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1. Introduction. In the last years, many authors have considered quasi-linear
problems of the kind

−�pu + V (x)up−1 = f (u), in �, and u > 0, in �

where �p is the p-Laplacian operator given by

�pu = div(|∇u|p−2∇u),

� is a domain in �N with N > p, which can be bounded or unbounded, f has subcritical
or critical growth, V is a continuous function and, in general, it is assumed Dirichlet or
Neumann boundary conditions. This class of problems arises in a lot of applications,
such as image processing, non-Newtonian fluids and pseudo-plastic fluids. For more
details see [5, 11, 13].

From the mathematical viewpoint, this class of problems is also very interesting
because the p-Laplacian operator is non-linear and many important properties that
hold for the p = 2 case (Laplacian operator) are no longer valid when we are working
with p �= 2; for example, classical regularity and bootstrap arguments.

Different approaches and techniques were explored and developed in papers
related to this class of problem, such as the symmetry of the solutions and of
the domain, the methods of symmetrization and the Principle of Concentration–
Compactness given by Lions [19]. One of the main difficulties that appear, when
the domain � is unbounded or the non-linearity f has a critical growth, is the lack of
compactness, which, in connection with the variational method approach, leads the
energy functional associated to the problem not to verify the Palais–Smale condition.

In [8], Brézis and Nirenberg considered a critical problem of the type⎧⎨⎩−�u = λu + u2∗−1, in �

u > 0, in �

u = 0, on ∂�

(1)
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where N ≥ 3 and � is a smooth bounded domain. In that paper, Brézis and Nirenberg
developed a new approach to overcome the technical difficulty associated with the
presence of the term u2∗−1. This approach consists in showing that the Palais Conditions
hold for levels in the interval (0, 1/NSN/2), where S is the best Sobolev constant
related to the embedding H1

0 (�) ↪→ L2∗
(�). After Brézis and Nirenberg [8], this

technique was widely used by many authors, such as, Struwe [22], Benci and Cerami
[6], Cerami and Passaseo [9], Passaseo [21], Ben-Naoum, Troestler and Willem [7],
Tarantello [24], Chabrowski and Yang [10], Wang [25] and see also the references
therein.

For the special case � = �N , in [6], Benci and Cerami showed that the
problem

−�u + V (x)u = u2∗−1 in �N (2)

has a positive solution if V (x) is a non-negative function, strictly positive somewhere,
having LN/2(�N) norm satisfying |V |LN/2(�N ) < S(22/N − 1) and belonging to Lt(�N),
for t in a neighbourhood of N/2. In their paper, to establish the existence of a non-trivial
critical point, they used the Struwe’s Global Compactness to prove a Compactness
Theorem for the functional related to (2), together with a variant of a deformation
lemma on manifolds.

In [9], assuming to V (x) similar hypotheses to those in [6], Cerami and Passaseo
considered the following class of problem:⎧⎨⎩

−�u + V (x)u = u2∗−1, in �N
+

u > 0, in �N
+

∂u
∂ν

= 0, on ∂�N
+

(3)

where

�N
+ = {x = (x1, . . . , xN) ∈ �N, xN > 0}

and

∂�N
+ = {x = (x1, . . . , xN) ∈ �N ; xN = 0}.

Quasi-linear problems related to (1), that is, problems involving the
p-Laplacian operator, have also been considered in a lot of papers. In many papers
where there are the presence of the p-Laplacian and a non-linearity with critical growth,
the Concentration–Compactness Principle due to Lions [19] is a key tool to prove that
the weak limit of the (PS) sequence related to energy functional is a critical point, and
thus, a weak solution for the problem. In this direction, we cite the papers of Garcia
Azorero and Peral Alonso [16, 17], Alves [1–3], Alves and El Hamidi [4], Drabek and
Pohozaev [14], Medeiros [12], Guedda and Veron [18], Hegnell [15], Noussair, Wei and
Jianfu [20] and the references therein.

