [l^o* I2 + l^ovl2] is bounded as r —> 0,

<t>0 ->• Roe~Ky+iKx as x -^ oo

(unperturbed problem), where /?0 is part of the solution; this is of course the familiar
transmission problem referred to above for a hard barrier with the incident waves
subtracted out. Note that |/?0|2 + |7ol2 = 1 as no energy is lost here.

The perturbation potential <t>i in x > 0 satisfies the boundary-value problem

V2<D, = 0 ,

A"<J>i + 4>i_v = 0 on y = 0, 4>, -*• 0 as y -»• oo,

<t>u = — (2//c)<t>o(O, y) on barrier, <J>, = 0 in gap,

r[l<l)ix|2 + l^ iy l 2 ] is bounded as r -> 0,

* , ->• / ? 1 ^ - * r v + ' A ' j r as JC ->• o o

(first-order correction problem), where /?i is part of the solution; this is a familiar
hard wave-maker problem for a special normal velocity depending on the previous
solution. Once Ro, /?, and therefore To — 1 — Ro, T\ = —Rt are obtained from (3.3),
the scattered amplitude ratios are calculated using (3.2) as

\R\=ao-€a,, \T\=bo-€bt (3.4)

to the first order in e, where

. „ . , ._,. re[/?o^,] Te[Tof,]
ao = \Ro\, bo = \To\, a, = —-—, b{ = 7^—\

l«ol Mol
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and then the scattered energy ratios as

\R\2 = c0 - ecu \T\2 = d0- zd\ (3.5)

likewise, where

c0 = «o' ^o = b%, c\ = 2aoai, d\ = 2b0b].

Note also from (3.5) that \R\2 + \T\2 = 1 - e(c, + d\) as c0 + d0 = 1, and the loss of
energy ise(C| + d\).

The expansion coefficients ao,a\,bo,b\,co,C\,do,d\ in (3.4), (3.5) all depend
on Kc and we now obtain these for partially immersed and completely submerged
barriers, for which <J>0> Ro and R] are known or may be found.

4. Solution for nearly hard partially immersed barrier

This barrier occupies x = 0, 0 < y < a so that c = a and the parameters are
Ka, e = ka.

The full unperturbed solution was obtained in Ursell [6] as

1 [ f°° Ji(ua)e~"x 1

nI{{Ka)e-Ky+iK*+ I {u cosuy- K sinuy)du\ (4.1)
Jo « + K J

B,(Ka)

(x > 0) so that

from (3.3), where I\, J\, Kt(z) are Bessel functions and B\(z) = nI{(z) + /K\(z).
The first-order correction outgoing waves are obtained using the formula determ-

ined in Evans [2] for the amplitude constant as

R, =
Jo (a ~a2Bt(Ka)

- 4 f Y f , _ sinh KY . [°° Mua)
a2B2(Ka]

from (4.1)

-2TT

~ aB2(Ka)
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on interchanging the order of integration and noting the integral representations

/ d J() I dv;
" ^ - n j o (1-1,*)!* — " - njQ ({_v2y/2

thus

_ aKATa) _

from (3.3), where a,(z) = 2n[nI2(z) + Si(z)]/z and

v. (4.4)
70 y 1"

Hence the expansion coefficients in (3.4) are

_ nI{(Ka)a{(Ka) _ K{{Ka)ot\(Kd)

and in (3.5)

_ n2I2{Ka) K2{Ka)
C° D2(K) ' °D2(Ka) ' ° D]{KaY

_ 22n2I2(Ka)at(Ka) 2K2(Ka)at(Ka)

from (4.2), (4.3), where D,(z) = |B,(z)| = [TT2/2(Z) + /r2(z)]'/2.
Numerical values of the expansion coefficients for 0 < Ka < 2.5 calculated to 4

decimal place accuracy are given in Appendix 1 (Table 1), together with their limits as
Ka —> 0, oo; this accuracy is not sufficient for Ka > 2.5 to produce non-zero values,
but higher accuracy can be achieved to extend the range if necessary. The expansions
obtained using these values in (3.4), (3.5) are suitable for all Ka > 0 due to the finite
limits of all coefficients.

Calculations of the integral Si in (4.4) involved in these are given in Appendix 2
(Table 3); the integral cannot be evaluated explicitly, although asymptotic forms can
be derived.

