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Moments of the Critical Values of Families
of Elliptic Curves, with Applications

Matthew P. Young

Abstract. We make conjectures on the moments of the central values of the family of all elliptic curves

and on the moments of the first derivative of the central values of a large family of positive rank curves.

In both cases the order of magnitude is the same as that of the moments of the central values of an

orthogonal family of L-functions. Notably, we predict that the critical values of all rank 1 elliptic curves

is logarithmically larger than the rank 1 curves in the positive rank family.

Furthermore, as arithmetical applications, we make a conjecture on the distribution of ap ’s

amongst all rank 2 elliptic curves and show how the Riemann hypothesis can be deduced from suffi-

cient knowledge of the first moment of the positive rank family (based on an idea of Iwaniec).

1 Introduction

Recently there have been many advances in the study of ranks of elliptic curves arising

from random matrix theory. For instance, Conrey et al. [CKRS] have studied many

interesting statistics of the family of quadratic twists of a fixed elliptic curve. In par-

ticular, they make a precise conjecture on the relative frequency of quadratic twists of

rank two where the comparison is between the sets of curves twisted by integers that

are quadratic residues (mod p) and those that are quadratic nonresidues (mod p).

This conjecture is deduced from a general moment conjecture on the central values

of the families of interest [CFKRS] combined with random matrix theory heuristics

developed by Keating and Snaith [KS].

In this paper we study the analogous problems for the family of all rational elliptic

curves. That is, we make a conjecture on the moments of the central values of this

family, using the general recipe presented in [CFKRS].

In general such a conjecture for a family of L-functions has its gross order of mag-

nitude determined only by the symmetry type of the family. For example, for an

orthogonal family F the general conjecture [KS] is

1

|F(X)|
∑

f∈F(X)

L( 1
2
, f )k ∼ akgk(log X)

k(k−1)
2 ,

where it is understood that F(X) is a subset of F with conductors ≪ X and the

asymptotic holds as X → ∞. Here ak is called the arithmetical factor and gk is a

constant arising from random matrix theory.
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We also study the moments of the first derivative of the L-functions at the central

point for a positive rank family F
′. It is perhaps not obvious what to expect for a fam-

ily F
′ where the central values should typically vanish to order one or two (depending

on the sign in the functional equation). We predict that the order of magnitude of the

k-th moment of L ′( 1
2
, E) where E ranges over F

′ is the same as that given above for

an orthogonal family. This conjecture lends evidence to the idea that the family F
′

should be modeled by an orthogonal family with the caveat that one should “add”

one zero to the central point (the “independent” model; see [M, Conjecture 1.1] and

[F]).

As an application of the moment conjecture we predict the relative proportion of

rank 2 elliptic curves whose coefficients a and b of the Weierstrass equation y2
=

x3 + ax + b lie in prescribed arithmetic progressions (mod q), similarly to the work

of [CKRS]. This gives a large number of conjectures that have the attractive feature

of potentially being tested numerically, based on the strikingly good agreement that

was seen with the quadratic twist families considered by [CKRS].

The families of elliptic curves investigated in this paper (especially the positive

rank family) can be thought of as somewhat exotic tests of the general moment con-

jectures of [CFKRS].

The arithmetical constant for the family of all elliptic curves is more subtle than

for other families previously considered as it depends on the traces of the Hecke op-

erators acting on the space of weight k cusp forms for the full modular group. In

previous examples (Riemann zeta, families of Dirichlet L-functions, weight k level N

newforms, to name a few), the arithmetical factor was essentially given in terms of

rational functions in p. A large part of this paper is the computation of the arith-

metical factor for our family. The key to this computation is a useful formula for the

orthogonality relation for the family of all elliptic curves, which we compute with

Proposition 4.2. The arithmetical factor is essentially the Dirichlet series constructed

from the orthogonality relation. In the case of the positive rank family there does not

appear to be as nice a formula for the arithmetical factor as there is for the family of

all elliptic curves.

The methods of this paper can be easily modified to obtain similar moment con-

jectures for other families of elliptic curves. However, the computation of the arith-

metical factor in terms of easily computable “extrinsic” (non-tautological) quantities

is not easily generalized to other families (see the remarks after Conjecture 1.4 for a

more precise discussion of what is meant here).

There are a variety of ways to order elliptic curves: by conductor, by minimal dis-

criminant (in absolute value), or by taking coefficients in the Weierstrass equation

to lie in a box. Furthermore, there is the question of whether to count by isomor-

phism class or by isogeny class. (Put another way: is the family composed of curves

or by L-functions?) However, there is reason to believe that almost every isogeny class

contains only one isomorphism class; Watkins briefly touches on this issue [Wa, §5].

We have ordered our curves by taking the coefficients to lie in a box for a practical

reason: it is possible to do explicit computations with this ordering. It may be most

natural to order curves by conductor, but it is difficult to work with this ordering.