In [17], Garcia Azorero and Peral Alonso showed that the main results proved in
[8] also hold for a larger class of problems involving the p-Laplacian, more precisely,
for problems of the kind ⎧⎨⎩−�pu = λuq−1 + u2∗−1, in �

u > 0, in �

u = 0, on ∂�.

(4)
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In [2], Alves, motivated by some results proved in [6], has established the existence
of positive solution for the following class of problem:

−�pu + V (x)up−1 = up∗−1 in �N . (5)

The main results of that paper completes the study made in [6], in the sense that they
are valid for p ≥ 2.

In this paper, motivated by [9], we show the existence of positive solution for the
following class of quasi-linear problems:⎧⎨⎩

−�pu + V (x)up−1 = up∗−1, in �N
+

u > 0, in �N
+

∂u
∂ν

= 0, on ∂�N
+

(P)

where p∗ = Np
N−p , N > p ≥ 2 and V : �N

+ → � is a non-negative continuous function.
Our main result completes the study initialized in [2], once we are considering the
same equation in �N

+ , but with Neumann boundary conditions. However, since we
are considering the p-Laplacian operator, it is necessary to make a careful analysis of
some estimates found in [9], because we need to use different functions for the general
case p ≥ 2 and the calculus related to these new estimates are not immediate (see, for
example, the proof of Lemma 2.2 in Section 2).

Throughout this work, D1,p(�N
+) denotes the closure of C∞(�N

+) with respect to
the norm

‖u‖ =
(∫

�N+
|∇u|p

) 1
p

,

where we state that � ∈ C∞(�N
+), if there is �̂ ∈ C∞

0 (�N) such that �̂(x) =
�(x), ∀x ∈ �N

+ . We denote by J : D1,p(�N
+) → � the functional given by

J(u) =
∫

�N+
(|∇u|p + V (x) |u|p) (6)

and by M the manifold

M =
{

u ∈ D1,p(�N
+);

∫
�N+

|u|p∗ = 1

}
.

It is well known that positive critical points of J constrained on M are solutions
of (P).

To state our main result, we need some previous definitions and notations. In
relation to function V , we will assume the following hypotheses:{

(i) V (x) ≥ 0, ∀x ∈ �N
+

(ii) V ∈ LN/p(�N
+), |V |LN/p(�N+ ) �= 0.

(7)

In the sequel, we denote by S and 	, respectively, the best Sobolev constants of the
embeddings

D1,p(�N) ↪→ Lp∗
(�N)
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and

D1,p(�N
+) ↪→ Lp∗

(�N
+),

which are given by

S = inf
{∫

�N
|∇u|p ; u ∈ D1,p(�N), |u|Lp∗ (�N ) = 1

}
(8)

and

	 = inf

{∫
�N+

|∇u|p ; u ∈ D1,p(�N
+), |u|Lp∗ (�N+ ) = 1

}
. (9)

From Talenti [23], the constant S is achieved by the function

ψ1,0(x) = U(x)
|U|Lp∗ (�N )

, where U(x) = 1[
1 + |x| p

p−1
] N−p

p

,

and all the minimizers for S are of the type

ψσ,y(x) = σ
− (N−p)(p−1)

p2 ψ1,0

(
x − y

σ
p−1

p

)
, σ > 0, y ∈ �N . (10)

Moreover, by direct calculus, the above information yields 	 = 2−p/NS, the constant
	 is achieved by the function

ψ̃1,0(x) = 21/p∗
ψ1,0(x) ∀x ∈ �N

+

and all the minimizers for 	 are of the type

ψ̃σ,y(x) = σ
− (N−p)(p−1)

p2 ψ̃1,0

(
x − y

σ
p−1

p

)
, σ > 0, y ∈ ∂�N

+ . (11)

THEOREM 1.1. Assume (7) and

|V |LN/p(�N+ ) < S − 	. (12)

Then, problem (P) has a positive solution u ∈ D1,p(�N
+).