5. Solution for nearly hard completely submerged barrier

This barrier occupies x = 0, y > b so that c = b and the parameters are Kb,
€ = kb.
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The full unperturbed solution was also given in Ursell [6] as

<ba=—}—\-KQ{Kb)e-K>+iK*+ f M"^e"X (u cos uy-K sin uy) d J (5.1)
B0(Kb) I Jo u' + K1 J

(x > 0) so that

iK0(Kb)
(5.2)

from (3.3), where Io, Jo, K0(z) are Bessel functions and B0(z) = n/0(z) — iK0(z).
The first-order correction outgoing waves are obtained using the formula given in

Rhodes-Robinson [4], Section 5 for the amplitude constant as

—4/ KY

from (5.1)

2

on interchanging the order of integration and noting the integral representations

f°° e~zv 2 f°° sinzv
Ko(z) = —2 7TTT;dv' Jo(z) = - I — 77777^ (z > 0);

71

thus

„ ao(Kb) „ ao(Kb)
( }

from (3.3), where ao(z) = 2[K2(z) + nS0(z)]/z and

„ . . f°° Jo(zv)
S0(z) = / . di

Jo v + '

Hence the expansion coefficients in (3.4) are

_ K0(Kb) _ nI0(Kb)
a°~ D0(Kb)' °~ D0(Kb)'

K0(Kb)a0(Kb) _ nIo(Kb)ao(Kb)

D3
0(Kb) ' ' ~
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and in (3.5)

n2l2{Kb)
= D2(Kb) '

2K2(Kb)a0(Kb) _ 2n2l2{Kb)a0{Kb)
Cl ~ D*(Kb) ' ' " D4

0(Kb)

from (5.2), (5.3), where D0(z) = \B0(z)\ = [n2l2{z) + K2(z)]l/2.
Numerical values of the expansion coefficients for 0 < Kb < 2.5 calculated to 4

decimal place accuracy are given in Appendix 1 (Table 2), together with their limits
as Kb -> 0, oo; similar comments pertain on accuracy here for Kb > 2.5 as before.
The expansions obtained using these values in (5,6) becomes less suitable for smaller
Kb due to the infinite limits of some coefficients, being then valid only for smaller
€ = kb.

Calculations of the integral So in (5.4) involved in these are also given in Appendix 2
(Table 3); again the integral cannot be evaluated explicitly, although asymptotic forms
can be derived.

6. Perturbation formulation for nearly soft barriers

Now suppose that kc is large so that 8 — (kc)~l is small and look for a perturbation
solution to the problem in Section 2 of the linear form

$ = 00 + 5* , (6.1)

to the first order in 8, where <J>0, *i are soft limit (k —> oo) potentials that involve Kc
again; also let

R = R0 + 8Ri, T = T0 + 8T, (6.2)

and note again that

R0 + T0=l, Ri + Tx = 0 (6.3)

from (3.1).
The perturbation potential <t>0 is now trivially obtained as

<J>o = 0 (6.4)

(unperturbed solution) for any soft (removable) barrier so that

/ ? „ = 0 , T0 = l - R 0 = l (6.5)
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from (6.3).
The perturbation potential <J>i in x > 0 satisfies the boundary-value problem

V2O, = 0,

K<t>i + <&iy = 0 on y = 0, <I>i —> 0 as y —*• oo,

<&i = -Kce~Ky on barrier, <J>, = 0 in gap,

r [l*ijtl2 + l^ivl2] is bounded as r —> 0,

<D, -* Rle-Ky+iKx as x -* oo

(first-order correction problem), where /?i is part of the solution; the full solution is
obtained for any barrier similarly as in Havelock's [3] classical wave-maker problem.
Note that R\ is always found to be real and positive.

Once R\ and therefore 7\ = — R\ are obtained from (6.3b), the scattered amplitude
and energy ratios are easily calculated using (6.2) after noting (6.5) as

\ R \ = 8 R U \T\ = i - S R i (6.6)

and

\R\2 = 0, \T\2 = l-28Rt (6.7)

in terms of /?j to the first order in 8; the loss of energy is 25/?i from (6.7). The
expansion coefficients in (6.6), (6.7) depend on Kc again.

To conclude we obtain <t>, and R{ for the two particular barriers described earlier.

