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SOLUTIONS OF SPECIFIC DIOPHANTINE EQUATIONS 
AND THEIR RELATIONSHIP TO COMPLEX MULTIPLICATION 

BY 

CLARA WAJNGURT 

ABSTRACT. In this paper we establish a relationship between the ra
tional solutions (x(t),y(t)), over C(/), of the diophantine equation: 

(1) 4t3x(t) - g2tx{t) -g3= y(t)2(4t3 - g2t - g3\ g2,g3 e Q 

and the solutions (p(w), p'{u)) which parametrize the elliptic curve E,y2 = 
4x3 — g2x —g3 admitting complex multiplication by A. We first characterize 
the form of all rational solutions of diophantine equation (1). The rational 
solutions are derivable from the subsititutions 

p(u) p'(u) 

in which // = 0,U\,U2,UJ\ + UJ2 — u3. Using techniques established in 
elliptic function theory, we prove that the complex multiplier A, associated 
with a unique rational solution (*(/), y(t)), must be of a certain form. Next 
we construct all rational solutions of diophantine equation (1) by using 
the addition theorems valid for the Weierstrass function, p(u). Specific 
examples are finally worked out for the cases K = QCx/1^) and K = 
Q(\/=7). 

Introduction. Any elliptic curve E is identified with the group C/L where L is gen
erated by the periods 2o;i,2o;2, with I m ^ i / ^ ) > 0. The complex analytic endomor-
phisms of the lattice L which preserve the elliptic curve E1 a(x) = ÀJC, A G C, x G L 
are identified with the multiplication by a complex number, A, such that 2UJ\,2UJ2, 

are elements of L. These endomorphisms of the lattice form a ring which always 
contain the integers, i.e., A G Z - the real multiplications. The other complex ana
lytic endomorphisms (if any) are given by complex numbers and are called complex 
multiplications. Although the real multiplications are a subset of the complex multi
plications, we say the elliptic curve admits complex multiplications, only when the 
endomorphism ring of E (or endomorphism ring of C/L) corresponds to the multipli
cation of complex numbers A, A ^ Z. By the theory, E is the algebraic curve with a 
"zero" point (oo, oo), given by (X, Y) G C such that: 

Y2 = 4X3 - g2X - g3,g
3
2 - 27ft

2 ± 0, Y = p\u\X = p(u) 
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E is thereby associated with the lattice, L = [2o;i,2^], and the modular invariant^, 
defined by 

h = 26 • 33 • Si 
3 _ 0 7 2 * 

It is a fact that g2,g?> € Q <=> JL € Q. So, in general, End E = Z, unless Â  = 
Q(v\/u)2)(= G(A), when À is a complex multiplier) is an imaginary quadratic field. 
Also, we find thatyl is an algebraic integer, if E admits complex multiplications. The 
degree [QO'L) • Q] = hf where / = ring conductor of End E and h = ring class 
number of K = Q(UJ\/U2). 

Discussion. Let (x(t), y(t)) be a solution of diophantine equation (1). Set A(w),B(u) 
as follows: 

(2) A(u) = x(p(u))p(u), B{u) = y(p(u))p'(u) 

where Jt(p(w)), y(p(u)) G Rat functions {p(u)}. Set p(u) = t in the functions 
x{p(u))1 y(p(u)), thereby obtaining rational functions in t. In (1) we substitute for 

C*(0, y(0) 

A(u) B(u) 
—— = x(t), —-— 
p(u) p'{u) 

(2') ^ = x{t\ - ^ = 3,(0, * = p(«) 

to obtain the elliptic curve 

(3) AA\u) - g2A(u) - g3 = B\u), gl - 21 gl ± 0JL G Q 

which is associated with the unique differential of the first kind d(A(u))/B(u). By ellip
tic function theory A(u) — p(u), B(u) = p'{u)) for some variable OJ, to be determined 
later. Particularly, we find 