Recently, Watkins [Wa] has developed various heuristics that, amongst other things,

allow one to get some handle on the ordering by conductor by way of the ordering
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in boxes. It would be interesting to compute the orthogonality relation for the family

of elliptic curves ordered by conductor. Ordering by boxes is particularly pleasant

because of periodicity of the Dirichlet series coefficients.

1.1 Notation and Definitions

Let Ea,b be the elliptic curve over Q given by the Weierstrass equation

(1.1) Ea,b : y2
= x3 + ax + b,

with discriminant ∆ = ∆a,b = −16(4a3 + 27b2) 6= 0 and conductor N.

For integers r, t , and squarefree q coprime with 6, and parameter X > 0, we take

the family F(X) = Fr,t ;q(X) defined by

F(X) = {Ea,b : a ≡ r(mod 6q), b ≡ t(mod 6q), |a| ≤ X1/3,

|b| ≤ X1/2, p4|a ⇒ p6 ∤ b}.

We also suppose (4r3 + 27t2, 6q) = 1, so in particular (3, r) = (2, t) = 1, and

(∆a,b, 3q) = 1 for Ea,b ∈ F(X). In Section 2 we review some basic facts about

elliptic curves and develop some of the properties of the curves in the family F(X).

Occasionally we write F
+ to denote the set of E ∈ F with root number wE = +1.

Our positive rank family F
′ is defined by

F
′(X) = {Ea,b2 : a ≡ r(mod 6), b ≡ t(mod 6), |a| ≤ X1/3, |b| ≤ X1/4,

p4|a ⇒ p3 ∤ b}.

We could also take q, r, and t as in the definition of F to analyze the behavior of a and

b in arithmetic progressions, but have taken q = 1 for simplicity.

Each curve Ea,b2 has the point (0, b) which is almost always of infinite order (see

Theorem 2.3 and subsequent remarks). The Birch and Swinnerton-Dyer conjecture

therefore predicts that L( 1
2
, Ea,b2 ) = 0 for almost all a and b. In addition, the sign in

the functional equation for this family is expected to be evenly distributed between

±1 (see Proposition 2.2 below).

Let G(s) be the Barnes G-function, which satisfies G(1) = 1 and G(s + 1) =

Γ(s)G(s). The k-th Chebyshev polynomial of the second kind is denoted by Uk and

Trl(p) is the trace of the Hecke operator Tp acting on the space of weight l cusp

forms on the full modular group. We let Tr∗l (p) be the “scaled” trace determined by

Trl(p) = p
l−1

2 Tr∗l (p). We let dµST be the Sato–Tate measure, i.e.,

∫

f dµST :=
2

π

∫ π

0

f (θ) sin2 θdθ.
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1.2 Moment Conjectures for the Family of all Elliptic Curves

We now state the following conjecture.

Conjecture 1.1 (Keating-Snaith) For any k ∈ C such that Re k > − 1
2
,

1

|F(X)|
∑

E∈F(X)

L( 1
2
, E)k ∼ 1

2
akgk(log X)

k(k−1)
2

holds as X → ∞, where

gk = 2k/2 G(1 + k)
√

Γ(1 + 2k)√
G(1 + 2k)Γ(1 + k)

is a certain constant familiar from random matrix theory, and ak is an arithmetical

factor given by an explicit absolutely convergent Euler product (see (4.6)).

Remarks We use the convention that 0k
= 0 for any k (alternatively, one could

only sum over nonzero central values). The restriction to Re k > − 1
2

arises because

the Barnes G-function has its rightmost pole at k = − 1
2
.

Conjecture 1.1 is the conjecture of Keating and Snaith for an orthogonal family

[KS]. Our contribution is the explicit calculation of ak (which we have delayed due

to its size).

For integral k ≥ 1 this conjecture is a special case of the more precise Conjec-

ture 1.3. Conjecture 1.1 is somewhat simpler and also provides an analytic continu-

ation of ak to complex k which is a necessary ingredient for deriving Conjecture 1.6.

By taking k = 0 and computing that a0 = g0 = 1, we obtain the following conjecture.

Corollary 1.2 Conjecture 1.1 implies that the average rank of the family of all elliptic

curves F is 1
2
.

We present this corollary simply to illustrate the strength of Conjecture 1.1 and the

usefulness of extending the formulas to more general k than positive integers. This

result also indicates that it will be difficult to check Conjecture 1.1 numerically, be-

cause of the well-known disparity between the expected proportion of rank 2 elliptic

curves and the numerical evidence; see [BMSW] for a recent survey on this fascinat-

ing problem. It may be that the large value distribution converges more quickly, so

that there may be better numerical agreement for (slightly) larger k; this deserves in-

vestigation. In any case, one should include all lower-order terms in the conjectured

asymptotic.

A more precise moment conjecture is as follows.

