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The derivation of the Navier–Stokes equation in continuum mechanics leads to a number
of consequences which are discussed in depth. In spite of its very high representativity
of real flows, this equation presents some artefacts due to the whole notion of the
continuous medium. An alternative to the Navier–Stokes equation is proposed, based on
the conservation of energy per unit mass instead of momentum. The classical inertial
frame of reference is replaced by a set of local frames of reference where interactions
are treated as cause and effect. Invoking the principle of equivalence between energy and
mass, the latter is eliminated from the quantities used in this new formalism. All quantities,
variables and physical properties are thus expressed in units of mass. The law of motion is
established in the form of the conservation of acceleration, an energy per unit of mass and
length. The acceleration is thus written in the form of a Helmholtz–Hodge decomposition,
in two terms, the first curl-free and the second divergence-free as a function of two
potentials, scalar and vector. Maxwell’s idea of federating the laws of electrodynamics
and magnetism to establish electromagnetism is taken up here to establish the new law of
motion as a nonlinear wave equation. This approach makes it possible to demonstrate
that this law is relativistic from the start. The form of the equation of motion in two
Lagrangians gives access to symmetries related to the conservation of certain quantities
according to Noether’s theorem.
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1. Introduction

The legitimacy of the Navier–Stokes equation is not questioned. It has a strong
representativeness of real flows in many situations where the concept of the continuous
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medium applies. Incompressible flows, two-phase flows, variable density flows, linear
waves or shock waves are all examples where the observations coincide with the solutions
of the Navier–Stokes equation (Landau & Lifshitz 1959; Batchelor 1967; Newton 1990).

However, if the solutions of this equation can be qualified as conforming to reality,
one can wonder about the choices that have been made for more than two centuries in
the construction of this edifice that the equations of fluid mechanics represent today.
Indeed, it is useful to go back to Galileo to understand the path taken by I. Newton, H.
Navier, G.G. Stokes, A. Einstein and their successors in the elaboration of the laws of
classical mechanics. The transposition of the theory of relativity to mechanics comes up
against the necessary identification of the relationship between the velocities included
in the Lorentz factor and that of the Mach number; if, for the first theory, the velocity
cannot exceed the celerity of light, the passage of the threshold from a subsonic flow
to a supersonic flow is a reality. In their book on fluid mechanics, Landau & Lifshitz
(1959) underline the necessity to ensure the conformity of the laws of fluid dynamics with
those of special relativity. They use the quadrivector formalism of the energy-momentum
tensor while keeping the concepts of classical mechanics and thermodynamics, density,
pressure, and so on to obtain a wave equation after simplifications. However, attempts
to render the Navier–Stokes equation relativistic in a naive way, using for that the
Lorentz transformation and the classical basis of continuum mechanics, have remained
unsuccessful (Geroch 1995; Granik & Chapline 1996; Wang 2022). Finally, important
questions remain, such as the existence and regularity of solutions of the Navier–Stokes
equation in three space dimensions with a large time constant (Tao 2019).

If the Navier–Stokes equation represents the most adapted and most used form to
understand Newtonian viscous fluid flows, many approaches have been developed over
time to find exact or approximate solutions. In fact, all the current concepts of the
continuous medium type come from analytical mechanics applying the principles of
differential and integral calculus developed by I. Newton and G.W. Leibniz and then by
J.L. Lagrange. Discrete points of view, mimicking the properties of matter such as lattice
methods of gas, lattice Boltzmann methods, close to the concepts of the kinetic theory of
gases, have successfully modelled the behaviour of fluids in flow. Variational approaches
are applied in the case where the Lagrangian is discontinuous (Scholle 2004; Scholle &
Marner 2017; Marner et al. 2019); they enable us to recover the classical Navier–Stokes
equations to represent incompressible and compressible flows, including shock waves.
Like the stochastic variational description, these formulations remain within the context
of continuum mechanics, where the quantities treated – density, momentum, energy – are
those of classical mechanics.

The formalism presented in this framework is both a discrete approach, insofar as space
and time are reduced to finite horizons, and a continuous approach when it reduces these
quantities to zero in a homothetic way to make a differential equation appear. It is in this
last sense that it can be identified as an alternative to the Navier–Stokes equation. The
principle of the derivation of a new law of motion is based on the notion of conservation
of integral energy, i.e. the integration on a finite length support of the intrinsic acceleration
of a particle or a material medium. In classical mechanics, acceleration is considered as
an ordinary quantity when it is not the derivative of velocity, itself a relative quantity.
However, acceleration is considered here as an absolute quantity and it is the velocity
that becomes relative by the introduction of a constant during its integration; this is
not the same thing at all. Moreover, its successive derivatives have no physical interest.
In Newtonian mechanics, this quantity is the ratio between force and mass, but neither
of these two quantities has absolute physical meaning in the sense that they cannot be
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defined intrinsically. The choice of mass to describe Galileo’s weak equivalence principle,
where inertial mass is equal to gravitational mass, introduces a superfluous notion; indeed,
this principle discussed in detail below represents only the equality of gravitational and
inertial accelerations. It is this principle that will be extended in this new formulation,
namely that the intrinsic acceleration of a particle or a material medium is equal to
the sum of the accelerations imposed on it. Newton’s second law becomes a law of
conservation of acceleration. It is autonomous and does not require adjoint equations
as for the Navier–Stokes equation which necessarily associates the conservation of mass
equation. It is also not necessary to join an energy conservation equation because the
acceleration integrated on a segment is already an expression of the mechanical energy.
It does not contain any constitutive law, only the longitudinal and transverse velocities
describe the physical medium.

Another pillar of the construction of discrete mechanics is based on the
Helmholtz–Hodge decomposition; this orthogonal decomposition of any vector is adapted
to acceleration by eliminating the harmonic component divergence-free and curl-free
which makes it indeterminate for any vector in space. To eliminate this component, it
is necessary to reconsider the notion of Galilean relativity, which is only related to the
invariance of the equations for a constant rectilinear velocity motion by its extension to
uniform expansion and rotation motions. This extended Galilean invariance then allows
us to decompose the acceleration into two terms, one curl-free and the other without
divergence; these are respectively the gradient of the scalar potential and the curl of
the vector potential of the proper acceleration. These two potentials are energies per
unit mass respectively representative of the compression and rotation effects. They are
also actions in the Lagrangian sense, each being composed of a potential energy and a
kinetic energy. The derivation of the law of motion is thus formed by two Lagrangians
whose sum is the total energy, the integral over a segment of the acceleration. We thus
directly find the three fundamental invariances of Noether’s theorem: (i) time invariance;
(ii) invariance by translation and (iii) invariance by rotation. Each of them corresponds
to an energy conservation property. The inertia term is itself described by a
Helmholtz–Hodge decomposition giving to the law of motion a great coherence and
specific properties.

The new form of the law of motion is a nonlinear wave equation. The compression
and rotation effects are indeed related to the longitudinal and transverse velocities in a
form close to the Navier–Lamé equation. The main difference between an elastic solid
and a viscous fluid is due to the absence of transverse propagation in the Newtonian fluid
model. Indeed, the viscous term of the Navier–Stokes equation presents a paradox at very
small time constants which is lifted if propagation is considered to replace the so-called
momentum diffusion. This mechanism is replaced by a transverse propagation followed
by a dissipation of energy in the form of heat. The equation of motion obtained strictly
reproduces the phenomena at large time constants of the Navier–Stokes equation but lifts
the paradox at small scales of time and space. From then on, this law is transformed into
a wave equation whose relativistic character is easy to demonstrate. This property has
become indispensable if one considers that the equation of motion harmonizes with the
other laws of modern physics.

Indeed, the construction of the proposed formalism is based on the concepts introduced
by Maxwell (1865) to found electromagnetism, a dynamic assembly of the laws of
electrodynamics and magnetism discovered by H.C. Ørsted, A.-M. Ampère and M.
Faraday; he unified these different laws by introducing a link in time. The creation of
a magnetic field by a current and its reverse phenomenon are indeed due to a dynamic
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entanglement using intertwined circuits in the variable regime. As in electromagnetism,
the compression effects in mechanics are described by a direct flow created by a pressure
or scalar potential difference and the effects induced by the circulation of a flow on a closed
contour surrounding the main circuit. This set can be schematized by two structures of the
differential geometry, a primal structure supporting the polar vectors and a dual structure
expressing the axial vectors.

The formalism adopted in this context does not deviate from those that have been
developed over time in mechanics. The solutions obtained by this approach are strictly
the same as those of the Navier–Stokes equation in the common ranges of their respective
validities. The objective is to extend the representativeness of the laws of fluid mechanics
to new constraints while respecting of course the principles of physics.

2. Main objections to the Navier–Stokes equation

The Navier–Stokes equation is the most emblematic equation in fluid mechanics. Its
various formulations adapted to many fields of physics, from the notion of cosmological
fluids to the study of microfluidics, have given it an undeniable status of legitimacy.
However, its applications in sometimes extreme conditions lead to question the
assumptions adopted for its derivation. In the same way, the progress of physics and
mathematics over the last few centuries has led to the integration of certain concepts
into new forms of fluid mechanics equations. This section addresses the question of the
validity of certain assumptions made over time and not questioned since. To discuss these
assumptions in detail, the Navier–Stokes equation is formulated in terms of a rotation
equation; although this form can be found in many textbooks, it can be compared with the
proposed formulation.

The equations of fluid mechanics are presented in multiple formulations depending on
the problem at hand; they are often associated with energy conservation laws in one form
or another, enthalpy, internal energy, entropy, etc. Let us consider one of the most classical
forms, omitting the additional laws:

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇p + ∇(λ∇ · V )+ ∇ · (μ(∇V + ∇ tV ))

dρ
dt

= −ρ∇ · V

⎫⎪⎬
⎪⎭ , (2.1)

where ρ is the density, and λ and μ the Lamé coefficients of the fluid. The adjoint law,
conservation of mass, is strictly necessary; indeed, the vector Navier–Stokes equation is
not self-contained even for incompressible flows. The divergence of the strain rate tensor
D can be developed to show the rotation rate. Since the Lamé coefficients are variable
quantities depending on other quantities, the divergence of the Cauchy stress tensor is
written:

∇ · σ = ∇ · (−pI + λ∇ · vI + 2μD)

∇ · σ = −∇(p − (λ+2μ)∇ · V )− μ∇×∇×V +∇ · V∇λ+∇μ · (∇V + ∇ tV )

}
.

(2.2)
After some rearrangements, the Navier–Stokes equation becomes

ρ
dV
dt

= −∇(p − (λ+2μ)∇ · V )− μ∇ × ∇ × V +∇ · V∇λ+∇μ · (∇V +∇ tV )
dρ
dt

= −ρ∇ · V

⎫⎪⎬
⎪⎭ .