To conclude this introduction, we would like to emphasize that the restriction p ≥ 2
is assumed here because we use a Global Compactness Lemma for the p-Laplacian
operator given by Alves [2], that was proved assuming such restriction.

2. Preliminary remarks. In this section, we will show some properties of the
constant 	 and prove the Palais–Smale condition for J constrained to M.

Our first proposition shows that it is impossible to find a solution for (P) by direct
minimization of the functional J constrained on M. The proof of this result for p = 2
can be found in [9]. For the general case p ≥ 2 the proof is similar, since we can use the
estimates proved in [1, 16, 17]. This way, this proof will be omitted.
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PROPOSITION 2.1. Assume that (7) holds and consider

	∗ = inf{J(u) : u ∈ M}. (13)

Then, 	∗ = 	 and the minimization problem (13) has no solution.

The next lemma is very important in our arguments, because it shows a sufficient
condition which guarantees that the critical point of J on M does not change its sign.

LEMMA 2.1. Let V be a function verifying (7). If u is a critical point of J on M
satisfying J(u) ≤ S, then u does not change sign.

Proof. The proof follows using the definition of 	 and the relation
	 = 2−p/NS. �

The next proposition establishes the existence of an interval where the functional
J verifies the Palais-Smale condition on M.

PROPOSITION 2.2. Assume that V satisfies (7) and let {un} ⊂ M be a sequence
verifying

J(un) → c and J
′ |M(un) → 0,

with c ∈ (	, S). Then {un} has a subsequence strongly convergent in D1,p(�N
+).

Proof. If u∗
n and V∗ denote the functions obtained by un and V extended to the

whole �N by reflection, we have that

u∗
n ∈ D1,p(�N) ∀n ∈ �.

Moreover, ∣∣∣∣ u∗
n

21/p∗

∣∣∣∣
Lp∗ (�N )

= 1,
1

2p/p∗

∫
�N

(|∇u∗
n|p + V∗ |u∗

n|p
) → 2p/Nc

and∫
�N

(|∇u∗
n|p−2 ∇u∗

n ∇v + V∗ |u∗
n|p−2 u∗

n v
) + (2p/N + on(1))

∫
�N

|u∗
n|p−2 u∗

n v = on(1),

for all v ∈ D1,p(�N).

Since 2p/Nc ∈ (S, 2p/NS), from [2, Corollary 4], { u∗
n

21/p∗ } is relatively compact, and

thus {un} is also relatively compact. �
Hereafter, � denotes the projection of �N on ∂�N

+ , i.e.

�(x1, x2, . . . , xN) = (x1, x2, . . . , xN−1, 0).

Using the function �, we consider the functions β : D1,p(�N
+) → ∂�N

+ and γ :
D1,p(�N

+) → � given by

β(u) =

∫
�N+

�(x)
1 + |�(x)| |u|p∗

|u|p∗

Lp∗ (�N+ )
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and

γ (u) =

∫
�N+

∣∣∣∣ �(x)
1 + |�(x)| − β(u)

∣∣∣∣ |u|p∗

|u|p∗

Lp∗ (�N+ )

.

For all ρ > 0 and y ∈ �N , let us denote by �ρ(y) the following set:

�ρ(y) = {
x ∈ �N

+ : |�(x) − �(y)| < ρ
}
.

The next lemma is a technical result and a key point in this work, because we use
it in the proof of other results that will appear later.

LEMMA 2.2. Let {un} be a sequence in D1,p(�N
+) verifying

{un} ⊂ M, lim
n→+∞

∫
�N+

|∇un|p = 	, β(un) = 0 and γ (un) = 1
3
.

Then, up to subsequences, there are three sequences {σn} ⊂ �+, {yn} ⊂ ∂�N
+ and {wn} ⊂

D1,p(�N
+) such that

• un = ψ̃σn,yn + wn,

• {σn} and {yn} are bounded,
and
• wn → 0 in D1,p(�N

+).

