POSITIVE SOLUTIONS TO $p(x)$-LAPLACIAN-DIRICHLET PROBLEMS WITH SIGN-CHANGING NON-LINEARITIES

XIANLING FAN
Department of Mathematics, Lanzhou City University, Lanzhou 730070, PR China Department of Mathematics, Lanzhou University, Lanzhou 730000, PR China
e-mail:fanxl@lzu.edu.cn

(Received 8 March 2009; revised 14 January 2010; accepted 21 February 2010)

Abstract

Consider the $p(x)$-Laplacian-Dirichlet problem with sign-changing non-linearity of the form $$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)+m(x)|u|^{p(x)-2} u=\lambda a(x) f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain, $p \in C^{0}(\bar{\Omega})$ and $\inf _{x \in \bar{\Omega}} p(x)>1, m \in L^{\infty}(\Omega)$ is non-negative, $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(0)>0$, the coefficient $a \in L^{\infty}(\Omega)$ is sign-changing in Ω. We give some sufficient conditions to assure the existence of a positive solution to the problem for sufficiently small $\lambda>0$. Our results extend the corresponding results established in the p-Laplacian case to the $p(x)$-Laplacian case.

2010 Mathematics Subject Classification. 35J70.

1. Introduction. In this paper, we consider the existence of positive solutions for the following $p(x)$-Laplacian-Dirichlet problem of the form

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)+m(x)|u|^{p(x)-2} u=\lambda a(x) f(u) & \text { in } \Omega, \tag{1.1}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where Ω is a bounded smooth domain in $\mathbb{R}^{N}, \lambda>0$, the function $a(x)$ is allowed to change sign, p, m and f satisfy the following conditions, respectively:
(P) $p \in C^{0}(\bar{\Omega})$ and $1<p_{-}:=\inf _{x \in \bar{\Omega}} p(x) \leq p_{+}:=\sup _{x \in \bar{\Omega}} p(x)<+\infty$.
(M) $m \in L^{\infty}(\Omega)$ and $m(x) \geq 0$ for $x \in \Omega$.
$(F) f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(0)>0$.
Problem (1.1) involves the variable exponent $p(\cdot)$. The study of various mathematical problems with variable exponent has received considerable attention in recent years. For a survey of this area see $[\mathbf{4}, \mathbf{7}, \mathbf{2 0}, 28]$, and for the application background see [21, 27]. The existence and multiplicity of solutions to the $p(x)$ Laplacian equations under various hypotheses were studied by many authors (see e.g. $[\mathbf{3}, \mathbf{8}, \mathbf{1 0}-\mathbf{1 2}, \mathbf{1 6}, \mathbf{2 3}-\mathbf{2 6}, \mathbf{2 9}, \mathbf{3 0}])$. In this paper, we study the existence of a positive solution to problem (1.1) for sufficiently small $\lambda>0$.

The existence of positive solutions to problem (1.1) when $p(x) \equiv p$ (a constant) was obtained in $[\mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{1 7}, \mathbf{1 8}]$. In $[\mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{1 7}]$ the case that $p=2$ and $m=0$ was investigated, where in [5] the radially symmetric case was investigated. Hai and Xu [18] investigated the case that $p \in(1, \infty)$ and $m \geq 0$. In $[\mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{1 7}, \mathbf{1 8}]$ the authors gave
some sufficient conditions on $a(x)$ to assure the existence of a positive solution for small values of λ. We denote by $S_{p}(a)$ the unique solution of the problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla z|^{p-2} \nabla z\right)+m|z|^{p-2} z=a(x) & \text { in } \Omega \tag{1.2}\\ z=0 & \text { on } \partial \Omega\end{cases}
$$

for $a \in L^{\infty}(\Omega)$. Then the condition given in $[\mathbf{6}, \mathbf{1 7}]$ is
$\left(A_{\varepsilon}^{\geq}\right)$there exists $\varepsilon>0$ such that $S_{2}\left(a^{+}-(1+\varepsilon) a^{-}\right) \geq 0$ in Ω, where $a^{+}(x)=$ $\max \{0, a(x)\}$ and $a^{-}(x)=a^{+}(x)-a(x)$.

The condition given in $[\mathbf{2}, \mathbf{1 8}]$ is
$\left(A_{*}\right) S_{p}(a)>0$ in Ω and $\frac{\partial S_{p}(a)}{\partial \nu}<0$ on $\partial \Omega$, where ν denotes the unit outward normal vector.

The $p(x)$-Laplacian is an extension of the p-Laplacian. An essential difference between them is that the p-Laplacian operator is $(p-1)$ homogeneous, that is, $\Delta_{p}(\lambda u)=$ $\lambda^{p-1} \Delta_{p} u$ for every $\lambda>0$, but the $p(x)$-Laplacian operator, when $p(x)$ is not a constant, is not homogeneous. Our purpose is to extend the corresponding results established in $[\mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{1 7}, \mathbf{1 8}]$ on the p-Laplacian problems to the $p(x)$-Laplacian case; however, in this respect we face an essential difficulty due to the inhomogeneity of the $p(x)$-Laplacian operator. It is well known that, in the case that $p(x) \equiv p$ (a constant), if z is a positive solution of (1.2), then, by the ($p-1$)homogeneity of the p-Laplacian operator, for any $\lambda>0, \lambda^{\frac{1}{p-1}} z$ is exactly a positive solution of the problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla z|^{p-2} \nabla z\right)+m|z|^{p-2} z=\lambda a(x) & \text { in } \Omega \tag{1.3}\\ z=0 & \text { on } \partial \Omega\end{cases}
$$

This fact plays an important role in $[\mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{1 7}, \mathbf{1 8}]$. It is a pity that, in the $p(x)$-Laplacian case, such fact does not hold. To see this, in Section 2 we give an example which shows that there are $p(x)$ and $a(x)$ such that the corresponding problem (1.2) with $p=p(x)$ has a positive solution, but for sufficiently small $\lambda>0$, the corresponding problem (1.3) with $p=p(x)$ has no positive solution. Such an example shows that the condition of the same form as (A_{ε}^{\geq}) or $\left(A_{*}\right)$ is not suitable for the variable exponent problems considered in the present paper. In order to achieve our goal we must find some new conditions which are different from $\left(A_{\varepsilon}^{\geq}\right)$and $\left(A_{*}\right)$ in form, but include $\left(A_{\varepsilon}^{\geq}\right)$and $\left(A_{*}\right)$ as a special case when p is a constant.