(2.3)
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When the flow can be considered incompressible and with constant viscosities, i.e. ∇ ·
V = 0, andμ = cte and λ = cte, (2.3) simplifies and becomes the frequently used classical
form:

ρ

(
∂V
∂t

+ 1
2
∇(|V |2)− V × ∇ × V

)
= −∇p − ∇ × (μ∇ × V )

∇ · V = 0

⎫⎬
⎭ . (2.4)

The density ρ remains a variable property, for example, as a function of temperature
and pressure. Whatever the methodology adopted to solve this system of equations, it
is necessary to link the density and the pressure by a state law. Indeed, the number of
unknowns and equations leads to close the system by a relation between these quantities.
The simplification of (2.3) into (2.4) supposes that the constraint ∇ · V = 0 is guaranteed;
a priori, this is not the case, it is a condition which is simply desired. In fact, it is the
grouping (λ+ 2μ)∇ · V which must be considered because this term is of the order of
magnitude of the pressure and the other terms of the equation, so the more (λ+ 2μ) takes
important values, the more the divergence is reduced. The values of these two viscosities
attributed to fluids, in particular the Stokes hypothesis, do not intrinsically ensure the
incompressibility of the flow.

2.1. Stokes hypothesis
The Navier–Stokes equation for a Newtonian fluid shows the two Lamé coefficients, λ
the compressive viscosity and μ the shear viscosity. To assign a value to λ in the stress
tensor, G.G. Stokes proposed a hypothesis linking the two Lamé coefficients in a relation
η = λ+ 2/3μ, where η is named the apparent viscosity. This value of apparent viscosity
is usually identified as zero and in other cases, it is the compression viscosity which is
set to zero, a value obtained by solving the Boltzmann equation for monoatomic gases
at very low pressure. If η = 0, the Stokes hypothesis leads to the relation 3λ+ 2μ = 0;
as μ is a positive measurable quantity, it follows that λ can take negative values which
seems unacceptable if one grants to this term the role of a viscosity. Indeed, many authors
have tried to measure the value of λ for dense gases or liquids and the values obtained
are very disparate. It turns out that this assumption of Stokes is erroneous, including for
monoatomic gases (Gad-El-Hak 1995; Rajagopal 2013).

The Navier–Stokes equation (2.3) presents the grouping (λ+ 2μ) associated with
quantities related to compression such as the pressure p and the divergence of the
velocity ∇ · V . This grouping of the two Lamé coefficients defines a single property,
compressibility or rather its inverse multiplied by a time constant dt, dt/χT = (λ+ 2μ).
This expression is to be compared with the elastic coefficients of a solid where the
modulus of compressional waves is equal to M = (λ+ 2μ), where λ and μ are the Lamé
coefficients of the elastic solid. The equivalence between fluid and solid is expressed by
the displacement U = V dt. The isostatic modulus of elasticity K = 1/χT defines in the
same way the grouping (λ+ 2/3μ). Its perfectly measurable value for water is of the
order of K = 2106 Pa and, as its dynamic viscosity is equal to μ ≈ 10−3, it is easy to
find λ ≈ K = 2106 Pa and to see that Stokes’ law is false. Compression viscosity is the
subject of numerous studies aimed at improving this notion. The one promoted by Ash,
Zardadkhan & Zuckerwar (2011), Zuckerwar & Ash (2006) and Zuckerwar & Ash (2009)
introduces two terms into the Navier–Stokes equation, the traditional volume viscosity
term and a second independent term, called the pressure relaxation term; the latter term
is proportional to the material time derivative of the pressure gradient. However, this
approach retains the classical formalism of the Navier–Stokes equations.
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By construction, there can be only two independent coefficients to represent each of
the different effects, the compressive effects by the compressibility coefficient χT and the
shear effects by the dynamic viscosity μ. The 81 coefficients of the elasticity tensor C are
indeed reduced to two coefficients for an isotropic fluid considering a sequence of rotations
and symmetries, C12 = λ and C44 = 2μ. The value of λ is deduced from λ+ 2/3μ
introduced in (2.1) and has strictly no influence on the behaviour of the Navier–Stokes
equation; given the ratio μ/K ≈ 10−3/106, this represents a hypercompressible medium.
This is the reason why the law of conservation of mass is added. It introduces in a
roundabout way the real compressibility of a medium even for a gas where the ratio
becomes μ/K ≈ 10−5/105 for air in normal conditions. For an isentropic flow, the
determining parameter is its velocity cs = √

ρχs, where χs is its isentropic compressibility.
In conclusion, the system (2.1) formed by the Navier–Stokes equation and its adjoint, the
conservation of mass, does not require to assign a value to λ for both compressible and
incompressible flows. It should be noted that if the value of the compressional viscosity
such as λ = 1/χT were adopted in the Navier–Stokes equation (2.1), the explicit recourse
to mass conservation would become unnecessary. Indeed, the operator ∇(λ∇ · V ) would
immediately ensure the conservation of mass; in particular, a very high value of λ would
lead to implicitly impose ∇ · V = 0, the constraint which describes an incompressible
flow.

2.2. Divergence and curl of material derivative
The application of the divergence and curl operators on the vector Navier–Stokes equation
is particularly important because it generates second-order terms, some of which have a
questionable physical meaning, especially in the case where the density is variable; this
case is discarded in the remainder of this section.

The material derivative of the Navier–Stokes equation (2.1) is equal to dV/dt =
∂V/∂t + κ , where κ represents the inertia; in mechanics of the continuous mediums, this
is written indifferently V · ∇V , ∇ · (V ⊗ V )− V∇ · V or ∇(|V |2/2)− V × ∇ × V ; this
last term is none other than the Lamb vector L = −V × ω with ω = ∇ × V , the vorticity
vector. Let us consider the first term of this last form by posing φi = |V |2/2, the inertial
potential; its divergence is equal to ∇ · ∇φi = ∇2φi and its null curl, ∇ × ∇φi = 0.

∇ ·
(

dV
dt

)
≡ ∂

∂t
∇ · V + V · ∇(∇ · V )+ ∇2φi + (∇ · V )2 − 2I2

∇ ×
(

dV
dt

)
≡ ∂

∂t
∇ × V + V · ∇(∇ × V )− ∇ × V · ∇V

⎫⎪⎪⎬
⎪⎪⎭ , (2.5)

where I2 is the second invariant of the tensor ∇V and where the first two terms
of the right-hand members of these two relations represent respectively the material
derivative of the divergence and the curl of the velocity, d(∇ · V )/dt and d(∇ × V )/dt.
The divergence of the Lamb vector is composed of the flexion and enstrophy terms.
These two terms are interpreted as properties of turbulent flows Hamman, Klewick &
Kirby (2008).

The first relation of (2.5) can be simplified in the case of an incompressible flow,
∇ · V = 0; there remains the Laplacian of the scalar potential but also the second tensor
invariant ∇V . The latter is expressed by a planar surface orthogonal to the unit vector n of
figure 2 such that n = t × m, where t and m are the unit vectors of the considered plane; if
u and v are the components of the velocity in this plane, the term I2 is the exterior product
∇su ∧ ∇sv, where s is the gradient operator on the considered surface. It is then possible to
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define a pseudo-vector I whose each component would be associated with each plane of
normal n. This invariant I2 has no reason to be zero even at zero divergence. This scalar is
zero on the volumeΩ but not locally like the other invariants of the continuum mechanics
(Tesch 2013). From then on, it appears that the constraint I2 = 0 becomes a compatibility
condition to ensure locally ∇ · V = 0 in the search for a strong solution.

The application of the curl operator to the material derivative of the velocity is written
in a general way as

∇ ×
(

dV
dt

)
≡ ∂ω

∂t
+ V · ∇ω − ω · ∇V , (2.6)

where ω = ∇ × V is the vorticity vector. The first two terms of the second member
represent its material derivative dω/dt. In two dimensions of space, V and ω are
orthogonal and their scalar product is zero.

∇ ×
(

dV
dt

)
≡ ∂ω

∂t
+ V · ∇ω. (2.7)

This difference between the curl of the material derivative in two and three dimensions
of space is an artefact due to the vector formulation of the equations of mechanics. Indeed,
the curl of velocity ∇ × V is a pseudo-vector or an axial vector which has meaning only
when assigned to a surface of normal n; it is defined by Stokes’ theorem and computed
on the contour of the considered surface; the vector ω has no meaning when defined at a
point in the framework of the notion of continuous medium. For an inviscid fluid, (2.6)
corresponds to the conservation of vorticity.

2.3. On the origins of fictitious forces
In classical mechanics, an inertial or Galilean frame of reference corresponds to a uniform
rectilinear translation at constant velocity of a body on which no action is exerted; this is
the principle of inertia or Newton’s first law. A rotational motion at constant velocity is
considered accelerated and a rotating frame of reference is considered non-inertial.

Let us see why constant velocity rotational motion induces a fictitious force in the
Navier–Stokes equation. Let us consider the rotation vector Ω , the local velocity is then
equal to V rot = Ω × r and let us restrict the problem to a rotation about the axis Oz such
that ω = Ω · ez. The inertia term is written as either V · ∇V or ∇(|V |2/2)− V × ∇ × V ,
where the last term is the Lamb vector L. In cylindrical coordinates, the only non-zero
component of the Navier–Stokes equation is the one following the r coordinate. Since
mechanical equilibrium is not assured in an inertial reference frame, the acceleration is
expressed in a rotating reference frame where the centrifugal acceleration, −Ω ×Ω × r,
can be written as

ρω2rer − 2ρω2rer = −ρω2rer, (2.8)

where the two terms on the left-hand side of (2.8) represent inertia in a Galilean reference
frame and the term on the right-hand side corresponds to a fictitious centrifugal force. All
the other terms, in particular the viscous terms, are zero a priori.

The necessary presence of this fictitious centrifugal force to establish mechanical
equilibrium is due to the formulation of the equations of mechanics in a global Cartesian
reference frame. To establish that a vector equation or vector is zero, it is necessary
that all three of its components are zero simultaneously. First of all, we must notice
that the equilibrium expressed by (2.8) is only supported by the following terms er.
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The first term is the gradient of |V |2/2 and the second term is also the gradient of a
centrifugal potential ω2r2/2. Therefore, the Lamb vector L = −V × ∇ × V can only be
the gradient of a function of r identical to the two other terms. This view of the mechanical
equilibrium of a uniform rotational motion is questionable. Indeed, no constraint applies in
the orthoradial direction eθ , whereas common sense leads us to think that an acceleration
along θ contributes to ensure the mechanical equilibrium.

The origin of the fictitious forces in the Navier–Stokes equation is due to the form
of the apparent acceleration in the rotating reference frame which gives rise to three
fictitious accelerations, the centrifugal acceleration, the Coriolis acceleration and the Euler
acceleration corresponding to that of the rotating reference frame. However, it is necessary
to dissociate the case of a uniform rotational motion from the problem of the change of
reference frame where a velocity field is added to the local velocity of the material medium
to facilitate the obtaining of solutions. One should also not confuse the dynamic actions to
be performed to obtain a fixed motion with the motion itself, which is a purely kinematic
view. There is no legitimate reason to consider that uniform rotational motion, with zero
divergence and constant curl, is a non-inertial problem. A particle on its circular path
continues its motion without bringing into play any other accelerations or forces that are
specifically related to a change in direction or velocity.