7. Solutions for nearly soft barriers

For the partially immersed barrier 8 = {ka)~]. The full first-order solution is

Ka -Ka re~"XS™Ua,
<Pi = e I — — (M COS uy — K sin uy) du

n Jo u2 + K2

+ -Ka{\-e-2Ka)e-Ky+iKl (7.1)

{x > 0) so that

] - e-2Ka). (7.2)

Numerical values of /?, for 0 < Ka < 2.5 (again, say) can easily be calculated
from this exact formula and the limit is infinite as Ka —> oo. The expansions (6.6),
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(6.7) obtained using these become less suitable for larger Ka due to the infinite limit
of some coefficients, being then valid only for smaller 8 = (ka)~l.

For the completely submerged barrier 8 = (kby1. The full first-order solution is

Kb _Kb f00 e~us sin ub
0 i = e I — — (w cosM>> — K smuy)du

n Jo u2 + K2

Kt>e-Ky+iKx /y 2)

z

so that

/?, = -Kbe-2Kb. (7.4)

Numerical values of R\ for 0 < Kb < 2.5 can again be calculated from this exact
formula and the limit is zero as Kb —> oo. The expansions (6.6), (6.7) obtained using
these are now suitable for all Kb > 0 due to the finite limits of the coefficients.
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Appendix 1: Expansion coefficients for nearly hard barriers

Numerical values calculated to 4 decimal place accuracy are given in Tables 1, 2,
together with their limits.

TABLE 1. Values of expansion coefficients for a nearly hard partially immersed barrier.

Ka
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
oo

0
0.0160 (

a\
0

X0005
0.0660 0.0093
0.1541 0.0572
0.2816 0.2134
0.4394 0.5620
0.6033
0.7437
0.8447
0.9089 :
0.9471 :
0.9691
0.9818
0.9891
0.9934
0.9960
0.9975
0.9985
0.9990
0.9994
0.9996

.0911

.6173
1.9493
'.0564
2.0143
1.9020
1.7679
.6351
1.5129
.4038
.3075
.2228
.1481
.0821
.0235

0.9997 0.9710
0.9998 0.9239
0.9999 0.8813
0.9999 0.8427
1.0000 0.8074
1 0

bo
1

0.9999
0.9978
0.9881
0.9595
0.8983
0.7975
0.6685
0.5353
0.4170
0.3211
0.2467
0.1900
0.1471
0.1145
0.0896
0.0704
0.0556
0.0441
0.0351
0.0280
0.0224
0.0179
0.0144
0.0116
0.0093
0

0
0.0301
0.1403
0.3670
0.7271
1.1489
1.4423
1.4540
1.2353
0.9435
0.6829
0.4841
0.3422
0.2432
0.1744
0.1263
0.0923
0.0681
0.0507
0.0380
0.0286
0.0217
0.0166
0.0127
0.0098
0.0075
0

co
0

0.0003
0.0044
0.0237
0.0793
0.1931
0.3640
0.5530
0.7135
0.8261
0.8969
0.9392
0.9639
0.9784
0.9869
0.9920
0.9950
0.9969
0.9981
0.9988
0.9992
0.9995
0.9997
0.9998
0.9999
0.9999

1

C\

0
0.0000
0.0012
0.0176
0.1201
0.4938
1.3164
2.4055
3.2931
3.7381
3.8153
3.6865
3.4714
3.2347
3.0059
2.7962
2.6084
2.4418
2.2941
2.1629
2.0461
1.9416
1.8475
1.7625
1.6853
1.6148
0

do
1

0.9997
0.9956
0.9763
0.9207
0.8069
0.6360
0.4470
0.2865
0.1739
0.1031
0.0608
0.0361
0.0216
0.0131
0.0080
0.0050
0.0031
0.0019
0.0012
0.0008
0.0005
0.0003
0.0002
0.0001
0.0001
0

di
0

0.0603
0.2801
0.7253
1.3954
2.0642
2.3006
1.9441
1.3225
0.7869
0.4385
0.2388
0.1301
0.0716
0.0399
0.0226
0.0130
0.0076
0.0045
0.0027
0.0016
0.0010
0.0006
0.0004
0.0002
0.0001
0
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TABLE 2. Values of expansion coefficients for a nearly hard completely submerged barrier.