In Section 2, we give some preliminaries about the $p(x)$-Laplacian and also give an example as mentioned above. In Section 3, we give some sufficient conditions for the existence of a positive solution to problem (1.1) for sufficiently small $\lambda>0$. Our results are a generalization of the corresponding results established in $[\mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{1 7}, \mathbf{1 8}]$ for the p-Laplacian case to the $p(x)$-Laplacian case.
2. Preliminaries and example. In this paper, if there is no other explanation, it will always be assumed that Ω is a bounded smooth domain in \mathbb{R}^{N} and p and m satisfy (P) and (M).

The variable exponent Lebesgue space $L^{p(\cdot)}(\Omega)$ is defined by

$$
L^{p(\cdot)}(\Omega)=\left\{u \mid u: \Omega \rightarrow \mathbb{R} \text { is measurable, } \int_{\Omega}|u|^{p(x)} d x<\infty\right\}
$$

with the norm

$$
|u|_{L^{p()}(\Omega)}=|u|_{p(\cdot)}=\inf \left\{\sigma>\left.0\left|\int_{\Omega}\right| \frac{u}{\sigma}\right|^{p(x)} d x \leq 1\right\} .
$$

The variable exponent Sobolev space $W^{1, p(\cdot)}(\Omega)$ is defined by

$$
W^{1, p(\cdot)}(\Omega)=\left\{u \in L^{p \cdot \cdot}(\Omega)| | \nabla u \mid \in L^{p(\cdot)}(\Omega)\right\}
$$

with the norm

$$
\|u\|_{W^{1, p()}(\Omega)}=\|u\|_{1, p(\cdot)}=|u|_{p(\cdot)}+|\nabla u|_{p(\cdot)} .
$$

Denote by $W_{0}^{1, p(\cdot)}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p p \cdot)}(\Omega) .|\nabla u|_{p(\cdot)}$ is an equivalent norm on $W_{0}^{1, p(\cdot)}(\Omega)$. We refer to $[\mathbf{4}, \mathbf{7}, \mathbf{1 4}, \mathbf{1 9}, \mathbf{2 2}, \mathbf{2 8}]$ for the elementary properties of the space $W^{1, p(x)}(\Omega)$.
$u \in W_{0}^{1, p(\cdot)}(\Omega)$ is said to be a (weak) solution of (1.1) if

$$
\int_{\Omega}\left(|\nabla u|^{p(x)-2} \nabla u \nabla v+m(x)|u|^{p(x)-2} u v\right) d x=\lambda \int_{\Omega} a(x) f(u) v d x, \forall v \in W_{0}^{1, p(\cdot)}(\Omega) .
$$

Define $T=T_{p(\cdot)}: W_{0}^{1, p(\cdot)}(\Omega) \rightarrow\left(W_{0}^{1, p(\cdot)}(\Omega)\right)^{*}$ by

$$
T(u) v=\int_{\Omega}\left(|\nabla u|^{p(x)-2} \nabla u \nabla v+m(x)|u|^{p(x)-2} u v\right) d x, \forall u, v \in W_{0}^{1, p(\cdot)}(\Omega) .
$$

Proposition 2.1. ([12]) The mapping $T: W_{0}^{1, p(\cdot)}(\Omega) \rightarrow\left(W_{0}^{1, p(\cdot)}(\Omega)\right)^{*}$ is a strictly monotone homeomorphism, and is of type (S_{+}), namely for any sequence $\left\{u_{n}\right\} \subset W_{0}^{1, p(\cdot)}(\Omega)$ for which $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(\cdot)}(\Omega)$ and $\overline{\lim }_{n \rightarrow \infty} T\left(u_{n}\right)\left(u_{n}-u\right) \leq 0, u_{n}$ must converge strongly to u in $W_{0}^{1, p(\cdot)}(\Omega)$, where ' \rightharpoonup ' denotes the weak convergence in $W_{0}^{1, p(\cdot)}(\Omega)$.

Denote by $S=S_{p(\cdot)}$ the inverse mapping of T. Then the mapping $S=T^{-1}$: $\left(W_{0}^{1, p(\cdot)}(\Omega)\right)^{*} \rightarrow W_{0}^{1, p(\cdot)}(\Omega)$ is a strictly monotone homeomorphism. We often view S as the solution operator for the problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)+m(x)|u|^{p(x)-2} u=h(x) & \text { in } \Omega \tag{2.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

namely, we denote by $S(h)$ the (unique) solution of (2.1), and according to the different ranges of h and $S(h)$, we may have the different understandings of the mapping S.

Proposition 2.2. (1) For every $h \in L^{\infty}(\Omega)$, (2.1) has a unique solution $S(h)$ and $S(h) \in L^{\infty}(\Omega)$.
(2) (Comparison principle) The mapping $S: L^{\infty}(\Omega) \rightarrow L^{\infty}(\Omega)$ is increasing, that is, $S(h) \leq S(g)$ in Ω if $h \leq g$ in Ω.
(3) The mapping $S: L^{\infty}(\Omega) \rightarrow L^{\infty}(\Omega)$ is bounded, and there is a positive constant C_{*}, dependent on p_{+}, p_{-}, N and $|\Omega|$, such that

$$
|S(h)|_{L^{\infty}(\Omega)} \leq C_{*} \max \left\{|h|_{L^{\infty}(\Omega)}^{\frac{1}{p_{+1}}},|h|_{L^{\infty}(\Omega)}^{\frac{1}{p_{-1}}}\right\} \text { for all } h \in L^{\infty}(\Omega) .
$$

Proof. For statement (1) see [13], and for statement (2) see [10]. Here we only prove statement (3). First, let us consider the case that $h(x) \equiv M$ (a constant). By [10, Lemma 2.1], there exists a positive constant C_{*}, dependent on p_{+}, p_{-}, N and $|\Omega|$, such that

$$
|S(M)|_{L^{\infty}(\Omega)} \leq C_{*} \max \left\{|M|^{\frac{1}{p_{+}-1}},|M|^{\frac{1}{p_{-}-1}}\right\} \text { for all } M \in \mathbb{R} .
$$

(Note that Lemma 2.1 in [10] was proved for the case that $m=0$, in fact, the proof of the same result in the case when $m \neq 0$ is similar and the constant C_{*} is independent of m). Then, for any $h \in L^{\infty}(\Omega)$, statement (3) follows from the above inequality for the constant function M and the comparison principle (2).
p is said to be Hölder continuous on $\bar{\Omega}$ if there exist constants $\alpha \in(0,1)$ and $L>0$ such that $|p(x)-p(y)| \leq L|x-y|^{\alpha}$ for all $x, y \in \bar{\Omega}$. p is said to be Log-Hölder continuous on $\bar{\Omega}$ if there exists a positive constant L such that

$$
|p(x)-p(y)| \leq \frac{L}{-\ln |x-y|} \quad \text { for all } x, y \in \bar{\Omega} \text { with }|x-y| \leq \frac{1}{2}
$$

It is obvious that Lipschitz continuity \Longrightarrow Hölder continuity \Longrightarrow Log-Hölder continuity.