Conjecture 1.3 ([CFKRS]) Let k be a nonnegative integer. Then for some δ > 0,

∑

E∈F(X)

L( 1
2
, E)k

=
1

2

∑

E∈F(X)

Pk(NE)(1 + O(N−δ
E )),
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where

(1.2) Pk(N) =
(−1)

k(k−1)
2 2k

k!

1

(2πi)k

×
∮

· · ·
∮

H(z1, . . . , zk)
∆(z2

1, . . . , z2
k)2

k
∏

i=1

z2k−1
i

k
∏

i=1

X
− 1

2

N ( 1
2

+ zi)dz1 · · · dzk,

and XN (s) = XE(s) is such that L(s, E) = wEXE(s)L(1 − s, E) (see (2.4)). Here

H(z1, . . . , zk) = Ak(z1, . . . , zk)
∏

1≤i< j≤k

ζ(1 + zi + z j),

where the arithmetical factor Ak is holomorphic and nonzero in a neighborhood of

(0, . . . , 0). Here Pk(N) is a polynomial in log N of degree k(k − 1)/2.

Here Conjecture 1.3 is the specialization of [CFKRS, Conj. 1.5.3 and 1.5.5] to

the elliptic curve family F(X). Due to the size of the formulas, we have delayed the

precise formulation of the arithmetical factors; see Proposition 4.4.

The factor 1
2

appears because roughly half of the L-functions vanish since the root

number is −1.

The five authors boldly predict that any δ < 1
2

holds here [CFKRS].

1.3 Moment Conjectures for the Positive Rank Family

Conjecture 1.4 For any k ∈ C such that Re k > − 1
2

there exists a ′
k 6= 0 such that

1

|F ′(X)|
∑

E∈F ′(X)

(L ′(1/2, E))k ∼ 1
2
a ′

kgk(log X)
k(k−1)

2

holds as X → ∞.

It is possible to write a formula for a ′
k as an Euler product, but it involves the sums

Q∗
¤

(pe1 , . . . , pek ) discussed in Section 5. This is in contrast to the family F where we

have evaluated similar sums in terms of Chebyshev polynomials and the traces of the

Hecke operators on Γ(1).

As before, we have the following.

Conjecture 1.5 ([CFKRS]) Let k be a nonnegative integer. Then for some δ > 0,

∑

E∈F ′(X)

(L ′(1/2, E))k
=

1

2

∑

E∈F ′(X)

Qk(NE)(1 + O(N−δ
E )),

where Qk has the form

(1.3) Qk(N) =
(−1)

k(k−1)
2 2k

k!

1

(2πi)k

×
∮

· · ·
∮

H(z1, . . . , zk)
∆(z2

1, . . . , z2
k)2

k
∏

i=1

z2k
i

k
∏

i=1

X
− 1

2

N ( 1
2

+ zi)dz1 · · · dzk
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and

H(z1, . . . , zk) = A ′
k(z1, . . . , zk)

∏

1≤i< j≤k ζ(1 + zi + z j)
∏

1≤i≤k ζ(1 + zi)
,

where the arithmetical factor A ′
k is given by an Euler product that is absolutely convergent

in a neighborhood of (0, . . . , 0).

In terms of the behavior near the origin there are two essential differences be-

tween Conjectures 1.3 and 1.5. Namely, in (1.3) there is the extra factor
∏

i z−1
i and

the function H(z1, . . . , zk) has the additional factor
∏

i ζ
−1(1 + zi). Thus Qk(N) and

Pk(N) have the same degree, because the polar behavior near the origin in their inte-

gral representations are the same. The factor
∏

i z−1
i arises from the differentiation;

the extra zeta function factors arise from the positive rank of the family F
′.

1.4 The Relative Frequency of Rank 2 and Higher Curves

In this section we consider the question of the distribution of the ap’s amongst all

rank 2 elliptic curves. As a concrete example, we want to predict the ratio of the

number of rank 2 elliptic curves with a5 = −1 to the number of rank 2 curves with

a5 = 1.

This distribution of ap’s amongst all elliptic curves is known from [B]; (see also

[Sch]). It is expected that rank 2 curves have ap’s that are biased towards being nega-

tive. The conjecture in this section gives a precise prediction of this bias.

Given r and t(mod p), λa,b(p) is fixed for a ≡ r, b ≡ t(mod p). The number of

residue classes r and t such that λr,t (p)
√

p = T as a function of p and T is known

exactly and involves the Hurwitz class number H(4p − T2) [B].

Thus, to understand the distribution of the ap’s amongst all rank 2 curves it suf-

fices to understand the frequency of occurences of rank 2 curves as a function of the

residue class r, t (since we can use Birch’s computation to provide the number of such

r and t with given ap). Precisely, we consider the following ratio

Rq(X) =

(

∑

E∈F
+
r,t (X)

L(1/2,E)=0

1

)

/

(

∑

E∈F
+
r ′ ,t ′

(X)

L(1/2,E)=0

1

)

.