Kb
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
.0
.1
.2
.3
.4
.5
.6
.7
.8
.9
2.0
2.1
2.2
2.3
2.4
2.5
oo

«o
1

0.6104
0.4835
0.3929
0.3227
0.2667
0.2210
0.1835
0.1525
0.1267
0.1053
0.0874
0.0726
0.0602
0.0499
0.0413
0.0342
0.0283
0.0233
0.0193
0.0159
0.0131
0.0108
0.0089
0.0073
0.0060
0

a\
oo

8.0687
2.6848
1.2472
0.6639
0.3802
0.2275
0.1402
0.0880
0.0561
0.0361
0.0233
0.0152
0.0099
0.0065
0.0043
0.0028
0.0018
0.0012
0.0008
0.0005
0.0003
0.0002
0.0001
0.0001
0.0001
0

b0
0

0.7921
0.8753
0.9196
0.9465
0.9638
0.9753
0.9830
0.9883
0.9919
0.9944
0.9962
0.9974
0.9982
0.9988
0.9991
0.9994
0.9996
0.9997
0.9998
0.9999
0.9999
0.9999
1.0000
1.0000
1.0000
1

bx
00

10.4702
4.8606
2.9194
1.9470
1.3740
1.0039
0.7508
0.5707
0.4389
0.3406
0.2660
0.2088
0.1646
0.1301
0.1031
0.0819
0.0651
0.0518
0.0413
0.0330
0.0263
0.0210
0.0168
0.0135
0.0108
0

CO

1
0.3726
0.2338
0.1543
0.1042
0.0711
0.0489
0.0337
0.0232
0.0161
0.0111
0.0076
0.0053
0.0036
0.0025
0.0017
0.0012
0.0008
0.0005
0.0004
0.0003
0.0002
0.0001
0.0001
0.0001
0.0000
0

oo
9.8503
2.5963
0.9799
0.4285
0.2028
0.1006
0.0514
0.0268
0.0142
0.0076
0.0041
0.0022
0.0012
0.0006
0.0004
0.0002
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0

do
0

0.6274
0.7662
0.8457
0.8958
0.9289
0.9511
0.9663
0.9768
0.9839
0.9889
0.9924
0.9947
0.9964
0.9975
0.9983
0.9988
0.9992
0.9995
0.9996
0.9997
0.9998
0.9999
0.9999
0.9999
1.0000
1

d\
00

16.5866
8.5094
5.3693
3.6857
2.6484
1.9582
1.4761
1.1280
0.8708
0.6774
0.5300
0.4165
0.3286
0.2599
0.2060
0.1636
0.1302
0.1037
0.0826
0.0660
0.0527
0.0421
0.0337
0.0269
0.0216
0
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Appendix 2: Bessel function integrals

The integrals

/

°° J2(zv)
V2+l

are even in z (real) and positive in value, but cannot be evaluated analytically except
for z = 0.

The asymptotic forms are

7T [°° 1 - J2(w) n Az
S0(z)~--z dw = - ,

2 Jo w2 2 n
r2(w) _ Az

lo w2 2>n
as z -*• 0 from Wat son [7] ; and

/

O

50(z)~ — (In8z + y), S,(z) ~—(In 8z + y - 2)
nz nz

as z -»• oo, where y = 0.577216... is Euler's constant. The latter forms are obtained
after converting (A2.1) to the alternative integral

2 /"'
Sn(z) = - / e-2zwQn_>(\ - 2w2)dw {n = 0, 1) (A2.2)

* Jo 2

in terms of Legendre functions, and using Watson's lemma.
Numerical values of the integrals for 0 < z < 20 calculated to 6 decimal place

accuracy from either (A2.1) or (A2.2) are given in Table 3; only those for 0 < z < 2.5
are used herein, however.
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TABLE 3. Values of Bessel function integrals.

z
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0

SoU)
1.570796
1.450963
1.344767
1.250409
1.166346
1.091253
1.023992
0.963580
0.909173
0.860040
0.815549
0.775153
0.738376
0.704806
0.674084
0.645895
0.619967
0.596059
0.573962
0.553490
0.534481
0.516792
0.500297
0.484883
0.470450
0.456911
0.444187
0.432208
0.420910
0.410239
0.400142
0.390576
0.381499
0.372874
0.364668
0.356850
0.349394
0.342274
0.335468
0.328955
0.322715
0.316732
0.310989
0.305473
0.300169
0.295065
0.290149
0.285411
0.280842
0.276431
0.272172