Proposition 2.3. (1) ($[\mathbf{1}, \mathbf{1 0}, \mathbf{1 3}])$ When p is Log-Hölder continuous on $\bar{\Omega}$, for every $h \in L^{\infty}(\Omega), S(h)$ is Hölder continuous on $\bar{\Omega}$, and therefore, the mapping $S: L^{\infty}(\Omega) \rightarrow$ $C^{0}(\bar{\Omega})$ is completely continuous.
(2) $([\mathbf{1}, \mathbf{9}, 10])$ When p is Hölder continuous on $\bar{\Omega}$, for every $h \in L^{\infty}(\Omega)$, $S(h) \in C^{1, \alpha}(\bar{\Omega})$, and therefore, the mapping $S: L^{\infty}(\Omega) \rightarrow C^{1}(\bar{\Omega})$ is completely continuous.

Proposition 2.4. ([15]) (A strong maximum principle) Suppose that p is Lipschitz continuous on $\bar{\Omega}, h \in L^{\infty}(\Omega), h(x) \geq 0$ for $x \in \Omega$ and $h(x) \not \equiv 0$ in Ω. Then $S(h) \in C^{1, \alpha}(\bar{\Omega})$, $S(h)(x)>0$ for $x \in \Omega$ and $\frac{\partial S(h)}{\partial \nu}<0$ on $\partial \Omega$.

Propositions 2.1-2.4 are an extension of the corresponding results established in the case that p is a constant.

An essential difference between the $p(x)$-Laplacian and the p-Laplacian is that the p-Laplacian is homogeneous but the $p(x)$-Laplacian is inhomogeneous. As mentioned in Section 1, in the case that p is a constant, if for a fixed $h \in L^{\infty}(\Omega)$ there holds $S_{p}(h)(x) \geq 0$ (resp. $\left.S_{p}(h)(x)>0\right)$ for $x \in \Omega$, then for every $\lambda>0$, there holds also $S_{p}(\lambda h)(x) \geq 0\left(\right.$ resp. $\left.S_{p}(\lambda h)(x)>0\right)$ for $x \in \Omega$. However, this is not the case when $p(\cdot)$ is not a constant. To see this, we give an example as follows.

Example. Let $N=1, \Omega=(-1,1), m=0$,

$$
\begin{gathered}
p(r)= \begin{cases}4, & \text { if }|r| \leq \frac{1}{4}, \\
-8\left(|r|-\frac{1}{2}\right)+2, & \text { if } \frac{1}{4} \leq|r| \leq \frac{1}{2}, \\
2, & \text { if } \frac{1}{2} \leq|r| \leq 1,\end{cases} \\
h_{\varepsilon}(r)= \begin{cases}-\varepsilon, & \text { if }|r| \leq \frac{1}{2}, \\
1 & \text { if } \frac{1}{2}<|r| \leq 1\end{cases}
\end{gathered}
$$

where ε is a small positive number.
For this example we have the following
Proposition 2.5. In the above example, there exists $\varepsilon>0$ sufficiently small such that $S_{p(\cdot)}\left(h_{\varepsilon}\right)>0$ in Ω and

$$
\begin{equation*}
\inf _{r \in(-1,1)} S_{p(\cdot)}\left(\lambda h_{\varepsilon}\right)(r)<0 \quad \text { for sufficiently small } \lambda>0 \tag{2.2}
\end{equation*}
$$

Proof. By the definition of $p(r), p$ is Lipschitz continuous on $\bar{\Omega}$. Noting that when $\varepsilon=0, h_{0} \geq 0$ and $h_{0} \not \equiv 0$ in Ω, by Proposition $2.4, S\left(h_{0}\right) \in C^{1}(\bar{\Omega}), S\left(h_{0}\right)(x)>0$ for $x \in \Omega$ and $\frac{\partial S\left(h_{0}\right)}{\partial \nu}<0$ on $\partial \Omega$. By 2) of Proposition 2.3, for sufficiently small $\varepsilon>0$, we have $S\left(h_{\varepsilon}\right) \in C^{1}(\bar{\Omega}), S\left(h_{\varepsilon}\right)(x)>0$ for $x \in \Omega$ and $\frac{\partial S\left(h_{\varepsilon}\right)}{\partial \nu}<0$ on $\partial \Omega$. Now let $\varepsilon \in(0,1)$ be small enough. For any $\lambda>0$, denote $u_{\lambda}=S\left(\lambda h_{\varepsilon}\right)$. Then, since $p(\cdot)$ and $h_{\varepsilon}(\cdot)$ are radially symmetric, u_{λ} is radially symmetric and it is the unique solution of the following problem:

$$
\left\{\begin{array}{l}
-\left(\left|u_{\lambda}^{\prime}(r)\right|^{p(r)-2} u_{\lambda}^{\prime}(r)\right)^{\prime}=\lambda h_{\varepsilon}(r) \quad \text { in }(0,1) \tag{2.3}\\
u_{\lambda}(1)=0, u_{\lambda}^{\prime}(0)=0
\end{array}\right.
$$

Indeed, problem (2.3) has a unique solution $u_{\lambda}(r)$ for $r \in[0,1]$, which is expressed by formula (2.4). Setting $u_{\lambda}(r)=u_{\lambda}(-r)$ for $r \in[-1,0]$, then the function $u_{\lambda}(r), r \in[-1,1]$, is radially symmetric and $u_{\lambda}=S\left(\lambda h_{\varepsilon}\right)$.