Proof. From the result by Alves [2, Lemma 2], we have that

un(x) = ψ̃σn, yn (x) + wn(x), ∀x ∈ �N
+,

where

σn ∈ �+\{0}, yn ∈ ∂�N
+

and wn is a sequence that goes strongly to zero in D1,p(�N
+). Consequently, for all ρ > 0∫

�ρ (0)
|un|p∗

dx =
∫

�ρ (0)
|ψ̃σn, yn |p

∗ + on(1). (14)

Using the last equality, we have the following claim:

Claim 2.1. If {σn} is unbounded, for some subsequence, still denoted by {σn}, we
have that

lim
n→+∞

∫
�ρ (0)

|un|p∗ = lim
n→+∞

∫
�n

∣∣∣∣ψ̃1,0

(
x − yn

σ
(p−1)/p
n

)∣∣∣∣p∗

= 0, (15)

where �n = � ρ

σ
(p−1)/p
n

(0).

In fact, note firstly that∫
�ρ (0)

|un|p∗ =
∫

�n

∣∣∣∣ψ̃1,0

(
x − yn

σ
(p−1)/p
n

)∣∣∣∣p∗

+ on(1).
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Assuming that for some subsequence

lim
n→+∞ σn = +∞,

and studying the cases

(i)
{

yn

σ
(p−1)/p
n

}
is unbounded

(ii)
yn

σ
(p−1)/p
n

→ y for some subsequences

it is easy to check that (15) holds and the proof of the claim is complete.
From Claim 2.1, we are able to prove that {σn} is bounded. Arguing by

contradiction, if {σn} is unbounded, there is a subsequence, still denoted by {σn},
such that

lim
n→+∞ σn = +∞.

This limit combined with Claim 2.1 yields

lim
n→+∞

∫
�ρ (0)

|un|p∗ = 0. (16)

Since β(un) = 0, for all ρ > 0 we derive that

lim inf
n→+∞ γ (un) ≥ ρ

1 + ρ
, ∀ρ > 0

and thus

lim inf
n→+∞ γ (un) ≥ 1. (17)

On the other hand,

0 ≤ γ (un) ≤
∫

�N+
|un|p∗ = 1,

then

lim sup
n→+∞

γ (un) ≤ 1. (18)

From (17) and (18)

lim
n→+∞ γ (un) = 1

obtaining, therefore, an absurd. Thus {σn} is bounded and we can assume that

lim
n→+∞ σn = σ with σ ≥ 0.

We claim that σ is positive. In fact, if σ = 0, for all ρ > 0 we have that

lim
n→+∞

∫
�N+\�ρ (yn)

|un|p∗ = 0. (19)
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From (19), there is M > 0 verifying

|yn|
1 + |yn| ≤ M ρ + on(1). (20)

Hence,

lim sup
n→+∞

|yn|
1 + |yn| ≤ Mρ, ∀ρ > 0

from where it follows

lim
n→+∞ |yn| = 0.

On the other hand,

lim
n→+∞ γ (un) = lim

n→+∞

∫
�N+

∣∣∣∣ �(x)
1 + |�(x)| − β(un)

∣∣∣∣ |un|p∗ = lim
n→+∞

∫
�N+

∣∣∣∣ �(x)
1 + |�(x)|

∣∣∣∣ |un|p∗

leading to the limit

lim
n→+∞ γ (un) = lim

n→+∞

∫
�N+

∣∣∣∣ �(x)
1 + |�(x)| − yn

1 + |yn|
∣∣∣∣ |un|p∗ = 0 (21)

obtaining again an absurd.
Now, we are able to prove that {ym} is bounded. We again argue by contradiction,

supposing that there is a subsequence, still denoted by {ym}, verifying

lim
m→+∞ |ym| = +∞.