Sdz)
0.000000
0.038731
0.070839
0.097374
0.119222
0.137127
0.151715
0.163515
0.172971
0.180458
0.186292
0.190740
0.194027
0.196341
0.197843
0.198669
0.198931
0.198727
0.198137
0.197229
0.196062
0.194684
0.193137
0.191454
0.189665
0.187794
0.185862
0.183887
0.181881
0.179859
0.177828
0.175799
0.173777
0.171769
0.169779
0.167810
0.165866
0.163949
0.162061
0.160204
0.158377
a.'156583
0.154822
0.153093
0.151397
0.149734
0.148103
0.146505
0.144938
0.143403
0.141899

z
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
10.0

So(z)
0.272172
0.268055
0.264073
0.260220
0.256489
0.252875
0.249371
0.245973
0.242676
0.239475
0.236366
0.233344
0.230407
0.227550
0.224770
0.222064
0.219429
0.216862
0.214360
0.211920
0.209542
0.207221
0.204956
0.202745
0.200586
0.198476
0.196415
0.194401
0.192431
0.190505
0.188620
0.186777
0.184972
0.183205
0.181475
0.179780
0.178120
0.176493
0.174898
0.173335
0.171801
0.170298
0.168823
0.167375
0.165955
0.164561
0.163192
0.161848
0.160527
0.159231
0.157957

Sdz)
0.141899
0.140426
0.138982
0.137567
0.136181
0.134822
0.133491
0.132187
0.130908
0.129655
0.128427
0.127223
0.126042
0.124884
0.123749
0.122635
0.121542
0.120470
0.119418
0.118385
0.117372
0.116377
0.115400
0.114441
0.113499
0.112574
0.111665
0.110772
0.109894
0.109031
0.108183
0.107350
0.106530
0.105724
0.104932
0.104152
0.103385
0.102630
0.101888
0.101157
0.100437
0.099729
0.099032
0.098346
0.097670
0.097004
0.096348
0.095702
0.095066
0.094438
0.093820
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z
10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
11.0
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
12.0
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
13.0
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14.0
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
15.0

So(z)
0.157957
0.156705
0.155474
0.154265
0.153076
0.151907
0.150757
0.149626
0.148514
0.147419
0.146342
0.145282
0.144239
0.143212
0.142200
0.141205
0.140224
0.139258
0.138307
0.137369
0.136446
0.135535
0.134638
0.133754
0.132883
0.132024
0.131176
0.130341
0.129517
0.128704
0.127903
0.127112
0.126332
0.125562
0.124802
0.124053
0.123313
0.122582
0.121861
0.121149
0.120446
0.119752
0.119067
0.118390
0.117722
0.117061
0.116409
0.115764
0.115128
0.114498
0.113877

S,(z)
0.093820
0.093211
0.092611
0.092019
0.091436
0.090860
0.090293
0.089733
0.089181
0.088637
0.088100
0.087570
0.087048
0.086532
0.086023
0.085520
0.085024
0.084535
0.084052
0.083574
0.083103
0.082638
0.082178
0.081725
0.081276
0.080833
0.080396
0.079964
0.079537
0.079115
0.078698
0.078285
0.077878
0.077475
0.077077
0.076684
0.076295
0.075910
0.075530
0.075154
0.074782
0.074414
0.074050
0.073690
0.073334
0.072982
0.072633
0.072289
0.071948
0.071610
0.071276

z
15.0
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
16.0
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
17.0
17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
18.0
18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
19.0
19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
20.0

So(z)
0.113877
0.113262
0.112655
0.112055
0.111461
0.110875
0.110295
0.109722
0.109155
0.108594
0.108040
0.107492
0.106950
0.106414
0.105883
0.105358
0.104839
0.104326
0.103818
0.103315
0.102817
0.102325
0.101838
0.101356
0.100878
0.100406
0.099938
0.099475
0.099017
0.098563
0.098114
0.097669
0.097229
0.096792
0.096361
0.095933
0.095509
0.095089
0.094674
0.094262
0.093854
0.093450
0.093050
0.092653
0.092260
0.091871
0.091485
0.091103
0.090724
0.090348
0.089976

Sdz)
0.071276
0.070946
0.070618
0.070295
0.069974
0.069657
0.069343
0.069032
0.068724
0.068419
0.068118
0.067819
0.067523
0.067230
0.066940
0.066652
0.066368
0.066086
0.065807
0.065530
0.065256
0.064984
0.064715
0.064449
0.064184
0.063923
0.063663
0.063406
0.063152
0.062899
0.062649
0.062401
0.062155
0.061912
0.061670
0.061431
0.061193
0.060958
0.060725
0.060493
0.060264
0.060037
0.059811
0.059587
0.059366
0.059146
0.058928
0.058711
0.058497
0.058284
0.058073
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