Denote $\Phi(r, \xi)=|\xi|^{p(r)-2} \xi$ for $r \in[-1,1]$ and $\xi \in \mathbb{R}$. Then for each $r \in[-1,1]$, $\Phi(r, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is a homeomorphism. Denote by Φ_{r}^{-1} the inverse mapping of $\Phi(r, \cdot)$, that is

$$
\Phi_{r}^{-1}(\eta)= \begin{cases}\eta^{\frac{1}{p(\eta)-1}} & \text { if } \eta \geq 0 \\ -|\eta|^{\frac{1}{p(\gamma)-1}} & \text { if } \eta<0\end{cases}
$$

Then we have

$$
\begin{equation*}
u_{\lambda}(r)=\int_{r}^{1} \Phi_{t}^{-1}\left(\int_{0}^{t} \lambda h_{\varepsilon}(s) d s\right) d t \quad \text { for } r \in[0,1] \tag{2.4}
\end{equation*}
$$

From the definition of h_{ε} we have

$$
\int_{0}^{t} h_{\varepsilon}(s) d s \begin{cases}<0 & \text { if } 0<r<\frac{1}{2}+\frac{1}{2} \varepsilon \\ \geq 0 & \text { if } \frac{1}{2}+\frac{1}{2} \varepsilon \leq r \leq 1\end{cases}
$$

and thus by (2.4),

$$
\begin{aligned}
u_{\lambda}(0) & =\int_{0}^{1} \Phi_{t}^{-1}\left(\int_{0}^{t} \lambda h_{\varepsilon}(s) d s\right) d t \\
& =\int_{0}^{\frac{1}{2}+\frac{1}{2} \varepsilon} \Phi_{t}^{-1}\left(\int_{0}^{t} \lambda h_{\varepsilon}(s) d s\right) d t+\int_{\frac{1}{2}+\frac{1}{2} \varepsilon}^{1} \Phi_{t}^{-1}\left(\int_{0}^{t} \lambda h_{\varepsilon}(s) d s\right) d t \\
& <\int_{0}^{\frac{1}{4}} \Phi_{t}^{-1}\left(\int_{0}^{t} \lambda h_{\varepsilon}(s) d s\right) d t+\lambda \int_{\frac{1}{2}+\frac{1}{2} \varepsilon}^{1}\left(t-\frac{1}{2}-\frac{1}{2} \varepsilon\right) d t \\
& \leq-\int_{0}^{\frac{1}{4}}(\lambda \varepsilon t)^{\frac{1}{3}} d t+\lambda \int_{\frac{1}{2}}^{1}\left(t-\frac{1}{2}\right) d t \\
& =-\frac{3}{4}\left(\frac{1}{4}\right)^{\frac{4}{3}} \varepsilon^{\frac{1}{3}} \lambda^{\frac{1}{3}}+\frac{1}{8} \lambda
\end{aligned}
$$

This shows that, when $\lambda \leq 6^{\frac{3}{2}}\left(\frac{1}{4}\right)^{2} \varepsilon^{\frac{1}{2}}, u_{\lambda}(0)<0$, that is, (2.2) holds.
3. Existence of positive solutions. Let us continue to use the notations as in Sections 1 and 2.

Let

$$
\begin{array}{ll}
\Gamma_{p(\cdot)}^{\geq}=\left\{h \in L^{\infty}(\Omega) \mid S_{p(\cdot)}(h)(x) \geq 0\right. & \text { for } x \in \Omega\}, \\
\Gamma_{p(\cdot)}^{>}=\left\{h \in L^{\infty}(\Omega) \mid S_{p(\cdot)}(h)(x)>0\right. & \text { for } x \in \Omega\} .
\end{array}
$$

It is clear that when $a=0$, problem (1.1) has only a zero solution, and when $a \geq 0$ and $a(x) \not \equiv 0$ for $x \in \Omega$, using the strong maximum principle, we can easily obtain the existence of a positive solution to (1.1) for small $\lambda>0$. In this section, we assume that a is sign-changed, that is, a satisfies the following condition:

$$
\left(A_{\infty}^{ \pm}\right) \quad a \in L^{\infty}(\Omega), a^{+} \neq 0 \text { and } a^{-} \neq 0
$$

Theorem 3.1. Let $(P),(M),(F)$ and $\left(A_{\infty}^{ \pm}\right)$hold. Suppose the following condition is satisfied:
$\left(A_{\varepsilon, \delta}^{\geq}\right)\left(\right.$resp. $\left(\left(A_{\varepsilon, \delta}^{>}\right)\right)$There are $\varepsilon>0$ and $\delta>0$ such that

$$
\mu\left(a^{+}-(1+\varepsilon) a^{-}\right) \in \Gamma_{p(\cdot)}^{\geq}\left(\text {resp. } \in \Gamma_{p(\cdot)}^{>}\right) \quad \text { for } \mu \in(0, \delta] .
$$

Then for sufficiently small $\lambda>0$, problem (1.1) has a non-negative (resp. a positive) solution.

Proof. We only consider the case of $\left(A_{\varepsilon, \delta}^{>}\right)$because the proof for the case of $\left(A_{\varepsilon, \delta}^{\geq}\right)$ is similar. Let ε and δ be as in condition $\left(A_{\varepsilon, \delta}^{>}\right)$. Define $\widetilde{f}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\tilde{f}(t)= \begin{cases}f(t) & \text { for }|t| \leq 1 \\ f(-1) & \text { for } t<-1 \\ f(1) & \text { for } t>1\end{cases}
$$

Consider the following problem:

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)+m(x)|u|^{p(x)-2} u=\lambda a(x) \tilde{f}(u) & \text { in } \Omega, \tag{3.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Define $\widetilde{F}(t)=\int_{0}^{t} \widetilde{f}(s) d s$ for $t \in \mathbb{R}$ and

$$
J_{\lambda}(u)=\int_{\Omega}\left(\frac{1}{p(x)}|\nabla u|^{p(x)}+\frac{m(x)}{p(x)}|u|^{p(x)}-\lambda a(x) \widetilde{F}(u)\right) d x, \forall u \in W_{0}^{1, p(\cdot)}(\Omega) .
$$