Technically, Rq counts curves of even positive rank, but it is expected that the number

of rank 4 and higher curves is of a lower order of magnitude than the number of rank

2 curves (and the numerical evidence apparently supports this).

Conjecture 1.6 Let Rq = limX→∞ Rq(X). Then

(1.4) Rq =

∏

p|q

(

1 − λr,t (p)

p1/2 + 1
p

1 − λr ′ ,t ′ (p)

p1/2 + 1
p

) 1/2

=

∏

p|q

(

Np(r, t)

Np(r ′, t ′)

) 1/2

,

where Np(r, t) is the number of points on the elliptic curve Er,t over Fp.
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This formula is similar to that given in Conjecture 2 of [CKRS]. A new feature

of the above formula is that λr,t (p)
√

p and λr ′,t ′(p)
√

p can attain any integer values

between −2
√

p and 2
√

p.

An analogous conjecture may be easily formulated for the relative frequency of

rank 3 curves in arithmetic progressions in F
′ with minor modifications: if Rq(X) is

given as above but with L ′( 1
2
, E) replacing L( 1

2
, E), then we predict that (1.4) holds

with Np(r, t) defined to be the number of points on Er,t2 .

The idea of using moments to study the value distribution of L-functions is due

to Keating and Snaith [KS], and the idea of considering the ratio Rq(X) (which

sidesteps the difficult issue of counting precisely the number of rank 2 curves) is

due to [CKRS]. We note that Watkins [Wa] has given a heuristic which predicts an

asymptotic for the number of rank 2 elliptic curves, but he does not explicitly give

the proportionality constant in the asymptotic.

1.5 Organization of the Paper

In Section 2 we recall some necessary material on elliptic curves and L-functions.

We derive the shifted moment conjectures in Section 3, modulo the precise form of

the arithmetical factors, which are calculated in Sections 4 and 5. We briefly derive

Conjecture 1.6 in Section 6 and explain the connection with the Riemann Hypothesis

in Section 7.

2 Background and Basic Properties of the Families

In this section we summarize some of the relevant background material on elliptic

curves. Our intended audience contains both random matrix theorists and number

theorists who are not specialists in elliptic curves, so we have attempted to provide

sufficient details and references.

2.1 Invariants

We first describe some of the algebraic invariants associated to an elliptic curve. Sil-

verman’s book is a standard reference [Si].

The general Weierstrass equation of an elliptic curve takes the form

(2.1) y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6,

where ai ∈ Z. We are primarily concerned with elliptic curves over Q , but under-

standing the L-function associated with such an elliptic curve involves studying the

curve over Fp (i.e., reducing the coefficients modulo p) for all primes p. Completing

the square via y → 1
2
(y − a1x − a3) gives

y2
= 4x3 + b2x2 + 2b4x + b6,

where

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6.
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The change of variables x → x − b2/12 gets rid of the quadratic factor, and then

scaling by x → x/36, y → y/108 gives

y2
= x3 − 27c4x − 54c6,

where

c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6.

These changes of variable are well defined provided the characteristic of the field

is not 2 or 3. Clearly the Weierstrass equation for an elliptic curve is not unique.

Table 1.2 of [Si] records the effect of the admissible change of variables x = u2x ′ + r,

y = u3 y ′ + u2sx ′ + t on the various quantities {ai}, {bi}, {ci}, and ∆. We record

(2.2) u4c ′4 = c4, u6c ′6 = c6, u12
∆

′
= ∆.

Notice that no two curves in F are isomorphic over Q because the curves Ea,b and

Ea ′,b ′ are isomorphic if and only if there exists d ∈ Q such that a ′
= d4a and

b ′
= d6b.

In order to choose a “good” Weierstrass equation, we want one that, when reduced

modulo various primes, has as good a reduction as possible. To make this precise,

we say that the Weierstrass equation (2.1) is minimal at p if the largest power of p

dividing ∆ cannot be reduced by an admissible change of variables. Furthermore, we

say that (2.1) is a global minimal Weierstrass equation if it is minimal for all primes

p. Chapter 10 of [Kn] is a good reference for a down-to-earth discussion on global

minimal Weierstrass equations. We quote the following result of Néron that appears

as Theorem 10.3 of [Kn].

Theorem 2.1 (Néron) If E is an elliptic curve over Q , then there exists an admissible

change of variables over Q such that the resulting equation is a global minimal Weier-

strass equation. Two such resulting global minimal Weierstrass equations are related by

an admissible change of variables with u = ±1 and with r, s, t ∈ Z.