(3') ^ » = du = Xdu 
B(u) 

for some À G C*. This implies UJ = Xu + +/x, // determined modulo the lattice L = 
[2CJJ\,2UJ2] associated with p(u). We note that by statement (2) and the symmetry of 
the elliptic function p(w),A(—u) = A{u). Using the above conclusion that A(u) — 
p(\u + ^), this means p(Xu + /i) = p(A(—w) + /i) = p(—Xu + //) modulo L. We get in 
addition from this that the restriction on \x is 2/x = 0 mod \2uj\,2bJ2\. This leads us 
to the following conclusions: 

THEOREM 1. We can derive infinitely many solutions (x(t),y(t)) G C(0 satisfying 
diophantine equation (1), only by way of the substitutions 

p(Xu + a) p'(Xu + a) 

(4) x(t) = i±—ri,y(t) = * ; *\r = p(u) 
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In the process, we consider that X = p(u),Y = p'(u), parametrize Y2 = 4X3 — 
g2X - g2X -g3 = 4(* - ex)(X - e2)(x - e3)et G C, g2

3 - 21 g] ^ 0; g2, g 3 ^ Q and 
[i — 0, UJ\IOJ2,UÛ3. This gives us necessary conditions for deriving rational solutions 
of diophantine equation (1). By the following lemma we claim statement (4) signifies 
sufficient conditions also, for deriving solutions of diophantine equation (1). 

LEMMA I. If X is a complex (or real) multiplier, 2p = 0 mod {2UJ\,2UJ2}, then 
p(Xu + p) is a rational function in p(u). Thus, every rational solution (JC(0, y if)) of 
diophantine equation (1) is intrinsically of the given form described by statement (4) 
if and only if X is a complex (or real) multiplier. 

Determining the associated complex multiplier X to any given rational solution 
(x{t),y(f)). 

THEOREM 2. In the process of describing any given rational solution (x(0, y(f)) of 
diophantine equation (1), i.e., 

p(\u + p) / x pf(Xu + n) 
x(t) = — — — , ; y ( 0 = — r r \ — > ' = P("X M = O,UJUUJ2,LU3 

p(u) p'(u) 
we find that the unique complex (or real) multiplier X, associated with the given 
(x(t),y(t)) satisfies 
(5) Xy(t) = tx\t)+x(t) = d(tx(t))/dt 

PROOF. Differentiate p(u)X(t) = p(Xu + /x) with respect to u. We find 

dt , , 
p{u)X(t)— +X(0p(w) = Ap (Aw + /i). 

du 
Since dt/du = p'{u) the result follows by dividing both sides by p'(u). This comes 
from the fact that the differential dU = dT/W is related to du by A du — dU where A 
is one of the complex multipliers and U = Xu + /i, p, = 0, LJ\, UJ2, UJ3. 

COROLLARY 2. For general solutions (x(0, y(t)) of diophantine equation (1), the 
deg{tx(t)} = n. Theorem 2 enables us to determine the multiplier X if we have already 
determined the rational solution (x(0, y(t)). Thus, we observe that every multiplier X 
is uniquely associated with a rational solution (x(0, y(t)). 

Constructing rational solutions by the addition theorems. 
Since diophantine equation (1) is a cubic curve over C(0, there is a method which 

explicitly describes how to construct rational points on the curve from a known set S 
of rational points P\,P2,...,Pn. By using the addition theorems of elliptic function 
theory, we can derive the secant and tangent formulas for diophantine equation (1). 
The addition theorems of elliptic function theory are applied to diophantine equation 
(1) in the form: 