Obviously, there exists a positive constant C such that $|\tilde{f}(t)| \leq C$ for all $t \in \mathbb{R}$, this implies that $|\widetilde{F}(t)| \leq C|t|$ for all $t \in \mathbb{R}$. Noting that $p_{-}>1, m \in L^{\infty}(\Omega), m(x) \geq 0$ and $a \in L^{\infty}(\Omega)$, we can see that, for each $\lambda>0$, the functional $J_{\lambda}: W_{0}^{1, p(\cdot)}(\Omega) \rightarrow$ \mathbb{R} is coercive and sequentially weakly lower semi-continuous, and consequently, J_{λ} has a global minimizer u_{λ} which is a weak solution of problem (3.1). Noting that $\left|\lambda a(x) \vec{f}\left(u_{\lambda}\right)\right|_{L^{\infty}(\Omega)} \rightarrow 0$ as $\lambda \rightarrow 0$, by 3) of Proposition 2.2, we have that $\left|u_{\lambda}\right|_{L^{\infty}(\Omega)} \rightarrow 0$ $\underset{\sim}{\text { as }} \lambda \rightarrow 0$. Now we assume that $\lambda>0$ is small enough such that $\left|u_{\lambda}\right|_{L^{\infty}(\Omega)} \leq 1$. Then $\tilde{f}\left(u_{\lambda}\right)=f\left(u_{\lambda}\right)$ and so u_{λ} is a solution of problem (1.1). Set $\gamma=\frac{\varepsilon}{2+\varepsilon}$. Since f is continuous at 0 and $f(0)>0$, there is $\rho \in(0,1)$ such that

$$
-f(0) \gamma<f(\xi)-f(0)<f(0) \gamma \quad \text { for }|\xi| \leq \rho
$$

Take $\lambda_{1}>0$ small enough such that $\left|u_{\lambda}\right|_{L^{\infty}(\Omega)} \leq \rho$ for $\lambda \in\left(0, \lambda_{1}\right]$. Then when $\lambda \in\left(0, \lambda_{1}\right]$,

$$
\begin{align*}
\lambda a(x) f\left(u_{\lambda}(x)\right) & =\lambda\left(a^{+}(x)-a^{-}(x)\right) f\left(u_{\lambda}(x)\right) \\
& =\lambda a^{+}(x) f\left(u_{\lambda}(x)\right)-\lambda a^{-}(x) f\left(u_{\lambda}(x)\right) \\
& \geq \lambda a^{+}(x) f(0)(1-\gamma)-\lambda a^{-}(x) f(0)(1+\gamma) \\
& =\lambda(1-\gamma) f(0)\left(a^{+}(x)-\frac{1+\gamma}{1-\gamma} a^{-}(x)\right) \\
& =\lambda(1-\gamma) f(0)\left(a^{+}(x)-(1+\varepsilon) a^{-}(x)\right) . \tag{3.2}
\end{align*}
$$

Let $\lambda_{2}=\frac{\delta}{(1-\gamma) f(0)}$ and $\lambda_{3}=\min \left\{\lambda_{1}, \lambda_{2}\right\}$. Then when $\lambda \in\left(0, \lambda_{3}\right]$, we have that $\lambda(1-$ $\gamma) f(0) \leq \delta$, and by condition $\left(A_{\varepsilon, \delta}^{>}\right)$,

$$
\lambda(1-\gamma) f(0)\left(a^{+}(x)-(1+\varepsilon) a^{-}(x)\right) \in \Gamma_{p(\cdot)}^{>}
$$

By (3.2) and the comparison principle, $\lambda a(x) f\left(u_{\lambda}(x)\right) \in \Gamma_{p(\cdot)}^{>}$, which shows that u_{λ} is a positive solution of problem (1.1).

Remark 3.1. In Section 1, we mentioned condition ($A_{\bar{\varepsilon}}^{\geq}$) which was used in $[\mathbf{6}, \mathbf{1 7}]$ for the case that $p=2$. We may extend it to the variable exponent case. For given variable exponent $p(\cdot)$, we say that $a \in L^{\infty}(\Omega)$ satisfies condition ($A_{\bar{\varepsilon}}^{\geq}$) (resp. $\left(A_{\varepsilon}^{>}\right)$) if the following condition holds:
$\left(A_{\varepsilon}^{\geq}\right)\left(\right.$resp. $\left.\left(A_{\varepsilon}^{>}\right)\right)$there exists $\varepsilon>0$ such that

$$
\left(a^{+}-(1+\varepsilon) a^{-}\right) \in \Gamma_{p(\cdot)}^{\geq}\left(\text {resp. } \in \Gamma_{p(\cdot)}^{>}\right) .
$$

Obviously, condition ($A_{\varepsilon}^{>}$) implies condition $\left(A_{\varepsilon}^{\geq}\right)$. In the case when $p=2$, from the strong comparison principle (i.e. the strong maximum principle) we may see that
when $a \in L^{\infty}(\Omega) \backslash\{0\}$ satisfies condition $\left(A_{\varepsilon}^{\geq}\right)$with some $\varepsilon>0$, a must satisfy condition $\left(A_{\varepsilon_{1}}^{>}\right)$for every $\varepsilon_{1} \in(0, \varepsilon)$. In other words, when $p=2,\left(A_{\varepsilon}^{>}\right)$and $\left(A_{\varepsilon}^{>}\right)$are essentially equivalent to each other. However, in the case when $p \neq 2$, because of lack of the general strong comparison principle, in general, condition $\left(A_{\bar{\varepsilon}}^{\geq}\right)$does not imply condition $\left(A_{\varepsilon_{1}}^{>}\right)$ for $\varepsilon_{1} \in(0, \varepsilon)$. It is clear that, in the case when p is a constant, $\left(A_{\varepsilon}^{\geq}\right)$and $\left(A_{\varepsilon, \delta}^{\geq}\right)$(resp. $\left(A_{\varepsilon}^{>}\right)$and $\left(A_{\varepsilon, \delta}^{>}\right)$) are essentially equivalent to each other. Thus our Theorem 3.1 is an extension of Theorem 2 in [6] and Theorem 1.1 in [17] to the $p(x)$-Laplacian case.