The point of view developed below consists in considering that the equation of motion
filters out certain uniform motions including constant velocity rotation, i.e. that it is
invariant to a rotation defined by the velocity field Ω × r; this would be an extension
of Galileo’s principle of inertia according to which a constant velocity rotation motion
continues indefinitely if it is not subjected to any external action. This is not the case for
the Navier–Stokes equation, whose inertia terms generate an artefact compensated by a
fictitious centrifugal force.

2.4. A non-relativistic equation
The Navier–Stokes equation is, a priori, non-relativistic. Several attempts to make this
equation satisfy the Lorentz invariance remain unsuccessful for different reasons. First of
all, the physical properties, the density ρ, the viscosity coefficients λ and μ, make the
Lorentz transformation difficult to apply. The existence of nonlinearities in the inertia
terms complicates this work. Finally, the conservation of mass outside the equation itself
limits the chances of simply obtaining an equation of motion that is relativistic while
preserving its properties at celerities much lower than the celerity of light c0.

However, the system (2.1) has a hyperbolic character because of its ability to represent
longitudinal waves of celerity cl. It translates very correctly linear and nonlinear waves
such as shock waves. The transposition between sound waves and light waves is not only
formal; swell, acoustic and Hertzian waves are of the same nature but, of course, the
propagation properties depend on the considered frequencies. One phenomenon allows
us to understand the legitimacy of the comparison between acoustic waves and light
waves, which is the limitation of the celerity of matter to the celerity of the medium
on a straight trajectory, cl for fluids and c0 for light in vacuum. In a shock tube, the
solution of Euler’s equation is of the form x = ±clt, where x is the abscissa of the wave
front, and the velocity cannot exceed the celerity of sound in the fluid. The conclusions
drawn by A. Einstein from the experiment of A.A. Michelson and E.W. Morlay on the
non-existence of the cosmological aether at the end of the 19th century are that the speed
of light is an impassable value and that it is the same in any inertial reference frame.
These two observations, perfectly established in fluid mechanics and special relativity,
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lead to the question of a unique formalism. However, the Navier–Stokes equation is not a
wave equation, even if we disregard the nonlinearity due to the inertial terms.

Another difficulty is related to viscous effects which have no equivalents in special
relativity where the propagation of gravitational waves of celerity equal to c0 is of the
same nature as the propagation effects of polarizable transverse waves in solid mechanics.
The viscous term μ∇2V or its equivalent ∇ × (μ∇ × V ) is thus not the appropriate form
to represent these transverse waves of celerity ct. The Navier–Stokes equation reflects the
fact that, even if these waves exist, they are instantaneously dissipated; this instantaneous
character is not admissible in physics as there is always a time constant even very small
which ensures the transition for the attenuation of transverse waves in viscous Newtonian
fluids. The diffusion of the transverse momentum implies its dissipation. From this point of
view, the phenomena of longitudinal and transverse propagation in elastic solids governed
by the Navier–Lamé equation are more compatible with the relativistic formalism. Indeed,
if fluid mechanics and solid mechanics are supposed to be federated within continuum
mechanics, it is clear that the equations remain different.

So why is it important to look for an equation that is as representative of viscous flows
as it is of light propagation? The Navier–Stokes equations have hardly evolved for more
than two centuries while very important discoveries have been made in physics during this
time. Maxwell’s equation is relativistic and it is necessary that the equation of fluid motion
be relativistic one day. Cosmology has introduced the notion of cosmological fluid by
integrating the expansion of the Universe in the Euler equations. This notion of expansion
is still absent from the current equations of classical mechanics where Galileo’s invariance
becomes insufficient. In the same way, the equivalence between mass and energy of special
relativity is a pillar of physics that is neglected. The current equations of mechanics are
based on the conservation of mass but also on the conservation of energy duplicated by
an equation of motion which also expresses a conservation of energy. These equations
are overabundant and the number of variables used is also excessive. These observations
deserve special attention and a thorough examination to reduce the number of equations,
variables and even the number of fundamental units in which they are expressed.

3. Principles of new formalism

3.1. Maxwell’s idea
The new formalism’s derivation of the law of motion is based on modelling physical
phenomena in a single direction in space, that of the segment Γ oriented by the unit
vector t shown in figure 1. The segment Γ , of length dh called the discrete horizon, is
bounded by two vertices a and b. The velocity of a particle or material medium along
this rectilinear segment cannot exceed the celerity cl of wave propagation in a medium,
for example, the celerity c0 of light in a vacuum. These elements allow us to define the
time lapse dt between the equilibrium instant to and the current instant t = to + dt by the
relation dh = cl dt. The system is in mechanical equilibrium at time to, and the law of
motion predicts the solution at time to + dt. The quantities dh and dt are those that will
restrict the application of the law of motion to the evolution of a physical system whose
space and time scales are arbitrary. Interactions in a multi-dimensional vision of space are
achieved by cause and effect, through the connection of other segments via vertices; the
family of segments known as the primal structure will be denoted Γ ∗. This restriction of
modelling to one dimension of space suggests the abandonment of very important notions
of classical mechanics, such as one-point derivation, integration and, more generally, the
abandonment of mathematical analysis.
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Δ

γ

ψ

Γ

φ

a

t

n
b

v

Figure 1. Native discrete mechanics model: a rectilinear segment Γ of length dh = [a, b] oriented along the
unit vector t forms the primal structure. The dual contour Δ positively oriented by n is such that t · n = 0.
Acceleration γ and velocity v are vectors carried by the Γ oriented segment; scalar potential φ is assigned to
its ends and vector potential ψ is fixed on the Δ contour.

The predecessors of J.C. Maxwell, of electrodynamics and magnetism, contributed with
him to an exceptional discovery represented by the circulation of a direct current on a
conductor Γ and an induced current in a loop Δ when the regime is variable in time; the
electric and magnetic fields generated by the variable currents can be reversed. Figure 1
therefore represents the dual structureΔ oriented by the unit vector n such that Maxwell’s
corkscrew rule is respected; the unit vectors are orthogonal by construction, t · n = 0. The
acceleration vectors γ and the velocity v are carried by the segment Γ , the scalars φ by
the vertices of the primary structure and the pseudo-vectors ψ by n.

By abandoning the global reference frame R
3(x, y, z) and the notion of reference frame

change, we have to build a model compatible with the local reference frame alone. This
is constructed in such a way as to be able to sum the contributions of direct and induced
currents on the Γ segment alone. The direct current is produced by a potential difference
between the a and b vertices, and the induced current on Γ is produced, in variable regime,
by the circulation of a current in the Δ loop. The physical modelling of all phenomena
is therefore performed on the Γ segment alone. The direct effects of compression are
carried by this segment in the form of the gradient of a scalar potential, and the induced
effects are fixed by the dual curl of the vector potential, which projects the result onto
this same segment. Each of the accelerations related to the phenomena of compression,
rotation, diffusion, dissipation, gravitation, capillarity,. . . will contribute to a sum defined
as a scalar on the oriented segment equal to the intrinsic acceleration of the particle or
material medium under consideration.

The Maxwell-based approach to modelling all mechanical phenomena gives the discrete
equation of motion very different properties from those of the Navier–Stokes equation. The
latter does not propagate waves naturally, and only its combination with the continuity
equation can reproduce shock waves. The discrete law of motion is intrinsically a wave
equation; it possesses the attributes of a wave equation, notably that of being naturally
relativistic. This quality applies not only to the propagation of light at celerity c0, but also
to the propagation of any type of wave.
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b

a

S

D

t

v nΓ

Δ

γ

ψ

φ Ω

∂Ω

Figure 2. Primal and dual structures mimicking the entanglement of electromagnetism between direct and
induced currents; each segment Γ of length dh = [a, b] is oriented by a unit vector t. The normals to the facets
S are also oriented along n with n · t = 0. The scalar potential φ is defined on each vertex of this primitive
structure and the vector potential ψ is carried by n. The acceleration γ and velocity v are expressed on the
segment Γ , orthogonal to the dual surface D defined by its contour Δ.

3.2. Primal and dual geometric structures
The control volume used by classical mechanics to derive the Navier–Stokes equation is
replaced by two structures, primal and dual, illustrated in figure 2. The primary structure
corresponds to the segment Γ with ends a and b, and a length dh = [a, b]. This distance
is called the discrete horizon, because a disturbance emitted at one end can only be felt at
the other after a time dt = dh/cl, where cl is the celerity of the wave in question, whether
swell, sound or light. This segment is connected to other segments by their extremities,
forming a family Γ ∗, which constitutes the primary mesh by flat surfaces S which are
polygons with any number of sides. These surfaces in turn form polyhedral volumes that
tessellate the entire physical domain under study. The dual structure is formed by a closed
contour Δ oriented along the vector n defining the facets of the dual volume Ω whose
boundaries ∂Ω are the dual surfaces. The vectors t and n, respecting Maxwell’s corkscrew
rule, are orthogonal by construction. Here Γ and Δ are contours similar to the electrical
circuits of electromagnetism, including direct and induced currents.

Differential geometry allows us to establish the existence of four differential operators
that exchange information between primal and dual geometric structures. The first is the
discrete gradient operator, ∇φ, which is the restriction of the classical gradient (∇eφ · t)t
to its only component on Γ . The primal curl operator ∇ × v calculated as the circulation
of the vector v on the family of segments Γ ∗ projects the result onto the normal n. The
velocity divergence ∇ · v represents the sum of fluxes across the dual surface D, the result
of which is assigned to the segment vertices. Finally, the dual curl ∇ ⊗ ψ is also calculated
as the flux over Δ and the result is projected onto the segment Γ . Note that the notion of
tensor does not exist in discrete mechanics, and that a vector is itself a scalar assigned to an
oriented segment. This allows us to unambiguously assign the symbol ∇⊗ to the dual curl,
since the tensor product no longer exists in the formalism presented. These four discrete
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differential operators are the only ones to describe all mechanical phenomena within a
single law of motion.

The compression energy per unit mass φ calculated from the flux through ∂Ω by the
Green–Ostrogradski theorem is assigned to the vertex a of the primitive structure. The
rotational energyψ is calculated on the primitive facets S and supported by the normal n to
them. The operator ∇φ represents the flow through the dual-contour facetΔ, while ∇ ⊗ ψ
translates the flow through the primitive-contour facet Γ ∗. Both operators are carried by
the single segment Γ . This formulation in potentials has multiple properties, such as ∇ ×
∇φ = 0 and ∇ · ∇ ⊗ ψ = 0, which mimic those of the continuous medium, whatever the
polyhedral tessellation chosen.

The acceleration γ , a quantity considered as absolute, is associated with the segment
Γ , it is both a component of the acceleration vector of space and a scalar defined on the
segment oriented by t. Similarly, the velocity vector v is a component of the vector V of
space and a scalar assigned to the oriented segment Γ ; but velocity, unlike acceleration, is
a relative quantity whose meaning is derived from acceleration by an integration, v = vo +
γ dt, where vo is the velocity defined by mechanical equilibrium at time to. The current
velocity v has no meaning if vo is not fixed; it cannot therefore appear as an absolute
value in an equation of motion. This condition is respected in the time derivative ∂v/∂t ≈
(v − vo)/dt but must also be respected in the other terms of this equation by applying the
appropriate operators.