Now we claim that the Weierstrass equation (1.1) for each Ea,b ∈ F is a global

minimal equation. We use the condition that if p12 ∤ ∆ or p4 ∤ c4 or p6 ∤ c6, then

the Weierstrass equation is minimal at p, where here c4 = −243a, c6 = −2533b. This

condition is Lemma 10.1 of [Kn] and is essentially Remark 1.1 of Section VII.1 of

[Si], but is easily seen from inspection of (2.2). It is immediate from this test that

(1.1) is minimal at all p > 3, using the condition that if p4|a then p6 ∤ b. We have

24||∆ and 3 ∤ ∆ since (4r3 + 27t2, 6) = 1, so the equation is minimal at p ≤ 3.

A point to take from this discussion is that it is easy to specify light conditions that

ensure minimality of a given Weierstrass equation.

2.2 The L-Function

The conductor N associated to E is a certain divisor of the minimal discriminant

(which is the discriminant of the global minimal Weierstrass equation). The con-

ductor and the minimal discriminant have the same prime factors, and for p > 3
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we have p‖N if E has a node (a double root) modulo p, and p2‖N if E has a cusp (a

triple root) modulo p. For p ≤ 3, it is not so simple to give a characterization of the

power of p dividing N, but it can be found using Tate’s algorithm, which is described

in [Si2, pp. 363–368].

Given a global minimal Weierstrass equation of the form (1.1), the L-function

attached to Ea,b is given by

(2.3) L(s, Ea,b) =

∞
∑

n=1

λa,b(n)

ns
=

∏

p

(

1 − λa,b(p)

ps
+

ψN (p)

p2s

)−1

,

where for p 6= 2,

λa,b(p) =
1√
p

(p + 1 − #E(Fp)) = − 1√
p

∑

x(mod p)

( x3 + ax + b

p

)

,

and ψN is the principal Dirichlet character of modulus the conductor N of E. If

p = 2, then (1.1) has a cusp and λa,b(2k) = 0 for all k. The sum and product

converge absolutely provided Re(s) > 1, using Hasse’s bound |λa,b(n)| ≤ d(n). The

famous modularity theorem [Wi, TW, BCDT] shows that the completed L-function

Λ(s, E) =

(

√
N

2π

) s+ 1
2

Γ(s + 1
2
)L(s, E)

is entire and satisfies the functional equation Λ(s, E) = wEΛ(1−s, E) where wE = ±1

is called the root number. We set

(2.4) XE(s) =
Γ( 3

2
− s)

Γ( 1
2

+ s)

(

√
N

2π

) 1−2s

,

so that L(s, E) = wEXE(s)L(1 − s, E). Note that XE(s) only depends on the conduc-

tor N. We have normalized the L-function to have central point s =
1
2
.

The root number can be effectively computed; it is given by a product of local root

numbers. We state the following result that appears as Proposition 3.1 of [Y2].

Proposition 2.2 Suppose 4a3 + 27b2 is squarefree. Then the root number of Ea,b :

y2
= x3 + ax + b is given by

wEa,b
= µ(4a3 + 27b2)

( a

3b

)

χ4(b)(−1)a+1ǫ2,

where ( ·· ) is the Jacobi symbol, χ4 is the primitive Dirichlet character of conductor 4,

and ǫ2 is the local root number at p = 2.

The local root number at 2 is difficult to state explicitly because there are many

possible cases. The point is that µ(4a3 + 27b2) is expected to oscillate independently

of the other factors, so that the root number is evenly distributed between ±1.
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An exercise with Möbius inversion shows that |F(X)| ∼ X5/6/(9q2ζ6q(10)), where

ζ6q is given by the same Euler product as ζ but with the local factors at p|6q removed.

A proof of this is contained in the proof of Lemma 3.2 (take n1 = 1, k = 1). Similarly,

|F ′(X)| ∼ X7/12/9ζ6(7).

Each curve Ea,b2 ∈ F
′ has the obvious point (0, b). The Lutz–Nagell criterion

easily shows that this point is torsion (has finite order) very rarely. We paraphrase

Corollary 7.2 of [Si].

Theorem 2.3 (Lutz-Nagell) Let E be an elliptic curve given by (1.1). Suppose (x, y)

is a non-zero torsion point. Then x, y ∈ Z and either y = 0 or y2|4a3 + 27b2.

Thus if (0, b) is a torsion point, then b2|4a3. Clearly the number of Ea,b ∈ F
′(X)

such that b2|4a3 is O(X
1
3

+ε) (which should be compared to X7/12, the total number of

curves).

2.3 Chebyshev Polynomials

We take a brief detour to summarize some relevant facts needed about Chebyshev

polynomials (of the second kind) Uk. A reference for the necessary formulas is Sec-

tion 8.94 of [GR]. By definition,

Un(cos θ) =
sin(n + 1)θ

sin θ
.