For $h \in L^{\infty}(\Omega)$ and $\varepsilon>0$, define

$$
B_{\infty}(h, \varepsilon)=\left\{g \in L^{\infty}(\Omega)| | g-\left.h\right|_{L^{\infty}(\Omega)}<\varepsilon\right\},
$$

and for $\delta>0$, define

$$
K\left(B_{\infty}(h, \varepsilon), \delta\right)=\left\{\mu g \mid \mu \in(0, \delta] \text { and } g \in B_{\infty}(h, \varepsilon)\right\}
$$

Corollary 3.1. Let $(P),(M),(F)$ and $\left(A_{\infty}^{ \pm}\right)$hold. Suppose the following condition is satisfied:
$\left(K_{\varepsilon, \delta}^{\geq}\right)\left(\right.$resp. $\left.\left(K_{\varepsilon, \delta}^{>}\right)\right)$There are $\varepsilon>0$ and $\delta>0$ such that

$$
K\left(B_{\infty}(a, \varepsilon), \delta\right) \subset \Gamma_{p(\cdot)}^{\geq}\left(\text {resp } . \subset \Gamma_{p(\cdot)}^{>}\right)
$$

Then a satisfies $\left(A_{\varepsilon_{1}, \delta}^{\geq}\right)\left(\right.$resp. $\left.\left(A_{\varepsilon_{1}, \delta}^{>}\right)\right)$for some $\varepsilon_{1}>0$, and consequently, for sufficiently small $\lambda>0$, problem (1.1) has a non-negative (resp. a positive) solution.

Proof. Let a satisfy $\left(K_{\varepsilon, \delta}^{\geq}\right)$(resp. $\left.\left(K_{\varepsilon, \delta}^{>}\right)\right)$. Take $\varepsilon_{1} \in\left(0, \frac{\varepsilon}{\left|a^{-\mid}\right| L^{\infty}(\Omega)}\right)$. Then

$$
\left|\left(a^{+}-\left(1+\varepsilon_{1}\right) a^{-}\right)-a\right|_{L^{\infty}(\Omega)}=\varepsilon_{1}\left|a^{-}\right|_{L^{\infty}(\Omega)}<\varepsilon,
$$

which shows $\left(a^{+}-\left(1+\varepsilon_{1}\right) a^{-}\right) \in B_{\infty}(a, \varepsilon)$. For $\mu \in(0, \delta]$, we have that

$$
\mu\left(a^{+}-\left(1+\varepsilon_{1}\right) a^{-}\right) \in K\left(B_{\infty}(h, \varepsilon), \delta\right) \subset \Gamma_{p(\cdot)}^{\geq}\left(\text {resp. } \subset \Gamma_{p(\cdot)}^{>}\right)
$$

This shows that $\left(A_{\varepsilon_{1}, \delta}^{\geq}\right)$(resp. $\left.\left(A_{\varepsilon_{1}, \delta}^{>}\right)\right)$is satisfied, and consequently, by Theorem 3.1, problem (1.1) has a non-negative (resp. a positive) solution for sufficiently small $\lambda>0$.

Remark 3.2. Let $p \in(1, \infty)$ be a constant and $a \in L^{\infty}(\Omega)$ satisfy condition $\left(A_{*}\right)$, that is $S_{p}(a)>0$ in Ω and $\frac{\partial S_{p}(a)}{\partial \nu}<0$ on $\partial \Omega$. Since $S_{p}: L^{\infty}(\Omega) \rightarrow C^{1}(\bar{\Omega})$ is continuous, there exists $\varepsilon>0$ such that $B_{\infty}(a, \varepsilon) \subset \Gamma_{p}^{>}$. In this case, for any $\delta>0, K\left(B_{\infty}(a, \varepsilon), \delta\right) \subset$ $\Gamma_{p}^{>}$holds. This shows that, when p is a constant, condition $\left(A_{*}\right)$ implies condition $\left(K_{\varepsilon, \delta}^{>}\right)$ for some $\varepsilon>0$ and any $\delta>0$. Hence Theorem 1 of Hai and $\mathrm{Xu}[\mathbf{1 8}]$ is a special case of Corollary 3.1.

Now let us consider the radially symmetric case. Suppose that the following condition is satisfied.
$(R) \Omega=B\left(0, r_{0}\right) \subset \mathbb{R}^{N}$ is a ball, $p(x)=p(|x|)=p(r)$ and $a(x)=a(|x|)=a(r)$ are radially symmetric, and $m=0$.

In this case, the solution of (1.1) is just the solution of the following problem:

$$
\left\{\begin{array}{l}
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p(r)-2} u^{\prime}(r)\right)^{\prime}=\lambda r^{N-1} a(r) f(u) \quad \text { in }\left(0, r_{0}\right), \tag{3.3}\\
u\left(r_{0}\right)=0, \quad u^{\prime}(0)=0
\end{array}\right.
$$

Corollary 3.2. Let $(P),(M),(F),\left(A_{\infty}^{ \pm}\right)$and (R) hold. Suppose that a satisfies the following condition
$\left(I_{\tau}\right)$ there exists $\tau>0$ such that

$$
\int_{0}^{s} t^{N-1} a^{+}(t) d t \geq(1+\tau) \int_{0}^{s} t^{N-1} a^{-}(t) d t \quad \text { for } s \in\left(0, r_{0}\right]
$$

Then a satisfies condition $\left(A_{\varepsilon, \delta}^{>}\right)$with $\varepsilon=\frac{\tau}{2}$ and any $\delta>0$, and consequently, for sufficiently small $\lambda>0$, problem (1.1) has a positive solution.

Proof. Put $\varepsilon=\frac{\tau}{2}$. Let any $\mu>0$ be given. Denote $u=S_{p(\cdot)}\left(\mu\left(a^{+}-(1+\varepsilon) a^{-}\right)\right)$. Then

$$
\left\{\begin{array}{l}
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p(r)-2} u^{\prime}(r)\right)^{\prime}=\mu r^{N-1}\left(a^{+}-(1+\varepsilon) a^{-}\right) \quad \text { in }\left(0, r_{0}\right), \\
u\left(r_{0}\right)=0, \quad u^{\prime}(0)=0
\end{array}\right.
$$

Thus we have, for $r \in\left(0, r_{0}\right]$,

$$
\begin{aligned}
-\left(r^{N-1}\left|u^{\prime}(r)\right|^{p(r)-2} u^{\prime}(r)\right) & =\mu \int_{0}^{r} t^{N-1}\left(a^{+}(t)-\left(1+\frac{\tau}{2}\right) a^{-}(t)\right) d t \\
& \geq \frac{\mu \tau}{2} \int_{0}^{r} t^{N-1} a^{-}(t) d t \geq 0
\end{aligned}
$$

This shows that $u^{\prime}(r) \leq 0$ for all $r \in\left(0, r_{0}\right)$. Noting that $\int_{0}^{r_{0}} t^{N-1} a^{-}(t) d t>0$, we have $u^{\prime}\left(r_{0}\right)<0$, and therefore $u(r)>0$ for $r \in\left[0, r_{0}\right)$ because $u\left(r_{0}\right)=0$. This proves that $\mu\left(a^{+}-(1+\varepsilon) a^{-}\right) \in \Gamma_{p(\cdot)}^{>}$for any $\mu>0$, that is, condition $\left(A_{\varepsilon, \delta}^{>}\right)$with $\varepsilon=\frac{\tau}{2}$ and any $\delta>0$ is satisfied, and consequently, by Theorem 3.1, problem (1.1) has a positive solution for sufficiently small $\lambda>0$.