A] + A2 + A3 = 0 mod {2uj\, 2UJ2} 

I I 1 I I 
^ L ( 0 x2(t) x3(t) = 0 

h\(t) yi(0 y3(0l 
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whereby A, <-» (JC/(0, V/(0), /i = 0. 
In this context, the addition theorem presupposes that there is a relationship between 

the additive structure of the ring of integers of the imaginary quadratic field K which 
contains the multiplier A/, and the additive structure of rational solutions te(0, J/(0) 
of the cubic curve (1). In the secant formulas we consider the equation (X\,Y\) + 
(X2, Y2) = (X, Y) whereby (Xi, Y\) and (X2, Y2) are two different solutions over C(t) 
of diophantine equation (1) which add in the sense of addition of points on a cubic 
curve to the sum, over C(0, (X, F). In the tangent formulas we allow for the case 
whereby (XhY{) = (X2,F2), i.e., 2(XuYl) = (X0, Y0). The derivation of the tangent 
formulas uses dy/dx for the ^ g | ^ . 

Secant 

-x\ -x2, 
t3-(g2/4)t-(g3/4) 

• W 4 ) ' - W 4 ) 

yi-yi 

x2 -xx 

y2- y\ 

x2-x\ 

x2y2 -x\yx + 2(xxy2 -x2y{) 

x2 -x\ 

t{\2t2x(t)2 - g2} 
-. Set tx(t) = X 

2{4t3 - g2t - g3}y(t)' 

X4 + (g2/2)X2 + 2g3X + (g2/16) 
4f(X3 - (g2/4)X - (g3/4)) ' 

X6 - (5#2/4)X4 - 5#3X
3 - (5g2/\6)X2 - (g2g3/4)X + (#3 32g2)/64 

*(0 = 

Tangent 

dx 

xo(t) = 

370(0 ~~ W3 - (gi/4)t - (g3/4))(X3 - (g2/4)X - (g3/4))y(t) 

The rational solutions of diophantine equation (1) take precisely four forms, each 
possibility dependent on whether the multiplier ring, K = Q(\/ûf), d < 0, A G C* is 
characterized by 

Ctfs<* A: J = 2, 3 (mod 4), Basis: [1, y/d], or 
Case B: d=\ (mod 4), Basis: [1,(1+ y/d)/2].. 

We recall, that, in general, the rational solutions are described by 

p(Xu + /i) p'(Aw + /x) 

Owe 1 A ^ 0, /x = 0. 
The minimal starting set is 

Case AB :(l,l)<-> A = l,/x = 0,and 

CtfS£ A 
^ p(«) ' p'(M) J 'M ' 

Case /? : 
\^fu) P'(±fuy ]+Vd 

P(u) P'(w) 
,/x = 0. 
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So all rational solutions of diophantine equation (1) arise from complex (or real) 
multiplications by the addition formulas as follows: 

CaseA:a(l,l) + b ( ^ ^ , ^ ^ 
1 p(u) ' p'(u) 

Case B : a(\,l) + b 

A = a + bvd, a, b £ Z, norm A = a2 — b d. 

p(^fu) p'{^fu)\ 
p{u) ' p\u) J 

A = {a + (fc/2)) + (b/2)y/d, a,beZ 

norm À = #2 + ab + ( 1 b2. 

Case A is exemplified by the quadratic multiplier ring K = Q(v — 2), / = 1, 
where the corresponding Weierstrass model is 5 2 = 443 + (—40/3)A + (224/27) 
and whose corresponding diophantine equation is, upon considering the substitution 
p(u) = (-2r)/3,2r3x(03 - 15tt(f)-14 = >>(02(2r3 - 15r—14). The secant and tangent 
formulas for this diophantine equation give rise to all rational solutions corresponding 
to A ^ 0, [i — 0 as follows: 

/ t 1X (t2 + 2t + (9/2) / 2 + 4 f - ( l / 2 ) \ x , r -
A(1, 1) + b[ „ , V , . w <-* A = a + 6V-2 . 