The principle of causality is one of the pillars of discrete mechanics. This formulation
suggests that the existence of two distant reference frames in which the laws of
mechanics apply simultaneously is excluded. Interactions between local reference frames
are only possible through a cause and effect relationship through the common vertices
of the primitive structure. The only way to consider the possibility of accounting for
long-distance phenomena is to define the relation between the two distant reference
frames by eliminating rotational effects and using the relation dh = c0 dt to account for
propagation. In the case where rotational effects are present or the properties are variables,
for example, the celerities cl or ct, it becomes impossible to predict any motion at distance.

From a more technical point of view, the presented formulation is similar to some
approaches coming from differential geometry, in particular,the methods of discrete
exterior calculus (Meyer et al. 2003; Desbrun et al. 2005; Mohamed, Hirani & Samtaney
2016; Crane & Wardetzky 2018). The mimetic methods initiated by Shashkov (1996),
Hyman & Shashkov (1997) and Lipnikov, Manzini & Shashkov (2014) based on orthogonal
decomposition theorems are widely used to solve Maxwell or Navier–Stokes equations.

3.3. Conservation of acceleration
The concept of momentum, sometimes presented as a principle, expresses that the material
derivative of the product of mass and velocity p = mV is equal to the sum of the forces
F i, d(mV )/dt = F i. In continuum mechanics, however, it is expressed as the product of
density and velocity q = ρV and the second member becomes the sum of forces per
unit volume f i, ρ dV/dt = f i. The latter expression of the concept of conservation of
momentum leads to the non-conservative form of the Navier–Stokes equation. In the case
of variable-density flows, this introduces the difficulty of defining the density ρ. Whatever
its form, the notion of momentum raises a major objection. In an inertial reference frame,
velocity V is a relative quantity, and any constant velocity V 0 is removed from the system
of equations. However, this is not the case for the momentum p = mV 0 because m can
vary in time and space. The same is true for kinetic energy Ek = mV 2

0/2. The quantities p
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and Ek do not satisfy, a priori, the principle of relativity. They are even used in absolute
terms to study elastic collisions between bodies, adopting the conservations of momentum
dp/dt = 0 and energy dEk/dt = 0 at the instants preceding and following impact.

The principle of relativity must be applied to all quantities – velocity, of course, but also
all other quantities used to describe a physical law for uniform rectilinear motion. Galilean
relativity has been extended to all rotational motions (Caltagirone 2023), which means
that all uniform motions can be excluded from the equation of motion. The only physical
quantity that can be considered absolute is acceleration. If we denote γ = dv/dt the
intrinsic acceleration of a body with or without mass, and h the sum of the accelerations
applied to it, the fundamental law of dynamics can be stated as follows:

γ = h, (3.1)

and this law is the primary form of the equation of motion, expressed in energy per unit of
mass and length.

The laws of classical mechanics are based on the conservation of mass m or density
ρ, momentum (ρv) and energy E, supplemented by constitutive laws, such as a state
law. They are expressed in a three-dimensional inertial reference frame R

3(x, y, z). In
the general case, the Navier–Stokes equations have the following unknowns: (i) the three
components of velocity; (ii) density; (iii) pressure and (iv) energy per unit volume e, i.e. six
unknowns. In continuum mechanics, the number of equations must be equal to the number
of unknowns: (i) the three components of the Navier–Stokes equation; (ii) the continuity
equation; (iii) a state law and (iv) the energy equation.

Discrete mechanics drastically reduces the number of variables to just one, the
acceleration γ , a scalar quantity attached to the segment γ . The velocity on this same
segment is deduced by the relativity principle v = vo + γ dt, where vo is the velocity
calculated at time to. The operators divergence ∇ · v and primal curl ∇ × v allow us
to deduce explicitly the scalar φ and vector ψ potentials. The latter quantity, despite
its name, is a scalar assigned to each of the oriented primal facets S of the normal n.
The formulation is therefore defined by the triplet (v, φ,ψ) but from the acceleration
γ alone. The constitutive laws as such are abandoned, and only the celerities cl and ct
need to be known; these quantities are independent of the formulation. Extension to a
larger dimension of space is achieved by connecting structures, an example of which is
given in figure 2, through their common vertices. The interconnected segments form S
facets of any number of sides, and these facets in turn form Ω plane-faced polyhedra that
tessellate the physical domain. The potentials φo and ψo are defined only in relation to
constants. Their absolute values can only be known if their initial values at time t = 0 are
themselves estimated. Although this is possible in some cases, these values are generally
not measurable, and it is their deviation from their values at a given time to that will enable
us to predict the evolution of a system from an equation of motion. In short, the equations
for conservation of momentum, mass and energy, together with a law of state, are replaced
by a single law of acceleration. This drastic reduction in the number of variables and the
number of unknowns is in line with the principle of parsimony, also known as Occam’s
razor, sometimes enunciated in physics. The term ‘razor’ refers to the distinction between
two formulations leading to the same conclusions, eliminating unnecessary assumptions.

Acceleration is the total energy per unit mass and per unit length, so there is no need for
another energy conservation equation. For example, heat transfer phenomena, in particular
heat diffusion, will be introduced into the equation of motion itself (Caltagirone 2020a)
in the form of a potential h = cpT , the enthalpy. If certain other physical phenomena are
already modelled, they will be introduced in the form of specific potentials, e.g. capillary
energy per unit mass, φc = σκ , where σ is the surface tension per unit mass and κ the
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local curvature of the interface; this potential φc is naturally added to the scalar potential
φo.

The proposal formulated here is based on a return to Galileo’s weak equivalence
principle (WEP), which expresses the equivalence between the mass associated with
gravity and that associated with the inertia of a body. This principle, taken up by I.
Newton, was translated into the principle of inertia, the first law of his work. Mass appears
in each of the members of his second law applied to gravitation, mγ = mg, where γ is
the acceleration of the body and g is the acceleration of gravity. Later, special relativity
established the equivalence between mass and energy, formalized by A. Einstein’s famous
formula E = mc2

0, where c0 is the celerity of light. Despite this equivalence, the theory
of special and general relativity refers to mass. This notion of mass persists to this day in
many classical laws of physics. Similarly, the concept of momentum is still anchored in
classical mechanics, including relativity theory, where the notions of mass and momentum
are omnipresent. This concept is intimately linked to the non-acceleration of the motions
it represents, and denies a priori the existence of wave propagation in the medium (swell,
acoustic waves or light).

The point of view adopted revisits WEP by postulating the conservation of acceleration
and therefore the conservation of energy on a segment. The law of discrete mechanics
states that the acceleration of a particle or material medium is equal to the sum of the
accelerations applied to it. The abandonment of other basic concepts, notably that of
the global frame of reference, necessitates the creation of another geometric structure,
that of a local frame of reference based on J.C. Maxwell’s remarkable idea of unifying
electrodynamics and magnetism (Maxwell 1865).

3.4. Concept of physical homology
Mechanics has developed over time, building up a series of coherent quantities of its own.
The fact that there are currently seven units to describe them in the International System
of Units (SI units) shows the amount of synthesis required to achieve unification. It is
therefore necessary to drastically reduce the number of these quantities. This objective is
suggested by the following observation: all physical quantities that include mass in the
list of units describing them, always include it in the first order, without exception. It is
therefore possible to express an equivalent quantity in units of mass. For example, E = mc2

0
becomes φ = E/m = c2

0, energy per unit mass. This expression does not represent the
equivalence between energy and mass; here, mass is merely a factor of proportionality. The
equivalence of mass and energy is a reality, but not expressed by this formula. It is then
possible to reduce the number of fundamental units for expressing the unified quantities of
physics. By dividing each quantity by its mass, we deduce an equivalent quantity per unit
of mass. In fact, only two fundamental units are needed to describe the unified quantities:
length and time, the SI system’s metres and seconds.

Analysis of the mechanical phenomena associated with the reference frame of figure 1
leads to a minimal number of fundamental variables: (i) the acceleration γ and velocity v
of the fluid on Γ ; (ii) the scalar potential φ, an energy per unit mass and (iii) the vector
potential ψ , also an energy per unit mass. Two other quantities represent fundamental
physical characteristics: longitudinal velocity cl and transverse velocity ct. These two
quantities are properties of the medium and will not be modelled; they will simply be
known and may depend on the other fundamental variables. The variables (v, φ,ψ) and
the properties of the media (cl, ct) are the only quantities necessary and sufficient to model
all physical phenomena for the classical fields of mechanics. All these quantities can only
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be expressed in two fundamental units: length and time. This reduction of mechanical
quantities and units opens the way to possible analogies between apparently different
phenomena.

Let us look at a few phenomena that are a priori disjoint in classical physics. To begin
with, let us consider the velocity of the photon compared with the celerity limitation of a
fluid in a pipe, the phenomenon of sonic blockage. Experiments by Michelson & Morley
(1887) show that the celerity of light in vacuum c0 is invariant with respect to the direction
of propagation. Light is represented both as a wave and as massless particles, the photons,
which have a priori a velocity equal to the celerity c0. Consider a gas injected into a
tube of constant cross-section from a converging channel; the velocity of the gas increases
in the converging channel, but is limited in the tube by the local celerity cl, whatever
the pressure difference maintained between upstream and downstream of the tube. This
phenomenon of sonic blockage is well explained by Hugoniot’s theorem, established in
the 19th century. So, in the case of directional motion, the particles – photon or gas
– are limited to a velocity equal to the celerity of the medium. Other considerations
concerning the need for a material medium for sound propagation in gases are linked
to the very different orders of magnitude of wave propagation celerities in the two media.
The solutions of the mechanical equations, Euler or Navier–Stokes, and the results of
special relativity that lead to the phenomenon of sound blocking are the same. The result
obtained in discrete mechanics (Caltagirone 2023) for a uniformly accelerated particle
whose velocity is limited by the celerity of the medium is also consistent with those of the
first formulations. These phenomena belong to the same physics as homology.

3.5. Mass-energy equivalence
The equivalence between mass and energy is a reality not only in special relativity but also
for all the laws of physics. The use of both concepts is of course possible, which is practised
in classical mechanics, but this redundancy leads to keep physical quantities in excess of
what is strictly necessary. Energy is a broader concept than mass and it is natural to keep
the latter, especially since there is another form of energy not represented by mass, that
linked to angular momentum. The examination of all the quantities of physics shows that
those which are expressed in function of the mass always make it appear at the first order.
It is then possible to express all the quantities of physics in terms of only two fundamental
units, length and time.

The equivalence principle is often interpreted from the famous formula of special
relativity E = mc2

0, where E is the energy, m is the relativistic mass and c0 is the celerity
of light in vacuum. This expression is in fact only a proportionality between energy
and mass; the important thing is that the energy per unit mass φ = E/m is equal to
the celerity squared, φ = c2

0. The equivalence of two quantities in physics is defined
when they obey the same laws, those of conservation of one and the other. Note that
the conservation of mass is also expressed in terms of density, dρ/dt = −ρ∇ · v. In his
theory of bivelocity hydrodynamics, Brenner (2012, 2013) dissociates mass fluxes due to
diffusion from volume fluxes. A simple example shows that a volume diffusion flux is
potentially viable even in the absence of a mass flux.