Remark 3.3. Condition $\left(I_{\tau}\right)$ was proposed by Các, Fink and Gatica [5] for the case that $p=2$. Note that condition $\left(I_{\tau}\right)$ used in this paper is the same as in [5], and it is independent of $p(\cdot)$. The verification of condition $\left(I_{\tau}\right)$ is often easy, for example, it is easy to see that, in the radially symmetric case, the function a, defined by

$$
a(r)= \begin{cases}1 & \text { if }|r| \leq \frac{r_{0}}{2}, \\ -\varepsilon & \text { if } \frac{r_{0}}{2}<|r| \leq r_{0}\end{cases}
$$

where $\varepsilon \in\left(0, \frac{1}{2^{N}-1}\right)$, satisfies condition $\left(I_{\tau}\right)$ with $\tau \in\left(0, \frac{1}{\varepsilon\left(2^{N}-1\right)}-1\right)$. Of course, as was mentioned in $[\mathbf{2}, \mathbf{6}],\left(I_{\tau}\right)$ is a stronger condition to assure the existence of a positive solution to problem (3.4) for small values of λ.

Remark 3.4. Let $\Omega, m, p(\cdot)$ and $a=h_{\varepsilon}$ be as in the example given in Section 2, where $\varepsilon>0$ is sufficiently small, and let $f(t)=1$ for all $t \in \mathbb{R}$. Proposition 2.5 shows
that, in this case, condition $\left(A_{*}\right)$ as well as condition $\left(A_{\varepsilon_{1}}^{>}\right)$with small $\varepsilon_{1}>0$ is satisfied but the corresponding problem (1.1) has no positive solution for sufficiently small $\lambda>0$.

Finally, we give an example in which the condition $\left(A_{\varepsilon, \delta}^{>}\right)$put in Theorem 3.1 is satisfied but the condition $\left(I_{\tau}\right)$ put in Corollary 3.2 is not satisfied.

Example 3.5. Let $N=1, \Omega=(-1,1), m=0$,

$$
\begin{aligned}
& p(r)= \begin{cases}2, & \text { if }|r| \leq \frac{1}{2} \\
8\left(|r|-\frac{1}{2}\right)+2, & \text { if } \frac{1}{2} \leq|r| \leq \frac{3}{4} \\
4, & \text { if } \frac{3}{4} \leq|r| \leq 1\end{cases} \\
& a(r)= \begin{cases}-\frac{1}{8}, & \text { if }|r| \leq \frac{1}{2}, \\
1 & \text { if } \frac{1}{2}<|r| \leq 1\end{cases}
\end{aligned}
$$

Take $\varepsilon=1$. we will show that there exists $\delta>0$ such that condition $\left(A_{1, \delta}^{>}\right)$is satisfied, that is, $\mu\left(a^{+}-(1+1) a^{-}\right) \in \Gamma_{p(\cdot)}^{>}$for $\mu \in(0, \delta]$. Denote $u_{\mu}=S_{p(\cdot)}\left(\mu\left(a^{+}-2 a^{-}\right)\right)$. Then u_{λ} is radially symmetric and it is the unique solution of the following problem:

$$
\left\{\begin{array}{l}
-\left(\left|u_{\mu}^{\prime}(r)\right|^{p(r)-2} u_{\mu}^{\prime}(r)\right)^{\prime}=\mu\left(a^{+}-2 a^{-}\right)(r) \quad \text { in }(0,1) \\
u_{\mu}(1)=0, u_{\mu}^{\prime}(0)=0
\end{array}\right.
$$

Thus, we have

$$
\begin{equation*}
u_{\mu}^{\prime}(r)=-\Phi_{r}^{-1}\left(\int_{0}^{r} \mu\left(a^{+}(s)-2 a^{-}(s)\right) d s\right) \quad \text { for } r \in(0,1) \tag{3.4}
\end{equation*}
$$

It is sufficient to prove that $u_{\mu}(r)>0$ for sufficiently small $\mu>0$ and all $r \in[0,1)$. We may assume $\mu \in(0,1)$. Noting that when $r \in\left(0, \frac{1}{2}\right]$,

$$
\int_{0}^{r} \mu\left(a^{+}(s)-2 a^{-}(s)\right) d s=\int_{0}^{r}-\frac{1}{4} \mu d s=-\frac{1}{4} \mu r<0
$$

and when $r \in\left(\frac{1}{2}, 1\right)$,

$$
\begin{aligned}
\int_{0}^{r} \mu\left(a^{+}(s)-2 a^{-}(s)\right) d s & =\int_{0}^{\frac{1}{2}}-\frac{1}{4} \mu d s+\int_{\frac{1}{2}}^{r} \mu d s \\
& =-\frac{1}{8} \mu+\left(r-\frac{1}{2}\right) \mu=\left(r-\frac{5}{8}\right) \mu
\end{aligned}
$$

we can see that $u_{\mu}^{\prime}(r)>0$ for $r \in\left(0, \frac{5}{8}\right), u_{\mu}^{\prime}(r)<0$ for $r \in\left(\frac{5}{8}, 1\right)$, and u_{μ} attains its maximum at $r=\frac{5}{8}$. Since $u_{\mu}(1)=0$, we have that $u_{\mu}(r)>0$ for $r \in\left[\frac{5}{8}, 1\right)$ and

$$
\begin{aligned}
u_{\mu}\left(\frac{5}{8}\right) & >u_{\mu}\left(\frac{3}{4}\right)=-\int_{\frac{3}{4}}^{1} u_{\mu}^{\prime}(r) d r=\int_{\frac{3}{4}}^{1} \Phi_{r}^{-1}\left(\left(r-\frac{5}{8}\right) \mu\right) d r \\
& \geq \int_{\frac{3}{4}}^{1}\left(\frac{1}{8} \mu\right)^{\frac{1}{4-1}} d r=\frac{1}{4} \cdot \frac{1}{2} \mu^{\frac{1}{3}}
\end{aligned}
$$