These satisfy the recursion formula ([GR, 8.941.2])

Un+2(x) − 2xUn+1(x) + Un(x) = 0

which is equivalent to the formal identity

(2.5)
∑

n

Un(x)tn
=

1

1 − 2xt + t2
,

the sum being absolutely convergent for |x|, |t| < 1. Since the Hecke operators satisfy

essentially the same recurrence relation, we have

(2.6) λE(p j) =

{

U j

( λE(p)
2

)

, if (p, N) = 1,

λ
j
E(p), if p|N.

The Chebyshev polynomials Un(cos θ) form an orthonormal system with respect to

the Sato–Tate measure 2
π sin2 θdθ := dµST , where the integration is over the interval

[0, π].

It will be useful to represent a product of Chebyshev polynomials in terms of

Chebyshev polynomials. Let cl = cl(e1, . . . , ek) be defined by

(2.7) Ue1
(x) · · ·Uek

(x) =
∑

l

clUl(x),
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and set f = e1 + · · · + ek. Note that by parity considerations (namely, the parity of

Uk(x) as a function of x is the same as the parity of k), cl = 0 if l 6≡ f (mod 2).

Furthermore, by degree considerations cl = 0 if l > f . The orthogonality relation

gives

(2.8) cl =
∫

Ul(cos θ)
k
∏

j=1

Ue j
(cos θ)dµST .

3 Deriving the Conjectures

3.1 Central Values of the Family of all Elliptic Curves

We begin by deriving Conjecture 1.3, however we delay the computation of the exact

form of the arithmetical factor until Section 4. Actually, we find a conjectural formula

for a product of k L-functions at points shifted slightly away from the central point.

Conjecture 1.3 is a limiting form of this more general conjecture. This generality

also allows us to compute the central values of the derivatives by differentiation with

respect to the shift parameters.

We want the moment

1

|F(X)|
∑

E∈F(X)

L( 1
2

+ α1, E) · · · L( 1
2

+ αk, E),

which is analogous to 4.1.4 of [CFKRS]. Actually we will write a conjecture for the

more symmetric expression

(3.1)
1

|F(X)|
∑

E∈F(X)

Z(E),

where

Z(E) = X
− 1

2

E ( 1
2

+ α1) · · ·X
− 1

2

E ( 1
2

+ αk)L( 1
2

+ α1, E) · · · L( 1
2

+ αk, E)

and where recall XE satisfies

X
− 1

2

E ( 1
2

+ α)L( 1
2

+ α, E) = wEX
− 1

2

E ( 1
2
− α)L( 1

2
− α, E).

For now we just work with the L-functions.

For each L function we write a kind of approximate functional equation as follows

L( 1
2

+ α, E) =

∑

n

λE(n)

n
1
2

+α
+ wEXE( 1

2
+ α)

∑

n

λE(n)

n
1
2
−α

.

Consider the term obtained by taking the first part of each approximate functional

equation:

1

|F(X)|
∑

E∈F(X)

∑

n1,...,nk

λE(n1) · · ·λE(nk)

n
1
2

+α1

1 · · · n
1
2

+αk

k

.
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Now replace each summand and replace it with its average, say

(3.2)
∑

n1,...,nk

Rr,t (n1, . . . , nk)

n
1
2

+α1

1 · · · n
1
2

+αk

k

,

where

Rr,t (n1, . . . , nk) = lim
X→∞

1

|Fr,t (X)|
∑

E∈Fr,t (X)

λE(n1) · · ·λE(nk).

We now derive the necessary expected value. To this end, we define the following.

Definition 3.1 Let n1, . . . , nk be positive integers, set n = [n1, . . . , nk] (the least

common multiple), and let n∗ be the product of primes dividing n. Define Q∗ by

Q∗(n1, . . . , nk) =
1

n∗2

∑

a,b(mod n∗)

λa,b(n1) · · ·λa,b(nk).

Furthermore, set ni = mi li , where (mi , 6q) = 1 and every prime dividing li also

divides 6q. Then set

Q∗
r,t (n1, . . . , nk) = λr,t (l1) · · ·λr,t (lk)Q∗(m1, . . . , mk)

∏

p|n
p∤6q

(1 − p−10)−1.

The desired expected value is given by the following

Lemma 3.2 We have Rr,t (n1, . . . , nk) = Q∗
r,t (n1, . . . , nk). Moreover, Q∗(n1, . . . , nk)

is multiplicative. That is, if ni = n ′
i n ′ ′

i for 1 ≤ i ≤ k with (n ′
1 · · · n′

k, n ′ ′
1 · · · n′ ′

k ) = 1,

then

Q∗(n1, . . . , nk) = Q∗(n ′
1, . . . , n ′

k)Q∗(n ′ ′
1 , . . . , n ′ ′

k ).