In the theory of relativity, the equivalence between mass and energy actually concerns
only part of the latter, namely compression energy. The law of discrete motion is made up
of two orthogonal terms, the gradient of the scalar potential, which represents the effects
of compression, and the dual curl of the vector potential, which is linked to rotational
energy; the sum of these two terms is none other than the acceleration itself. The principle
of equivalence of mass and energy must therefore be extended to include rotational effects.
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Let us first consider the elementary volume Ω centred on the vertex a delimited by its
surface ∂Ω schematized in figure 2. The energy balance of compression is fixed by the
evolution of energy per unit mass, the scalar potential φ; when we follow the volume in its
motion, the material derivative of the volume integral is written as

d
dt

∫
Ω

φ dv = −
∫
S
φv · n ds = ⇐⇒ dφ

dt
= −φ∇ · v, (3.2)

where the surface integral is the convective flux of the φ potential across it. The
Green–Ostrogradski theorem leads to a local form of the compression energy balance
equivalent to that of mass conservation dρ/dt = −ρ∇ · v. The integrations on the volume
Ω and on the surface S are applied here as discrete operations that mimic the integrals of
the continuous medium. The formal equivalence between compression energy and mass
(or density) is formally demonstrated.

There is thus a formal equivalence between mass and energy even if these two quantities
are not expressed with the same units. It is necessary to recall that φ as well as m represent
only the compression energy defined by the operator ∇ · v. The equivalence (3.2) then
allows us to leave aside mass and density to express the laws of physics by equivalent laws
where the quantities are defined per unit of mass, this transformation does not change the
meaning of the classical laws.

The second component of acceleration corresponds to rotational energy per unit mass
ψ . In continuum mechanics, mass is for translational motion what the moment of inertia
is for rotational motion. This moment of inertia is denoted JΓ , where Γ is the axis of
rotation. The energy per unit mass of a rotating body is initially equal to ψo; it is also
expressed in m2s−2 in SI units. The balance of the rotational energy, i.e. its evolution in
time, is given by the law (3.3). While the kinetic energy of translation Ec = mV 2/2 in
classical mechanics, the rotational energy is equal to Er = JΓ ω2/2. This duality is found
for the energies per unit mass of compression φ and of rotation ψ . The mass energy is
only one aspect of the mechanical energy, it must be associated with the compression
energy in a close way. However, there is still a difficulty on why these energies are closely
related, indeed compression is associated with the divergence operator, ∇ · v, and rotation
to ∇ × v; the first one is a scalar and the second one a pseudo-vector. In fact, it is not
these two operators that allow direct energy exchanges but the operators ∇(∇ · v) and
∇ ⊗ (∇ × v) that reproject the result on the same segment Γ .

The increase in the moment of inertia is only associated with the rotation velocity
contributed by the external medium. Its material derivative is the angular momentum
L and the equilibrium established in classical mechanics is expressed by the equation
dJΓ /dt = −JΓ∇ × v. In discrete mechanics, the equilibrium on the vector potential ψ is
as follows:

d
dt

∫
S
ψ ds = −

∫
Γ ∗
ψv × n ds ⇐⇒ dψ

dt
= −ψ∇ × v, (3.3)

where Γ ∗ is the family of segments delimiting the surface S . The discrete version of
Stokes’ theorem then defines a local conservation equation for rotational energy per unit
mass. Unlike classical mechanics, where ρ and JΓ have no unitary meaning, φ and ψ are
two quantities that are expressed with the same units, the former being assigned to the
vertices of the primal structure and the latter to the facets of S . The equivalence between
the moment of inertia JΓ and the rotational energy ψ is formally established. Applying
the dual curl to the potential vector ∇ ⊗ ψ defines the angular acceleration.

These local laws (3.2) and (3.3) are the basis for modelling scalar and real potentials at
time t = to + dt, φ = φo + dφ and ψ = ψo + dψ from their values at time to. Recall that
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potentials are related to longitudinal cl and transverse ct celerities by the equalities φ = c2
l

and ψ = c2
t when velocities are equal to the respective celerities of these waves. In short,

if the velocity v is equal to the celerity of the waves in a medium, the potential considered
(φ or ψ) is equal to the squared celerity; if the velocity v is smaller, the celerity will retain
its value but the potential will be proportional to the velocity. Generally speaking, φ = vcl
and ψ = vct. On a straight trajectory, the velocity of a particle cannot exceed its celerity,
v ≤ cl, but on a circular trajectory, the problem remains open.

Since special relativity on the equivalence of energy and mass, the question of the
conservation of mass within the equations of mechanics does not arise any more. However,
why keep both notions? All theories of mechanics include mass in the equations even
though energy is fundamentally present in the equation of motion, whether it is expressed
in terms of momentum or acceleration. The total energy E per unit mass is reflected by the
integral over the length dh = [a, b] of the segment Γ :

E =
∫ b

a
γ · t dl, (3.4)

where the ratio E/dh is the average acceleration on the segment. This quantity can be
interpreted as a discrete quantity, or local when dh → 0. From this point of view, this
boundary crossing is similar to the assumption of a continuous medium when the control
volume tends to zero. The total energy is defined at a constant Eo which corresponds
to the energy already present in the system at time to. Taking into account the partition
on the compression and rotation accelerations, the total energy is the sum E = Ec + Er.
This expression opens the possibility of exchanges between the compressive and rotational
accelerations in the conservation of the total energy. In conclusion, the choice of energy
instead of mass is perfectly justified because mass is only a part of energy.

Another argument in favour of this choice is the reduction of the fundamental units
to express the quantities of physics. At present, seven quantities constitute the group of
fundamental units, namely the metre (m), the kilogram (kg), the second (s), the ampere
(A), the Kelvin (K), the candela (cd) and the mole (mol). Examination of the list of units in
which all the quantities of physics that depend on mass are expressed, without exclusion,
reveals that the latter appears only at first order. It is therefore possible to define these
same quantities by the unit of mass without changing the meaning of the laws of physics.
For example, the force becomes a force per unit mass or an acceleration. Other commonly
used units such as Kelvin, the unit of temperature, can be interpreted in terms of energy,
for example by using the enthalpy h = cpT , where cp is the mass heat at constant pressure.
After careful analysis, SI units can be replaced by equivalents that are groupings of two
and only two fundamental units, those of a length and a time.

The abandonment of the mass simplifies considerably the derivation of the equation of
motion. It is made possible by the non-standard concepts adopted: (i) the conservation
of acceleration on an axis; (ii) the use of a local reference frame and the abandonment
of the global inertial reference frame and (iii) the replacement of the concept of mass by
that of energy. Although mass is a practical quantity in everyday life, it is not universal
enough to represent all forms of energy. More than a century after the construction
of special relativity, mass is still present in many laws of physics. A. Einstein himself
kept this quantity to establish the laws of relativistic mechanics from the works of H.
Lorentz and H. Poincaré. In fluid mechanics, it is present in the Euler and Navier–Stokes
equations and associated with the acceleration to give q = mV , the momentum. The
conservation of momentum becomes the conservation of acceleration; more precisely, it
is the interpretation of the WEP that directly introduces this concept. In the absence of
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mass, the few difficulties expressed in special relativity about massless particles like the
photon disappear; the photon has no mass but has energy, acceleration but no momentum.
This observation simplifies some relations of relativistic mechanics. It removes some
artefacts of this theory, in particular, the differentiation between the rest mass m0 and

the moving mass m = γm0, where γ = 1/
√

1 − v2/c2
0 is the Lorentz factor; the mass m

becomes infinite when v → c0 which is debatable. Similarly, the length contraction and
time dilation of the relativity theory appear here as ad hoc hypotheses. If the results of
special relativity and general relativity are correct, the reasons for this conformity with
the observations are of another nature (Caltagirone 2023). The formulation presented here
considers that space and time are conserved by translation, which gives it conservation
properties.

3.6. Helmholtz–Hodge decomposition of acceleration
The Helmholtz–Hodge decomposition of the intrinsic acceleration of a particle with
or without mass or of a material medium differs in essence from that of a vector in
mathematics or a velocity in physics. Galileo’s principle of inertia removes any hope of
defining an absolute velocity. Since its definition is written v = vo + γ dt with dt = t − to,
where to is the initial time, it would be necessary to know vo the initial absolute velocity
which is impossible. If vo is arbitrarily fixed, then it becomes possible to know the current
velocity as a function of the velocity at time to provided that the acceleration is an absolute
quantity. Even if in mathematics the successive derivatives of the position x are legitimate,
the acceleration γ = d2x/dt2 can be considered as an absolute quantity. Indeed, it is
measurable at any place and at any time in an intrinsic way, in the absence of any external
reference frame.

In the general case of any vector or velocity, the Helmholtz–Hodge decomposition
reveals three terms (Denaro 2003; Bhatia et al. 2013; Caltagirone 2021c): the first one
is the gradient of a scalar potential Φ curl-free, the second one is the dual curl of a
vector potential Ψ without divergence, and the last one is a function H curl-free and
divergence-free:

V = −∇Φ + ∇ × Ψ + H. (3.5)

The mathematical properties of this decomposition are well known; it should be noted
that this decomposition is not unique and that the solution depends on the boundary
conditions. Its use is extended to fluid mechanics to ensure the incompressibility constraint
by projecting the solution of a prediction step on a space with zero divergence (Bell,
Colella & Glaz 1989; Caltagirone & Breil 1999; Guermond, Minev & Shen 2006). It is
also widely used in computer graphics (Desbrun et al. 2005).

The problem posed here is to know whether or not there exists a H function curl-free and
divergence-free when the Helmholtz–Hodge decomposition is applied to the acceleration.
To obtain a two-term decomposition, it is necessary to discard the harmonic components of
the velocity field for the exterior R

3 problem. The problem, formulated in this new context,
consists in finding the general form of the velocity field v such that ∇2v = 0 including at
infinity. It is therefore necessary to find the velocity field v such that ∇ · v = cte and that
∇ × v = cte. In all generality, the velocity field corresponding to these constraints is of
the form:

v = v0 + ar +Ω × r, (3.6)
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where v0, a and Ω are constants. The field v0 represents a uniform stationary flow
corresponding to the Galilean invariance, ar represents a uniform expansion motion and
Ω × r is a rotation field.