For $r \in\left[0, \frac{5}{8}\right)$ we have

$$
\begin{aligned}
u_{\mu}(r) & \geq u_{\mu}(0)=u_{\mu}\left(\frac{5}{8}\right)-\int_{0}^{\frac{5}{8}} u_{\mu}^{\prime}(r) d r \geq u_{\mu}\left(\frac{5}{8}\right)-\int_{0}^{\frac{5}{8}} \Phi_{r}^{-1}\left(\frac{1}{4} \mu\right) d r \\
& \geq u_{\mu}\left(\frac{5}{8}\right)-\int_{0}^{\frac{5}{8}}\left(\frac{1}{4} \mu\right)^{\frac{1}{p\left(\frac{5}{8}\right)-1}} d r \\
& =\frac{1}{8} \mu^{\frac{1}{3}}-\frac{5}{8} \cdot\left(\frac{1}{4} \mu\right)^{\frac{1}{2}}
\end{aligned}
$$

It follows that when $\mu \in\left(0,\left(\frac{2}{5}\right)^{6}\right), u_{\mu}(r)>0$ for all $r \in[0,1)$. This shows that the condition $\left(A_{1, \delta}^{>}\right)$is satisfied for $\delta \in\left(0,\left(\frac{2}{5}\right)^{6}\right)$. It is obvious that the condition $\left(I_{\tau}\right)$ is not satisfied because for any $\tau>0$ and $s \in\left(0, \frac{1}{2}\right)$,

$$
0=\int_{0}^{s} a^{+}(t) d t<(1+\tau) \int_{0}^{s} a^{-}(t) d t .
$$

Acknowledgements. This research was supported by National Natural Science Foundation of China (10671084, 10971087). The author is grateful to the reviewer for valuable comments.

REFERENCES

1. E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal. 156 (2001), 121-140.
2. G. A. Afrouzi and K. J. Brown, Positive solutions for a semilinear elliptic problem with sign-changing nonlinearity, Nonlinear Anal. 36 (1999), 507-510.
3. C. O. Alves and M. A. S. Souto, Existence of solutions for a class of problems in \mathbb{R}^{N} involving the $p(x)$-Laplacian, Prog. Nonlinear Differ. Equ. Appl. 66 (2005), 17-32.
4. S. Antontsev and S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard conditions, in Handbook of differential equations, stationary partial differential equations, vol. 3 (Chipot M. and Quittner P., Editors) (Elsevier B. V., North Holland, Amsterdam, 2006), 1-100.
5. N. P. Các, A. M. Fink and J. A. Gatica, Nonnegative solutions to the radial Laplacian with nonlinearity that changes sign, Proc. Amer. Math. Soc. 123 (1995), 1393-1398.
6. N. P. Các, J. A. Gatica and Y. Li, Positive solutions to semilinear problems with coefficient that changes sign, Nonlinear Anal. 37 (1999), 501-510.
7. L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in FSDONA04 proceedings (Drábek P. and Rákosník J. Editors), The Conference held in Milovy, May 28-June 2, 2004, (Math. Inst. Acad. Sci. Czech Republic, Praha, 2005), 38-58.
8. T.-L. Dinu, On a nonlinear eigenvalue problem in Sobolev spaces with variable exponent, Sib. Elektron. Mat. Izv. 2 (2005), 208-217.
9. X. L. Fan, Global $C^{1, \alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differ. Equ. 235 (2007), 397-417.
10. X. L. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations, J. Math. Anal. Appl. 330 (2007), 665-682.
11. X. L. Fan, Remarks on eigenvalue problems involving the $p(x)$-Laplacian, J. Math. Anal. Appl. 352 (2009), 85-98.
12. X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal. 52 (2003), 1843-1852.
13. X. L. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (1999), 295-318.
14. X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), $424-446$.
15. X. L. Fan, Y. Z. Zhao, Q. H. Zhang, A strong maximum principle for $p(x)$-Laplace equations, Chin. Ann. Math. Ser. A 24 (2003) 495-500 (in Chinese), English translation: Chin. J. Contemp. Math. 24 (2003), 277-282.
16. Y. Q. Fu and X . Zhang, A multiplicity result for $p(x)$-Laplacian problem in \mathbb{R}^{N}, Nonlinear Anal. 70 (2009), 2261-2269.
17. D. D. Hai, Positive solutions to a class of elliptic boundary value problems, J. Math. Anal. Appl. 227 (1998), 195-199.
18. D. D. Hai and X. $X u$, On a class of quasilinear problems with sign-changing nonlinearities, Nonlinear Anal. 64 (2006), 1977-1983.
19. P. Harjulehto and P. Hästö, An overview of variable exponent Lebesgue and Sobolev spaces, in Future Trends in Geometric Function Theory (Herron D., Editor) (RNC Workshop, Jyväskylä, 2003), 85-93.
20. P. Harjulehto, P. Hästö, U. V. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. 72 (2010), 4551-4574.
21. V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of differential operators and integral functional (Springer-Verlag, Berlin, 1994). Translated from the Russian by G. A. Yosifan.
22. O. Kováčik and J. Rákosnik, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech. Math. J. 41(116) (1991), 592-618.
23. P. Marcellini, Regularity and existence of solutions of elliptic equations with (p, q) growth conditions, J. Differ. Equ. 90 (1991), 1-30.
24. M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A 462 (2006), 2625-2641.
25. M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), 29292937.
26. M. Mihăilescu and V. Rădulescu, Continuous spectrum for a class of nonhomogeneous differential operators, Manuscr. Math. 125 (2008), 157-167.
27. M. Rủžička, Electrorheological fluids: Modeling and mathematical theory (SpringerVerlag, Berlin, 2000).
28. S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct. 16 (2005), 461-482.
29. Q. H. Zhang, Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems, Nonlinear Anal. 70 (2009), 305-316.
30. V. V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1997), 105-116.