Then, fixed ε > 0, there is R > 0 and m0 ∈ � such that

|�(x) − ym| < R ⇒
∣∣∣∣ �(x)
1 + |�(x)| − ym

1 + |ym|
∣∣∣∣ < ε ∀m ≥ m0 (22)

and ∫
�N+\�R(ym)

|ψ̃σ , ym |p∗ =
∫

�N+\�R(0)
|ψ̃σ , 0|p∗

< ε. (23)

From (22) and (23),∣∣∣∣β(um) − ym

1 + |ym|
∣∣∣∣ ≤ ε + 2ε + om(1) = 3ε + om(1)

leading to the limit

|β(um)| → 1, as m → +∞,

which contradicts the fact that β(um) = 0. Therefore, {ym} is bounded. �
The next two propositions establish important properties involving the functions

β, γ and the constant 	.
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PROPOSITION 2.3. Let V ∈ LN/p(�N
+) be a non-negative function with |V |LN/p(�N+ ) �= 0.

Then,

	 < inf

{∫
�N+

(|∇u|p + V |u|p) : u ∈ D1,p(�N
+), |u|Lp∗ (�N+ ) = 1, β(u) = 0, γ (u) = 1

3

}
.

(24)

Proof. From the definition of 	,

inf

{∫
�N+

(|∇u|p + V |u|p) : u ∈ D1,p(�N
+), |u|Lp∗ (�N+ ) = 1, β(u) = 0, γ (u) = 1

3

}
≥ 	.

To prove (24), we argue by contradiction by supposing that the equality holds in
the above relation. Thus, there is a sequence {un} ⊂ D1,p(�N

+) verifying

⎧⎨⎩
(a) |un|Lp∗ (�N+ ) = 1, β(un) = 0, γ (un) = 1

3

(b) lim
n→+∞

∫
�N+

(|∇un|p + V |un|p) = 	.
(25)

Since V (x) ≥ 0 ∀x ∈ �N
+ ,

	 = lim
n→+∞

∫
�N+

(|∇un|p + V |un|p) ≥ lim
n→+∞

∫
�N+

|∇un|p ≥ 	

from where it follows

	 = lim
n→+∞

∫
�N+

|∇un|p.

Using the uniqueness of the family of functions ψ̃σ, y and a result by Alves [2, Lemma 2],
we deduce that

un(x) = ψ̃σn, yn (x) + wn(x), ∀x ∈ �N
+

where

σn ∈ �+\{0}, yn ∈ ∂�N
+

and wn is a sequence that goes strongly to zero in D1,p(�N
+).

From Lemma 2.2, without loss of generality, we can assume that

lim
n→+∞ σn = σ > 0, lim

n→+∞ yn = y ∈ ∂�N
+

and

ψ̃σn, yn → ψ̃σ , y in D1,p(�N
+) and Lp∗

(�N
+). (26)

From (25b) and (26), it follows that∫
�N+

V |ψ̃σ , y|p = 0,
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which is an absurd, because ψ̃σ , y is positive. Thus, inequality (24) is
proved. �

3. Technical results. Hereafter, we assume that V verifies (7) and (12). Moreover,
let us denote by CV the following real number:

CV = inf

{∫
�N+

(|∇u|p + V |u|p); u ∈ M, β(u) = 0, γ (u) = 1
3

}
.

From (7) and Proposition 2.3, we derive that

CV > 	.

Using the numbers CV and 	, we consider a new number C given by

C = CV + 	

2

and remark that the following inequality holds:

	 < C < CV .

In the sequel, we denote by ϕ a function that belongs to W 1,p
0 (B1(0)) and has the

following properties:

⎧⎪⎪⎨⎪⎪⎩
(i) ϕ ∈ C∞

0 (B1(0)), ϕ(x) > 0 ∀ x ∈ B1(0)
(ii) ϕ is radially symmetric and |x1| < |x2| ⇒ ϕ(x1) > ϕ(x2)
(iii) |ϕ|Lp∗ (�N+∩B1(0)) = 1
(iv) 	 <

∫
�N+∩B1(0) |∇ϕ|pdx ≡ 	 < min

{
C, S − |V |LN/p(�N+ )

}
.