When r increases indefinitely, the local velocity also tends towards infinity and the
principle fixed in special relativity by A. Einstein is no longer satisfied, the velocity
exceeds the celerity of light. In fact, the condition adopted in mathematics of a zero field at
infinity or of a zero rotational velocity in physics are only artefacts. The choice of a global
frame of reference where the laws of physics apply at any point of this frame of reference
is an inadmissible interpretation. It is preferable to affirm that the laws of physics apply for
any extended local inertial reference frame. The notion of extension of Galilean invariance
corresponds to the consideration of the two other motions of expansion vexp and rotation
vrot of the expression (3.6). This field is stationary, i.e. ∂v/∂t = 0; this term of the material
acceleration can indeed be non-zero, only the uniformity in space of the acceleration is
considered here. Let us now examine how this field can be non-zero and lead to a zero
acceleration by applying the following operators:

vexp = v0 + ar, vrot = Ω × r

∇ · vexp = a, ∇ × vrot = 2Ω
∇ × vexp = 0, ∇ · vrot = 0

∇(∇ · vexp) = 0, ∇ ⊗ (∇ × vrot) = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (3.7)

The sequence (3.7) shows how uniform velocity fields are filtered by the operators ∇(∇ ·
v) and ∇ ⊗ (∇ × v), the latter being accelerations. It is of course necessary that this result
be applicable to all terms of the equation of motion, including the inertia terms. If these
conditions are verified, the intrinsic acceleration of a particle with or without mass or of a
material medium can be written:

γ = −∇φ + ∇ ⊗ ψ, (3.8)

a two-term Helmholtz–Hodge decomposition of the acceleration.
The Helmholtz–Hodge decomposition of a space vector (3.5) in the continuous medium

concept contains the sum of vectors whose meanings may be confusing, ∇Φ and ∇ × Ψ
are not of the same nature; ∇Φ is indeed a real or polar vector like V and ∇ × Ψ
is a pseudo-vector or axial vector whereas H is undefined. The discrete formulation
associated with the primal and dual structures makes the Helmholtz–Hodge decomposition
(3.8) more precise, and the classical curl is replaced by the dual curl ∇⊗. Thus, the
acceleration carried by Γ is the sum of the gradient of a scalar and the dual curl which
projects the result, obtained by Stokes’ theorem from the circulation on Δ of the vector
ψ , on the same segment Γ . The decomposition (3.8) is then the simple addition of
three scalars on the segment oriented by t. This relation translates well the physical
concept of electromagnetism where the current in a conductor is due to two and only
two contributions: (i) the direct current associated with an electric potential difference
at the ends of the conductor, ∇φ and (ii) the current induced by the circulation of a
current in a loop surrounding the conductor, ∇ ⊗ ψ . The decomposition (3.8) is locally
orthogonal (Caltagirone & Vincent 2020; Caltagirone 2021a) although the two terms
of this decomposition are carried by the same segment Γ which physically induces the
impossibility of a direct transfer of a compressional energy into a rotational one in the
stationary regime. Here again the analogy with electromagnetism is obvious; the current
in the outer loop can only produce an induced current in the main conductor if this current
is variable in time.
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The interior Laplace problem such that ∇2v = 0, where v is the velocity defined inside
the domain Ω , can also arise if a subdomain Ωv ⊂ Ω is the vacuum in the classical
sense by excluding the quantum mechanical properties of it. Let us suppose that Ω is
a closed metallic cavity, a hollow sphere for example, in which the vacuum would have
been initially realized. If this sphere is placed in the terrestrial gravity field, it falls freely
under the effect of the terrestrial acceleration, and it would be incoherent to attribute to
the vacuum a zero velocity and to leave it in its initial position. The Ωv field is dragged in
this fall and it is necessary to attribute to it a velocity, the celerity of the vacuum vv and
also a displacement xv . The velocity field vv is then the solution of the Laplace equation
∇2v = 0, where the boundary conditions are those corresponding to the velocity of the
envelope of the sphere.

The Helmholtz–Hodge decomposition is not a fundamental principle when applied to a
vector field in mathematics or to a velocity in fluid mechanics. However, these are subject
to the principle of relativity, they are only defined up to a harmonic field, a uniform
translation velocity v0 for Galilean relativity. The extension of the classical inertial frame
of reference to movements of dilation and rotation opens the way to the derivation of
an equation of motion free of relative movements requiring the use of fictitious forces
or accelerations. In a way, it would be reasonable to abandon any inclination to describe
distant physics; if it is true that the laws of physics are the same everywhere, it is essential
that the principle of causality applies, that is to say that the interactions take place from
cause to effect, from a local reference frame to another.

3.7. Inertia
The nonlinear inertia terms, in an Eulerian approach of motion, are specific to fluid
mechanics, to the Euler and Navier–Stokes equations. They give these equations particular
mathematical properties which limit the search for analytical solutions. They are
responsible for the bifurcation of solutions that no longer have the property of uniqueness
when the constraints imposed are important; this is the case of the appearance of
instabilities in certain flows leading to turbulence. The form of the nonlinear terms comes
from the work of J.L. Lagrange and L. Euler on the representation of the derivative of
the velocity as a function of time when the particle is followed or not during its motion.
Continuum mechanics introduces, with respect to the material derivative for solids, the
properties of indifference by change of reference frame and invariance by superposition
with a uniform motion; some authors speak of objectivity, a notion introduced by Truesdell
(1977). The problem of representing the material derivative in fluid is different but the idea
of material indifference remains. The state of constraint cannot depend on the change of
reference frame adopted, in particular for a rotation of the latter. In the framework of the
proposed formulation, a rotation of the Γ axis should not introduce any dependence on
the angle of rotation. In other words, the rotation on 2π of the inertial terms must leave
the material derivative invariant. The form of the intrinsic acceleration adopted in the new
formulation is then written (Caltagirone 2020b):

γ ≡ dv
dt

= ∂v

∂t
+ ∇

( |v|2
2

)
− ∇ ⊗

( |v|2
2

n
)

= ∂v

∂t
+ κ . (3.9)

If we consider a uniform rotational motion v = ω × r, where ω = ω · n is the
component of the rotation vector associated with the plane orthogonal to n, the inertia
vector expressed in a classical inertial frame of reference will be written as κ = ω2rer −
ω2reθ , but this classical mechanics approach to fixing the equilibrium by component is not
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appropriate. In the new formalism, we express that a radial acceleration is compensated
by an orthoradial acceleration, which is perfectly justified from the physical point of
view. To give a trivial image, consider the swelling or bursting of a tree trunk over
time; the best way to compensate for this is to surround it with a steel ring that will
support the orthoradial stresses. In general, the fictitious acceleration in one direction can
be replaced by another in an orthogonal direction, but this is not possible in classical
mechanics where the equilibrium is imposed by the direction. It is easy to verify that
this uniform rotational motion is filtered out for the viscous term expressed as a dual
curl. Thus the intrinsic acceleration differs significantly from its classical expression in
continuum mechanics but the theoretical solutions of the discrete mechanics equation and
the Navier–Stokes equations are strictly the same even when inertial effects are important.
The same observation is valid for numerical simulations (Caltagirone 2021b).

The calculation of the divergence and gradient of the intrinsic acceleration (3.9) can
be usefully compared with that of continuum mechanics. By positing ∇φi = |v|2/2, the
Bernoulli potential, and taking into account the properties of discrete operators which
mimic those of continuous operators, namely ∇ · (∇ ⊗ v) = 0 and ∇ × (∇ · v) = 0, we
obtain

∇ ·
(

dv
dt

)
≡ d

dt
∇ · v + ∇2φi

∇ ×
(

dv
dt

)
≡ d

dt
∇ × v + ∇2 (φin)

⎫⎪⎪⎬
⎪⎪⎭ , (3.10)

taking into account the property ∇ · (φin) = 0.
The expressions in (3.10) differ significantly from their equivalents in continuous

medium (2.5). The presence of the second invariant I2 of the tensor ∇V is a non-zero
quantity even when ∇ · V = 0. It turns out that I2 = 0 is a compatibility condition
introduced by the tensor description of the inertia or the form of the Lamb vector which is
not a curl.

4. Derivation of equation of motion

The derivation of the discrete law of motion on a segment Γ is immediately restricted: (i)
to a time lapse dt compatible with the observed phenomenon and (ii) to the discrete horizon
dh = c dt. Indeed, the ambition to represent physical phenomena in a global inertial frame
of reference over large time constants must be abandoned. If these are wave-like, as is
the case here, it is impossible to predict the long-term evolution of a system. The current
time t = to + dt is then defined in relation to the mechanical equilibrium reached at an
earlier instant to. Similarly, since velocity is a relative quantity, it is given by the relation
v = vo + γ dt in which γ is the intrinsic acceleration, the only absolute quantity.

The potentials φ and ψ are defined at the current time t but only those of the mechanical
equilibrium at time to are known, i.e. φo and ψo named retarded potentials following the
example of those of electromagnetism (Liénard 1898). The latter are the compression and
rotation energies per unit mass at time to:

φo = −
∫ to

0
c2

l ∇ · v dτ, ψo = −
∫ to

0
c2

t ∇ × v dτ, (4.1a,b)

where the current potentials are deduced from the retarded potentials by the increments
dφ = φ − φo and dψ = ψ − ψo. These retarded potentials represent the energies present
at the initial time in the physical system. In the absence of these values, they will be
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taken equal to zero because these potentials are defined only to a constant. The increments
dφ and dψ are defined from the equivalence relations (3.2) and (3.3), dφ = φ dt∇ · v
and dψ = ψ dt∇ × v, in the case where the scalar and vector potentials are equal to
their respective celerities; in the general case, they are modelled from the longitudinal
cl and transverse ct celerities, and the operators representing compression and rotation.
The squared celerities are energies per unit mass and the groupings dt∇ · v and dt∇ × v
are dimensionless. The local equation of motion is then written:

∂v

∂t
= −∇

(
φo + |v|2

2
− c2

l dt∇ · v
)

+ ∇ ⊗
(
ψo + |v|2

2
n − c2

t dt∇ × v

)
+ hs, (4.2)

where the acceleration hs represents the possible source terms.
The law of motion (4.2) is an integro-differential equation when the retarded potentials

(4.1a,b) are inserted. Its integration is complex but can be replaced by explicit updates
deduced from their definitions. The intrinsic acceleration γ is the material derivative of
velocity, dv/dt, and the only unknown in the problem is velocity itself. Since acceleration
is energy per unit mass and length, it replaces the equations of classical mechanics,
the Navier–Stokes equation, conservation of mass, conservation of energy and a law of
state. Once the velocity v has been obtained, the scalar and vector potentials are deduced
explicitly:

updates

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αlφ

o − c2
l dt∇ · (v − vo) �−→ φo

αtψ
o − c2

t dt∇ × (v − vo) �−→ ψo

vo + γ dt �−→ vo

uo + vo dt �−→ uo

, (4.3)

where the symbol �−→ denotes the replacement of the quantity known at time to by the
current quantity. The update of the velocity v can be done directly when solving the
equation of motion. The displacement u can also be eventually computed by updating
it. Even if γ is the main variable considered as an absolute quantity, it is the velocity v
which is the unknown of the equation of motion.

The law (4.2) is an equation for the propagation of longitudinal and transverse waves
in non-dissipative media. Real media dissipate these waves to very different degrees. It is
necessary to take these dissipations into account by introducing an attenuation factor for
longitudinal waves αl and similarly αt for transverse waves. It should be noted that the latter
possess the property of polarization, and are in fact associated with the potential vector ψ
oriented along the vector n in figure 1. For fluids, the attenuation of longitudinal waves
is relatively limited and depends on their frequency. Transverse waves, however, attenuate
very rapidly, since the order of magnitude of their lifetime is of the order of τ ≈ 10−11 s.
For viscous Newtonian fluids, the transverse wave propagation term c2

t dt∇ × v must be
replaced by ν∇ × v, where ν is the kinematic viscosity. Attenuation factors and ν are,
like celerities, quantities which may depend on other variables but which can only be
known locally and in time; no constitutive law is built into the system of discrete mechanics
equations.