Proof Recall

Rr,t (n1, . . . , nk) = lim
1

|F(X)|
∑∑

|a|≤X1/3,|b|≤X1/2

p4|a⇒p6∤b
a≡r(mod 6q)
b≡t(mod 6q)

λa,b(n1) · · ·λa,b(nk),

where we originally defined λa,b(n) to be the n-th coefficient in the Dirichlet series

expansion of L(s, Ea,b). If (1.1) is a global minimal Weierstrass equation for Ea,b (a

condition that is met for all curves in F), then

(3.3) λa,b(p) = − 1√
p

∑

x(mod p)

( x3 + ax + b

p

)

.
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We extend the definition of λa,b(p) to arbitrary integers a and b and primes p by

using (3.3) for p > 2, and setting λa,b(2) = 0. We then extend to prime powers

using (2.6), replacing the condition (p, N) = 1 with (p, 16(4a3 + 27b2)) = 1, and

we extend to composite integers by multiplicativity. This formulation will allow us

to easily sum over a and b where (1.1) is not necessarily a global minimal Weierstrass

equation.

A slight generalization of the Möbius inversion formula gives that

∑

d4|a

d6|b

µ(d) =

{

1 if there does not exist a p such that p4|a and p6|b,
0 otherwise.

Thus

Rr,t (n1, . . . , nk) = lim
1

|F(X)|
∑

d≤X
1

12

(d,6q)=1

µ(d)
∑∑

|a|≤d−4X1/3

|b|≤d−6X1/2

a≡d
4
r(mod 6q)

b≡d
6
t(mod 6q)

λad4,bd6 (n1) · · ·λad4,bd6 (nk).

The condition (d, 6q) = 1 follows from the fact that (4r3 + 27t2, 6q) = 1. Now

we claim that λad4,bd6 (m) = λa,b(m) when (m, d) = 1, and λad4,bd6 (m) = 0 when

(m, d) > 1. By multipicativity and the fact that prime powers are determined by

primes, it suffices to check for m prime. Notice that in case p|(a, b) then the sum

(3.3) vanishes. Thus if p|d, then λad4,bd6 (p) = 0. On the other hand, if (p, d) = 1,

then the change of variables x → d2x modulo p gives

∑

x(mod p)

( x3 + ad4x + bd6

p

)

=

( d6

p

)

∑

x(mod p)

( x3 + ax + b

p

)

,

so λad4,bd6 (p) = λa,b(p) as claimed. Thus for (d, n) = 1 we have

λad4,bd6 (n1) · · ·λa,b(nk) = λr,t (l1) · · ·λr,t (lk)λa,b(m1) · · ·λa,b(mk),

by multiplicativity and since λad4,bd6 (li) = λr,t (li).

Hence we have

Rr,t (n1, . . . , nk) =

lim
1

|F(X)|λr,t (l1) · · ·λr,t (lk)
∑

d≤X
1

12

(d,6nq)=1

µ(d)
∑ ∑

|a|≤d−4X1/3

|b|≤d−6X1/2

a≡d
4
r(mod 6q)

b≡d
6
t(mod 6q)

λa,b(m1) · · ·λa,b(mk).
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Now λa,b(m1) · · ·λa,b(mk) is periodic in a and b with period equal to the product of

primes dividing the least common multiple of m1, . . . , mk, say m∗. Breaking up the

sum over a and b into arithmetic progressions modulo 6qm∗ gives

Rr,t (n1, . . . , nk) = lim
1

|F(X)|λr,t (l1) · · ·λr,t (lk)
4X5/6

36q2

×
∑

d≤X
1

12

(d,6mq)=1

µ(d)

d10

1

m∗2

∑

α(mod m∗)
β(mod m∗)

λα,β(m1) · · ·λα,β(mk),

which simplifies to

Rr,t (n1, . . . , nk) = lim
1

|F(X)|λr,t (l1) · · ·λr,t (lk)
X5/6

9q2ζ6mq(10)
Q∗(m1, . . . , mk).

Taking k = 1, n1 = 1 gives

|F(X)| ∼ X5/6

9q2ζ6q(10)
,

so

Rr,t (n1, . . . , nk) = λr,t (l1) · · ·λr,t (lk)Q∗(m1, . . . , mk)
ζ6q(10)

ζ6mq(10)
.

Using that

ζ6q(10)

ζ6mq(10)
=

∏

p|m
p∤6q

(1 − p−10)−1
=

∏

p|n
p∤6q

(1 − p−10)−1,

completes the proof that Rr,t = Q∗
r,t .