(27)

For every σ > 0 and y ∈ �N , we set

ϕσ,y(x) =
{

σ−(N−p)/p2
ϕ
( x−y

η

)
, x ∈ Bη(y)

0 , x �∈ Bη(y)

where η = p
√

σ . From the definition of ϕσ,y, it follows that

|ϕσ,y|Lp∗ (�N+ ) = |ϕσ,y|Lp∗ (Bη(y)) = |ϕ|Lp∗ (B1(0))

and

|∇ϕσ,y|Lp(�N+ ) = |∇ϕσ,y|Lp(Bη(y)) = |∇ϕ|Lp(B1(0)).
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LEMMA 3.1. Let V ∈ LN/p(�N
+) be a non-negative function. Then,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) lim
σ→0

sup

{∫
�N+

Vϕp
σ,y : y ∈ ∂�N

+

}
= 0

(b) lim
σ→+∞ sup

{∫
�N+

Vϕp
σ,y : y ∈ ∂�N

+

}
= 0

(c) lim
r→+∞ sup

{∫
�N+

Vϕp
σ,y : |y| = r, σ > 0, y ∈ ∂�N

+

}
= 0

(28)

Proof. For y ∈ ∂�N
+ and σ > 0,∫

�N+
Vϕp

σ,y =
∫

�N+∩Bη(y)
Vϕp

σ,y ≤ |V |LN/p(�N+∩Bη(y))|ϕσ,y|Lp∗ (�N+∩Bη(y)),

and thus ∫
�N+

Vϕp
σ,y ≤ |V |LN/p(�N+∩Bη(y)) .

The last inequality implies

sup

{∫
�N+

Vϕp
σ,y : y ∈ ∂�N

+

}
≤ sup

{|V |LN/p(�N+∩Bη(y)) : y ∈ ∂�N
+
}
.

Since, for each ε > 0, there is σ0 > 0 such that

|V |LN/p(�N+∩Bη(y)) < ε ∀ σ ∈ (0, σ0) e ∀ y ∈ ∂�N
+

we can conclude that (28a) holds.
To prove (28b), note that for all ρ, σ > 0 and y ∈ ∂�N

+ we get∫
�N+

Vϕp
σ,y =

∫
�N+∩Bρ (0)

Vϕp
σ,y +

∫
�N+\Bρ (0)

Vϕp
σ,y

and consequently ∫
�N+

Vϕp
σ,y ≤ C1|ϕσ,y|pLp∗ (Bρ (0)) + |V |LN/p(�N+\Bρ (0)).

Now, for each ε > 0, there is σ0, ρ0 > 0 verifying

|ϕσ,y|pLp∗ (Bρ (0)) <
ε

2C1
∀ σ ∈ (σ0,+∞), ∀ y ∈ ∂�N

+

and

|V |LN/p(�N+\Bρ (0)) <
ε

2
∀ ρ ≥ ρ0.
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Therefore, ∫
�N+

Vϕp
σ,y < ε ∀ σ ∈ (σ0,+∞), ∀ y ∈ ∂�N

+

which implies

sup
y∈∂�N+

∫
�N+

Vϕp
σ,y < ε ∀ σ ∈ (σ0,+∞)

and the proof of (28b) is complete.
To prove (28c), we will assume by contradiction that there are sequences {yn} ⊂

∂�N
+ and {σn} ⊂ (0,+∞) verifying

lim
n→+∞

∫
�N+

Vϕp
σn,yn

= L > 0 and |yn| → +∞. (29)

From (28a, b), we can suppose

lim
n→+∞ σn = σ > 0.