The physical notion of viscosity depends on the time interval dt between the examination
of two mechanical equilibria. For the moment, this transition between propagation and
dissipation of transverse waves is an open question. In the general case of a viscoelastic
medium with variable properties, the law of motion (4.2) seems to be appropriate even
for elastic media where it appears as a nonlinear alternative to the Navier–Lamé equation.
The hyperbolic nature of this equation gives it specific properties allowing it to describe
the behaviour of compressible flows. The particular case of incompressible flows is treated
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by not imposing ∇ · v = 0 but by noticing that the grouping dtc2
l ∇ · v is of the same order

of magnitude as all the other terms of the equation; it is thus by choosing the real celerity
cl of the fluid and the duration of the phenomenon to be simulated that the divergence
will be defined. The divergence will be weaker as the velocity cl will be higher. Note that
the velocities cl and ct depend on the physics to be represented, from the swell to the
propagation of acoustic waves, including the propagation of light if cl = c0. The choice of
time dt depends only on the physics to represent, for example, from dt ≈ 1020 s to simulate
a stationary solution to dt ≈ 10−20 s to simulate the propagation of light.

The transverse velocity of an elastic solid ct is perfectly defined and measurable from
the moduli of elasticity as well as its longitudinal velocity cl, these two quantities are
of the same order of magnitude. In the case of a purely viscous fluid, ct has no definite
value. The work of H. Navier and G.G. Stokes has formalized, from the Euler equation, the
introduction of the notion of viscosity within the equation of motion. Whatever its form,
the viscous term corresponds to the notion of momentum diffusion which generates a short
time paradox; a flow sheared from a state of rest theoretically causes a perturbation that
extends to infinity and the shear stress is itself infinite at the initial instant. Equation (4.2)
and the updates (4.3) propose a different view. The equation is always hyperbolic which
induces that the velocity of any perturbation is limited to the transverse celerity and
it is the update of the vector potential that is only affected by the viscous dissipation
through the attenuation factor αt. To remain in a framework compatible with classical
notions, the kinematic viscosity replaces dtc2

t and the alternative law of the incompressible
Navier–Stokes equation would be

dv
dt

= −∇(φo − r∇ · v)− ∇ ⊗ (ν∇ × v), (4.4)

where the parameter r providing the incompressibility constraint is of the order of
magnitude of 1/∇ · v. This form of the equation can be compared with the rotational
formulation of the Navier–Stokes equation (2.4); the decoupling of velocity and pressure
is one of the main differences with the abandonment of the notion of mass.

The boundary conditions of a viscous fluid flow problem cannot concern the velocity
variable. Indeed, the principle of relativity excludes fixing an absolute velocity inside the
physical domainΩ or at its boundaries ∂Ω . Only accelerations can be fixed a priori in the
form of a gradient of a scalar potential ∇φs or of a curl dual of a vector potential ∇ ⊗ ψ s,
where φs and ψ s are defined on the limits. These conditions, of the same nature as the
other terms of the equation of motion (4.2), are naturally integrated in the two terms of the
second member of this equation.

4.1. Sources potentials
The source term hs describes the additional terms associated with the various effects
affecting the intrinsic acceleration of the particle or material medium. These effects can
be gravitational, mass, capillary, rotational flows, etc. In all cases, these accelerations are
written in the form of a Helmholtz–Hodge decomposition:

γ s = −∇φs + ∇ ⊗ ψ s, (4.5)

where φs and ψ s are the potentials corresponding to the described phenomenon. For
example, φc = σκ is the capillary potential where σ is the surface tension per unit
mass and κ the curvature of the surface, and ψc = σκn the vector capillary potential.
The terrestrial gravitational effects are materialized by φg = GM/r and ψg = φgn, where
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G is the universal gravitational constant, M the mass of the Earth and r the position of the
particle or medium under consideration. All other potential contributions to the externally
imposed accelerations will have the same form.

The important difference with the classical form of these terms is that each contribution
is expressed in two terms, the first one curl-free and the second one divergence-free; both
terms are carried by the same Γ segment. The abandonment of the global orthogonal
frame of reference of continuum mechanics is compensated by a local frame of reference
integrating direct and induced effects which can express a property of anisotropy. These
two contributions can add up or cancel each other out. Let us consider, for example, the
case of capillary effects where φc = σlκl and ψc = σtκtn, where the subscripts l and t
characterize the longitudinal and transverse directions. In the case of a spherical drop of
radius r, the effects are cumulative and the potential is equal to φo = 2σκ and in the
case of a surface of zero mean curvature, a catenoid, for example, φo = 0. This approach
clarifies the mean curvature approach whose definition can be interpreted differently.

The equation of motion (4.2) is declined for a flow governed by a particular source term
and vs becomes the velocity generated by it. The specific equation is written:

dvs

dt
= −∇(φo − ds∇ · vs)+ ∇ ⊗ (ψo − ds∇ × vs), (4.6)

where ds expressed in m2 s−1 is the equivalent of a diffusion coefficient; for example, in
the case of capillary flows, this coefficient is equal to ds = σκ .

In no case, the velocity corresponding to the source term is added to that of the
global flow. In general, whatever the order of magnitude of the velocities, the principle of
velocity relativity applies and simple additivity is forbidden. However, the energies per unit
mass and the accelerations are added, for example, the equilibrium potential φo becomes
φo + φs.

4.2. Conservation properties and invariances
The conservations of total energy associated with acceleration γ and those of compression
and rotation energies intrinsic to the law (4.2) of discrete mechanics follow directly
from this. They refer to Noether’s theorem; this theorem (Noether 1918; Byers 1998;
Kosmann-Schwarzbach 2011) associates a conserved quantity with each symmetry. The
theorem applies only to theories described by a Lagrangian or a Hamiltonian. The
Lagrangian formulation of the laws consists in deriving the laws of motion from a single
principle, the principle of least action; it states that the dynamics of a physical quantity, or
field, can be deduced from a single quantity called action. The action can be, for example,
the integral along a trajectory of the difference between kinetic energy and potential
energy.

The law of motion (4.2) is not directly derived from Lagrange’s formalism for a number
of reasons: (i) the discrete formulation is derived from Maxwell’s founding idea; (ii) the
actions associated with Lagrangians are kinetic energy and potential energy are not the
only ones; (iii) mass is always present in Lagrangian mechanics is an abandoned notion
and (iv) invariants are formulated in terms of accelerations.

To clarify the nature of the phenomena present in (4.2) of accelerated motion, let us
write it in the form:

∂v

∂t
= −∇

(
φo + |v|2

2
− c2

l dt∇ · v
)

+ ∇ ⊗
(
ψo + |v|2

2
n − c2

t dt∇ × v

)
. (4.7)
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For each of the two terms on the right-hand side devoted to compression and rotation,
there are three terms that represent the following:

(1) Internal energy per unit mass φo; this scalar quantity, which can be confused with
compression potential energy, materializes the energy stored or released over time.
If the velocity is zero, this quantity becomes constant over time and, to modify its
value, it will be necessary to establish a flux of matter; this term models the internal
interactions and cohesion of matter;

(2) Kinetic energy per unit mass |v|2/2; this nonlinear term represents inertia. If velocity
increases, part of the total energy will be converted into kinetic energy;

(3) Compressive energy per unit mass (−c2
l dt∇ · v). It is this term that enables the

transfer of internal energy into kinetic energy or its inverse, whatever the medium
considered, gas, liquid or solid.

The rotation term in (4.7) has the same structure as the compression term. The internal
energy of rotation is ψo, |v|2/2n its kinetic energy and (−c2

t dt∇ × v) refers to the
transformation of internal energy into kinetic energy. When the rotational inertia term
is reintegrated into the material derivative, it becomes the acceleration γ ; this is the
total energy per unit of mass and length. If velocity varies over time, at least one of the
kinetic energy terms related to ∇ · v or ∇ × v is non-zero; if both were zero, motion
would be represented by a harmonic function rejected outright by the equation of motion.
For time-varying motion, the two acceleration terms −∇φ + ∇ ⊗ ψ = γ are intertwined.
Compression energy can then be transformed into rotation energy, or vice versa.

We better perceive the concept introduced by J.C. Maxwell where the direct and induced
effects are intertwined only if the the velocity depends on time. Otherwise, the equality of
a gradient and a dual curl is necessarily a harmonic function H:

−∇(φo
B − c2

l dt∇ · v) = H,

∇ ⊗ (ψo
B − c2

t dt∇ × v) = H,

}
(4.8)

where φo
B = φo + |v|2/2, the Bernoulli scalar potential andψo

B = ψo + |v|2/2n, its vector
potential.

Applying the divergence operator to the first expression of (4.8) and the primal curl
operator to the second allows us to eliminate H and leads to the Poisson equations,
∇2φo

B = s1 and ∇2ψo
B = s2, where s1 and s2 are functions of the velocity v. The

entanglement of compression and rotation effects is eliminated as well as the harmonic
function but these equations remain nonlinear which reduces the interest of these forms.

Equation (4.7) is presented as the sum of two Lagrangians representing respectively
the compression and rotation effects. The quantities φo

B and ψo
B are potential energies

defined at a constant, and the terms in dtc2
l ∇ · v and dtc2

t ∇ × v are the internal energies
per unit mass of translational and rotational motions. The respective differences between
the potential and kinetic energies can thus be considered as actions. Each of the two
terms constitutes an oscillator where potential and kinetic energies can be exchanged for
stationary motion. The exchanges between the accelerations defined by the two terms of
the right-hand side of (4.7) are only possible if the derivative in time is not zero.

The theorem of Kosmann-Schwarzbach (2011) established at the beginning of the 20th
century refers to concepts which are still today those of continuum mechanics like the
notion of momentum q = mV . Although the equivalence of mass and energy had already
been established by the theory of relativity, the latter continues to exhibit both notions,
thus creating difficulties of interpretation, for example, for massless particles, the photons.
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System property Symmetry Invariant

Independence in time Time invariance Conservation of total energy and of total
acceleration

Homogeneous space Translational invariance Conservation of compression energy and
translational acceleration

Isotropic space Rotational invariance Conservation of rotational energy and
angular acceleration

Table 1. Invariances and symmetries of the discrete formulation.

The abandonment of the notions of mass, force and momentum in the presented
formulation establishes somewhat different invariances and symmetries than those usually
presented as consequences of Noether’s theorem. Table 1 presents the equivalences
between the conserved quantities and the symmetries of the law of motion. The Lagrangian
formalism is not applied in the present context. The law of conservation of acceleration
is first established on the basis of the conservation of the total energy, and then it is seen
that the resulting form is formed of Lagrangians. The three invariances in table 1 each
correspond to the three terms of the law (4.7).