Case B is exemplified by the quadratic multiplier ring £ = Q(v —7),/ = 1, where the 
corresponding Weierstrass model is # 2 = 4A3 — 140A — 392 and whose corresponding 
diophantine equation is, upon considering the substitution p(u) = t, t3x(t)3 — 35tx(t) — 
98 = y(t)2(t3—35t—9S). The secant and tangent formulas for this diophantine equation 
give rise to all rational solutions corresponding to A ^ 0, [i — 0 as follows: 

«( l , l ) + M ^ + ( 7 / 2 " ( 1 / 2 ) ^ ^ V + ( " ( 7 / 2 ) " ( 2 1 / 2 ) V ^ 
( = ^ ) t(t + (7/2) - ( l / ^ V ^ ) 2 

t2 + (7 - \ / -7)r + (14 + 7v^7) \ 

X ( ^ ° ) a + ( 7 / 2 ) - ( l / 2 ) v / Z 7 ) 2 ^ 

<-> A = (a + (Z?/2)) + (/?/2)v/Z7 

Owe 2 A ^ 0 , / i ^ 0 
Since \i ^ 0, we recall by theorem 1 that the possibilities for \i are ^ = u\, uii, ^3. 

We determine p(w+u;;), and therefore ^(W+CJ/) by the following formula from elliptic 
function theory (see [4], pg. 20). 

_ (( M , elp(u)^(2e2~(l/4)g2) ^ n 

(6) p(u + Ui) = — '- ,g2 e Q 
p(u) - a 
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et, described in theorem 1. In particular, p(\u + 0Ji) is determined by substituting \u 
for u on the right side of statement (6). This implies 

= p(\u + .ù = eiP(Xu) + (2ef-(g2/4))^ ( = 

p(u) p(u)(p(Xu) - et) 
p'jXu + Wj) -3ef + (g2/4) 

y(t) = ^^r=(p(xu)~elr
t-^u)-

We determine the expression for p(Xu) = p(u)x(p(u)), t = p(u), from the addition 
formulas described for the case \x — 0. 

Case 3 A — 0, /x = 0 
There are no rational solutions associated with this case since p(u) and p'(u) are 

both undefined. 

Case 4 A = 0, /x ̂  0 
In this case the rational solutions of diophantine equation (1) are of the form 

(O//0,0) / = 1,2,3, i.e., the torsion points of order 2 for diophantine equation (1). 
The case of #2? #3 £ Q gives rise to particular applications to the thirteen elliptic 
curves Y2 = f(x) (see [7]) and their associated diophantine equations as developed 
by this paper. 

Determining the smallest field of containment for (x(t), y(t)). 
1) If A G Z*, /x = 0, (JC(0, y(t)) lie in Q(f) and in no larger field. 
2) If A G Z, // = 0, (x(0, j (0) lie in g(r, A) <2/iJ in no larger field. 
3) If A G Z * , / i / 0 . 

If ei e Q, then (x(t), y(t)) lie in Q(r). 
If ei £ Q, then (jt(f), j (0) lie in Q(r, ^-) for some given /. 

4) Let A £ Z, /x ̂  0. 
If /̂ G Q, then (JC(0, y(0) lie in Q(f, A). 
If /̂ ^ Q, then (x(0, y it)) lie in Q(r, A, a) for some given /. 

Conclusion. Elliptic curves originally arose because their equations appear in the 
integrand for the arc length of an ellipse. Evaluations of such integrals lead one to 
analyze Legendre's three basic types of such integrals, where in our case, n equals 
3, the degree of f(x) in the elliptic curve, E : y2 — f(x). The basic results in this 
paper are consequences of results in elliptic function theory having to do with elliptic 
integrals of the first kind. Although the solutions of the integrals of the second and 
third kind deal with the Jacobian elliptic functions, we refer the reader to [9, p. 151] 
for determining the expression for the Weierstrass elliptic function p(u) in terms of 
Jacobian elliptic functions. It is with this in mind that we wonder whether the above 
theory resting on results of Weierstrass elliptic functions can be applied in some 
modified form to Jacobian elliptic functions as well. It is possible that this question, if 
investigated could help us to better understand how and why the above theory works. 
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