Using the hypotheses

|yn| → +∞ and V ∈ LN/p(�N
+)

we get

lim
n→+∞ |V |LN/p(�N+∩Bηn (yn)) = 0, ηn = p

√
σn.

The last limit leads to

lim
n→+∞

∫
�N+

Vϕp
σn,yn

≤ lim
n→+∞ |V |LN/p(�N+∩B

σ
1/p
n

(yn)) = 0,

which contradicts (29). �
LEMMA 3.2. The following relations hold:⎧⎪⎨⎪⎩

(a) lim
σ→0

sup
{
γ (ϕσ,y) : y ∈ ∂�N

+
} = 0

(b) lim
σ→+∞ inf

{
γ (ϕσ,y) : y ∈ ∂�N

+, |y| ≤ r
} = 1, ∀ r > 0

(c)
(
β(ϕσ,y) | y

)
�N > 0: ∀ y ∈ ∂�N

+\{0}, ∀ σ > 0

(30)

Proof. Let y ∈ ∂�N
+ be chosen arbitrarily. Repeating the same arguments as

explored by Cerami and Passaseo [9], there is M > 0 such that

0 ≤ γ (ϕσ,y) ≤ 2M p
√

σ ∀ y ∈ ∂�N
+ and ∀ σ > 0,

and thus

0 ≤ sup
{
γ (ϕσ,y) : y ∈ ∂�N

+
} ≤ 2M p

√
σ ∀ σ > 0

proving (30a).
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To prove (30b), we begin showing that for each y ∈ ∂�N
+

lim
σ→+∞ |β(ϕσ,y)| = 0. (31)

Since β(ϕσ,0) = 0,

|β(ϕσ,y)| = |β(ϕσ,y) − β(ϕσ,0)| ≤
∫

�N+

|�(x)|
1 + |�(x)|

∣∣ϕp∗
σ,y − ϕ

p∗
σ,0

∣∣
then

|β(ϕσ,y)| ≤
∫

�N+

∣∣ϕp∗

1,
y
σ

− ϕ
p∗
1,0

∣∣ σ→∞−→ 0.

Now, fix r > 0 arbitrarily and let y ∈ ∂�N
+ with |y| ≤ r. For any σ > 0, we get the

inequality

γ (ϕσ,y) ≤ 1 + |β(ϕσ,y)|,

which together with (31) implies

lim sup
σ→+∞

[
inf

{
γ (ϕσ,y) : y ∈ ∂�N

+, |y| ≤ r
}] ≤ 1. (32)

If

lim sup
σ→+∞

[
inf

{
γ (ϕσ,y) : y ∈ ∂�N

+, |y| ≤ r
}]

< 1,

there is {σn} ⊂ (0,+∞) and {yn} ⊂ ∂�N
+ satisfying

σn → +∞ , yn → y ∈ Br(0)

and

lim
n→+∞ γ (ϕσn,yn ) = A < 1. (33)

From (31),

lim
n→+∞ γ (ϕσn,yn ) ≥ ρ

1 + ρ
∀ ρ > 0.

From this, since ρ > 0 is arbitrary, we have that

lim
n→+∞ γ (ϕσn,yn ) ≥ 1

obtaining a contradiction with (33). Thus, the equality in (32) holds and the proof of
(30b) is finished.

Now, we will prove (30c). If 0 �∈ B p√σ (y), we have

(�(x) | y) > 0
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and thus

(β(ϕσ,y) | y) > 0.

if 0 ∈ B p√σ (y), for each x ∈ Bσ (y) ∩ �N
+ verifying

(�(x) | y) < 0,

the point x, symmetrical to −x with respect to ∂�N
+ , belongs to Bσ (y) ∩ �N

+ and

(�(x) | y) > 0

which leads to (
β(ϕσ,y) | y

) =
∫

�N+∩B p√σ (y)

(�(x)|y)
1 + |�(x)| |ϕσ,y|p∗

> 0.