One essential aspect differentiates Noether’s theory from the invariances of discrete
mechanics. For example, for the compression term alone in (4.7), the latter brings out both
actions, the compression energy per unit mass φo and the kinetic energy per unit mass
|v|2/2, but also a third term not included in the Lagrangian formalism. It is, however,
fundamental to the exchange of energy in accelerated motion. The elementary compression
energy per unit volume is defined by the product dφ = vdp, where v is the specific volume,
or by dp/ρ, but the pressure increment is equal to dp = −dt/χT∇ · v. Its equivalent
potential is dφ = −dt/(ρχT)∇ · v or dφ = −c2

l dt∇ · v. The order of magnitude of this
last term is dφ ≈ clv, while that of kinetic energy is v2. We can therefore see that the
transfer cannot be reduced to two actions involving potential and kinetic energies when
the motion is accelerated.

The term dtc2
l ∇ · v physically translates the transfer of kinetic energy into internal

energy and vice versa, locally and instantaneously. Thermodynamics or classical
mechanics cannot reflect the nonlinear wave aspects inherent in accelerated motion. The
scalar potential φo for compression effects and its equivalent, the vector potential ψo for
rotation, are the energies per unit mass stored or restored over time from a reference time
to. Like the other relative quantities, they are defined only in relation to constants. They are
respectively representations of the mass m and of the moment of inertia JΓ associated with
the axis Γ . Mass can be transformed into expansion energy if the right conditions are met,
with a value that cannot exceed mc2

0. However, these compression-expansion phenomena
are not only present at high energies, they also govern flows in the presence of shock waves,
as well as turbulence in fluids. The three compression terms, (φo + |v|2/2 − c2

l dt∇ · v),
and their equivalents for rotation, are the fundamental constituents of the evolution of any
physical system. The potential φo is in fact the internal energy of compression per unit
mass, and ψo its equivalent for rotation.

4.3. A relativistic equation of motion
A relativistic law of motion is not necessary when the velocities are much lower than
the celerity of light c0 in vacuum. However, applications involving phenomena of very
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small or large temporal and spatial scales are multiplying with the progress of technologies
combining various physics. However, the main argument is that the theory of relativity has
existed for more than a century, and that this pillar of mechanics cannot be ignored.

We consider that an equation satisfies the principles of special relativity if the
passage from the reference frame r to a reference frame r′ under the effect of a
Lorentz transformation leaves this equation invariant. The demonstration is carried out by
considering the transformation where the substance r becomes r′ = γ (r − vt) in the new

reference frame and that the time t becomes t′ = γ (t − vr/c2
0), where γ = 1/

√
1 − v2/c2

0
is the Lorentz factor. This Lorentz transformation is incompatible with the Galileo
transformation where (r′ = r − vt, t′ = t). In fact, they are both necessary but fortunately
they are different in nature. The Galilean transformation and now its extension to the
uniform motion defined by (3.7) reflects the fact that it is impossible for us to know in
which global frame of reference we are at a given time, so we must give up positioning
ourselves in R

3 space. The Lorentz transformation implicitly introduces the existence of a
limit velocity which is the celerity of light in vacuum c0 and the distance r′ travelled in the
new reference frame is therefore reduced compared to the Galilean equivalent. Attempts to
transform the Navier–Stokes equation into a relativistic equation are based on this Lorentz

transformation. The factor γ = 1/
√

1 − v2/c2
0 introduced by Lorentz (1904) was obtained

by considerations on the calculation of geodesics independently of the physical reasons
for which the velocity of a particle or a material medium could not exceed the celerity of
light. This constraint was added by A. Einstein by admitting that c0 is the most important
velocity of the Universe.

The demonstration that (4.2) is relativistic relies on its hyperbolic nature which
translates into a wave equation. It is then easy to prove that it is invariant under a Lorentz
transformation as for the Maxwell equations. Let us consider u, the displacement, which
like the velocity v has meaning only in the direction fixed by the oriented vector t, such that
u = v dt, the time lapse dt thus disappears from the equation. The formula of the vector
calculus,

∇2u = ∇(∇ · u)− ∇ × ∇ × u, (4.9)

allows then to transform the equation of motion into a nonlinear wave equation:

1
c2

d2u
dt2

− ∇2u = −∇φo + ∇ × ψo. (4.10)

This form contains the classical d’Alembert’s form of a linear wave equation (Stokes
1847):

� u ≡ 1
c2
∂2u
∂t2

− ∇2u. (4.11)

The application of the Lorentz transformation makes it possible to account for the
invariance of this equation during the change of reference frame: R → R

′:

∂2

∂r2 − 1
c2
∂2

∂t2
= γ 2

(
1 − v2

c2

)
∂2

∂r′2 − 1
c2 γ

2
(

1 − v2

c2

)
∂2

∂t′2
. (4.12)

In fact, the second member of (4.10) is none other than the displacement uo at time to

and the equation becomes

1
c2

d2u
dt2

− ∇2(u − uo) = 0. (4.13)
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It is a nonlinear wave equation where the nonlinearities are those of the inertia terms
themselves. In this equation, the velocity is considered as a constant but this is not the case
in aerodynamics where we have to go back to the primitive form (4.2) by affecting the real
properties. The celerity of sound cl depends indeed on the temperature or directly on the
energy φo in the new formulation. In the real cases, this nonlinearity of thermodynamic
order is associated with the advection of the velocity field by itself. An initially sinusoidal
wave thus undergoes a stiffening of it leading to a shock wave.

The approach based on the derivation of the discrete equation of motion is very different
from the one adopted for the relativity theory. To highlight one of the consequences of the
theory of relativity for which A. Einstein wished to follow in the footsteps of Newton, the
second law of dynamics is modified by introducing the concept of moving mass. Suppose
that an acceleration h is applied to a particle initially at rest of mass m0 in one direction of
space. This problem is treated in textbooks on relativity theory and the solution relative to
discrete mechanics is presented by Caltagirone (2023). The difference in approach can be
revealed by the two expressions for the equation of motion in special relativity (SR) and
discrete mechanics (DM):

SR :
d(mv)

dt
= m0h

DM :
dv
dt

= −∇φ + h

⎫⎪⎬
⎪⎭ , (4.14)

where the mass in motion is equal to m = m0γ with γ = 1/
√

1 − v2/c2 the Lorentz factor
and m0 the mass at rest. When v → c0, the mass in motion tends to infinity which is
debatable, even as a view of the mind, the Universe itself is not infinite. The existence of
two masses, one at rest and the other in motion, is disputed by specialists of the theory of
relativity, in particular by Okun (1989, 2009). The recourse to the existence of the concept
of mass to include the principles of relativity is disconcerting if one considers with reason
the equivalence of energy and mass. The abandonment of this concept in the derivation of
the equation of motion in favour of that of energy per unit of mass removes from the outset
the difficulties associated with it.

The first expression of (4.14) associated with special relativity allows us to understand
how the velocity v tends towards the celerity c0; at the first instants of the motion by the
application of a constant acceleration h, the velocity increases linearly as a function of time
as for a Newtonian approach, then the acceleration slows down and becomes null when
t → ∞ and the velocity v → c0. The exposed formulation leads to the second expression
of (4.14) which is based on a different principle: the source term h induces a linear velocity
from the beginning of the motion but, in the course of time, the compression energy φ
increases and the sum −∇φ + h tends to zero. The velocity becomes equal to c0 when
time increases. The two solutions are strictly identical.

Another aspect that deserves a detailed analysis is the invariance of certain quantities
related to the symmetries defined by E. Noether. In particular, the invariance of time
defines the conservation of acceleration and total energy. The space–time of special
relativity leads to a consequence on the temporal homogeneity, that of time dilation; this
apparent effect is due to the change of reference frame. The second way of (4.14) respects
the time invariance by construction because the propagation of a wave is considered only
in the framework of the local rectilinear reference frame a to b and where the interactions
between local reference frames are realized from cause to effect from the vertices where
the energy is defined. Also, the notion of length contraction consistent with the notion
of time disappears in the new formalism. Indeed, the velocity v never appears in a direct
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form and the concept of space–time is replaced by the divergence of the velocity ∇ · v,
whereas the velocity in the Lorentz transformation appears as an absolute quantity and the
principle of relativity of velocities applies. The concept of space–time in special relativity
is closely related to light where dh/dt = c0. In general, the length dh and the time dt are
independent in mechanics. They are the only two quantities which describe all the other
quantities of physics, as well as their units which express these quantities.

A recurrent question arises about the existence of supra-luminous velocities where,
as in the case of flows, the velocity could be higher than the celerity of the wave. In
physics, the photon always has a velocity equal to the celerity of light c0. This statement,
as well as the absolute limitation of the velocity to c0 by the theory of special relativity,
is not in agreement with the laws of fluid mechanics where Hugoniot’s theorem predicts
the continuous passage from a subsonic flow to a supersonic flow or the reverse. The
formulation of the law of dynamics in terms of acceleration (4.2) is independent of any
reference to the medium considered, the velocity can be as well the celerity of sound cl
as that of light. In fact, special relativity only considers the compression energy where the
velocity cannot exceed the velocity of the medium as the velocity of a gas cannot exceed
the velocity of sound in a shock tube. In the general case, for the profiles of an airplane or
a nozzle, the velocity can exceed the threshold cl and the flow becomes supersonic.

5. Conclusion

The derivation of the law of motion (4.2) leads to an equation whose solutions are
also those of the Navier–Stokes equation. Numerous theoretical solutions and numerical
simulations on emblematic cases show indeed identical results in spite of the great
differences of the formulations themselves. Like other approaches such as Lagrangian
mechanics, or discrete approaches such as lattice Boltzmann methods which mimic small
scale phenomena, it does not question the validity of the Navier–Stokes equation to
represent fluid dynamics phenomena.

The approach proposed as an alternative to the continuum mechanics formulation differs
significantly in substance. The notions of global inertial reference frame, continuous
medium, one-point derivation, classical integration and analysis in general are set aside.
The discrete character of the new initial approach allows, however, to return to a local
equation comparable to the Navier–Stokes one. It consists of simple operators and scalar
quantities assigned on an oriented segment; the notions of higher order tensors generating
compatibility conditions are not necessary to translate the complexity of the modelled
physics. The differential geometry approach gives it properties, some of which exactly
mimic those of a continuous medium. The differential equation is only composed of
operators whose application leads to the acceleration, considered as the only absolute
quantity.

Beyond the technical aspects of the presented formulation, fundamental concepts have
been revisited such as the equivalence of mass and energy; if this principle is accepted, the
equation of motion is already a law of conservation of energy, so it is unnecessary to add
a specific law of conservation of mass. The maintenance of the two concepts within the
theory of relativity appears to be a paradox. Even if the Helmholtz–Hodge decomposition
is not a principle, it is nevertheless one of the foundations of mathematical analysis and
differential geometry; whether it applies to vectors or to quantities such as acceleration
or velocity, it indeed establishes a requirement to any law of physics. Similarly, the
concepts of special and general relativity are naturally imposed on these laws whether the
velocities are very low or of the order of magnitude of the celerity of the medium; (4.2) is
indeed relativistic and applies in a general way to any type of wave, from acoustic waves
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to light. Finally, the conformity of the proposed formulation to the theorem of E. Noether’s
theorem gives it conservation properties which are essential to the laws of mechanics.
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