�
COROLLARY 3.1. Let V satisfy (7), (12) and ε > 0 verify

	 + ε < min
{
C, S − |V |LN/p(�N+ )

}
.

Then, there are r, σ1, σ2 > 0 with

0 < σ1 <
1
3

< σ2

such that

γ (ϕσ1,y) <
1
3

, γ (ϕσ2,y) >
1
3

∀ y ∈ ∂�N
+ (34)

and

sup

{∫
�N+

[|∇ϕσ,y|p + V |ϕσ,y|p
]
; (y, σ ) ∈ ∂K

}
< 	 + ε/2 (35)

where

K = {
(y, σ ) ∈ ∂�N

+ × �+ : |y| ≤ r, σ ∈ [σ1, σ2]
}
. (36)

Proof. The proof follows by using the same type of arguments as found in [9]. �

COROLLARY 3.2. Assume that V satisfies (7)–(12) and let ε, σ1, σ2 and r be the
numbers given in Corollary 3.1 and K defined in (36). Then,

sup

{∫
�N+

[|∇ϕσ,y|p + V |ϕσ,y|p
]
; (y, σ ) ∈ ∂K

}
< S. (37)
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Proof. For all y ∈ ∂�N
+ and σ > 0∫

�N+
V |ϕσ,y|p ≤ |V |LN/p(�N+ )|ϕσ,y|pLN/p(�N+ )

≤ |V |LN/p(�N ).

Using the last inequality and (27), it follows that∫
�N+

[|∇ϕσ,y|p + V |ϕσ,y|p
]

< 	 + |V |LN/p(�N ) < S ∀(y, σ ) ∈ ∂K,

from where it follows the lemma. �
LEMMA 3.3. Let K be the set defined in (36) with σ1, σ2 and r chosen as in Corollary

3.1. Then, there is (̂y, σ̂ ) ∈ ◦
K satisfying

β(ϕσ̂ ,̂y) = 0 and γ (ϕσ̂ ,̂y) = 1
3
.

Proof. The proof of this proposition follows by adapting arguments found
in [9]. �

Proof of Theorem 1.1. Hereafter, let us denote by b the following real number

b = sup{J(ϕσ,y) : (y, σ ) ∈ K}
and fix ε > 0 verifying

	 + ε < min
{
C, S − |V |LN/p(�N+ )

}
.

Using (37) and Lemma 3.3, we get

	 < C < CV ≤ J(ϕσ̂ ,̂y) ≤ b < S.

We will prove that functional J constrained to M has a critical level in the interval
(C, S). In order to achieve this goal, we fix δ > 0 satisfying

C < CV − δ < b + δ < S (38)

and suppose that{
u ∈ M : CV − δ ≤ J(u) ≤ b + δ; J ′∣∣

V (u) = 0
} = ∅.

From (38) and Proposition 2.2, the pair (J,M) satisfies the Palais–Smale condition in
( CV − δ, b + δ). Therefore, it is possible to find a continuous map η : [0, 1] × M → M
and a positive number ε1 < δ verifying
� η(0, u) = u, ∀ u ∈ M
� η(t, u) = u, ∀ u ∈ JCV −ε1 ∪ (M \ Jb+ε1 ), ∀ t ∈ [0, 1]
� (J ◦ η)(t, u) ≤ J(u) ∀t ∈ [0, 1]
� η(1, Jb+ε1 ) ⊂ JCV −ε1 .
From the above information,

(y, σ ) ∈ K ⇒ J(ϕσ,y) < b ⇒ J(η(1, ϕσ,y)) < CV − ε1. (39)
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Repeating the same arguments as found in [9], we will find (σ ∗, y∗) ∈ K verifying

J(η(1, ϕσ ∗,y∗ )) ≥ CV > CV − ε1

which contradicts (39). Therefore, the functional J constrained on M has at least one
critical point u ∈ M with C < J(u) < S. �
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