Now we show that Q∗(n1, . . . , nk) is multiplicative. To simplify notation only, we

take k = 1 and show Q∗(mn) = Q∗(m)Q∗(n) provided (m, n) = 1, where m and

n are squarefree. Extending to the general case is straightforward. By the Chinese

remainder theorem we may write all representatives a(mod mn) uniquely in the form

a1mm + a2nn, where a1 runs modulo n, a2 runs modulo m, mm ≡ 1(mod n), and

nn ≡ 1(mod m), and similarly for b. Then we get, using λ(mn) = λ(m)λ(n),

Q∗(mn) =
1

m2n2

∑

a1,b1(mod n)

∑

a2,b2(mod m)

λa1mm+a2nn,b1mm+b2nn(mn)

=
1

m2n2

∑

a1,b1(mod n)

∑

a2,b2(mod m)

λa1,b1
(n)λa2,b2

(m) = Q∗(m)Q∗(n).
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Now we continue with our derivation of the moment conjecture, picking up with

(3.2). We extend the summation over the ni to all positive integers and set

NE(α1, . . . , αk) = X
− 1

2

E ( 1
2

+ α1) · · ·X
− 1

2

E ( 1
2

+ αk)
∑

n1

· · ·
∑

nk

Q∗
r,t (n1, . . . , nk)

n
1
2

+α1

1 · · · n
1
2

+αk

k

.

We will obtain a meromorphic continuation of NE(α1, . . . , αk) to a neighborhood of

(0, . . . , 0). Let

ME(α1, . . . , αk) =

∑

ǫ1,...,ǫk∈{−1,1}
ǫ1···ǫk=1

NE(ǫ1α1, . . . , ǫkαk).

Here ME is obtained by summing NE over all possible ways of swapping an even

number of αi ’s with their negatives. The moment (3.1) is clearly invariant under

these symmetries, so in effect this is the simplest way to manipulate NE(α1, . . . , αk)

to obtain an expression with these symmetries. This procedure is different from that

stated in [CFKRS], but is essentially equivalent.

The general conjecture is then [CFKRS, 4.1.6]

∑

E∈F(X)

Z(E) =

∑

E∈F(X)

ME(α1, . . . , αk)
(

1 + O(N−δ
E )

)

for some δ > 0.

The next step is to express this answer in a more usable form. We write

ME(α1, . . . , αk) =

∑

· · ·
∑

ǫ1···ǫk=1

X
− 1

2

E ( 1
2

+ ǫ1α1) · · ·X
− 1

2

E ( 1
2

+ ǫkαk)H(ǫ1α1, . . . , ǫkαk),

where

(3.4) H(z1, . . . , zk) =

∑

n1

· · ·
∑

nk

Q∗
r,t (n1, . . . , nk)

n
1
2

+z1

1 · · · n
1
2

+zk

k

.

Using the multiplicativity of Q∗ we write

H(z1, . . . , zk) =

∏

p

∑

e1

· · ·
∑

ek

Q∗
r,t (pe1 , . . . , pek )

pe1( 1
2

+z1)+···+ek( 1
2

+zk)

=

(

∏

p|6q

∑

e1

· · ·
∑

ek

λr,t (pe1 ) · · ·λr,t (pek )

pe1( 1
2

+z1)+···+ek( 1
2

+zk)

)

(

∏

p∤6q

∑

e1

· · ·
∑

ek

δ(p)Q∗(pe1 , . . . , pek )

pe1( 1
2

+z1)+···+ek( 1
2

+zk)

)

,

(3.5)
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where δ(p) = (1 − p−10)−1 if e1 + · · · + ek > 0 and δ(p) = 1 otherwise. Note that

for p|3q

∞
∑

e=0

λr,t (pe)

pe( 1
2

+z)
=

(

1 − λr,t (p)

p
1
2

+z
+

1

p1+2z

)−1

,

using (2.3) and the fact that (6q, 4r3 + 27t2) = 1.

We wish to determine the polar behavior of H(z1, . . . , zk) for zi near 0. Since

Q∗(m1, . . . , mk) ≪ (m1 · · ·mk)ε, it suffices to consider the contribution from e1 +

· · · + ek ≤ 2. We compute H precisely in Section 4 with Proposition 4.1. For now

we simply state that Q∗(p j , 1, . . . , 1) = 0 for j = 1, 2 (actually it vanishes for j <
10) and that Q∗(p, p, 1, . . . , 1) = 1 − p−1 (see Corollary 4.3 for this identity). By

factoring out the appropriate zeta functions we have

H(z1, . . . , zk) =

(

∏

1≤i< j≤k

ζ(1 + zi + z j)
)

Ak(z1, . . . , zk),

where Ak is the arithmetical factor which is holomorphic and nonzero in a neighbor-

hood of 0.

The next step in the recipe is to use Lemma 2.5.2 of [CFKRS] to express the per-

mutation sum in terms of a multiple contour integral. To this end, set

f (s) = ζ(1 + s), F(a1, . . . , ak) = Ak(a1, . . . , ak)X
− 1

2

E ( 1
2

+ a1) · · ·X
− 1

2

E ( 1
2

+ ak),

and

K(a1, . . . , ak) = F(a1, . . . , ak)
∏

1≤i< j≤k

f (ai + a j).

Then f , F, and K satisfy the conditions of Lemma 2.5.2, namely F is a symmetric

function, holomorphic near the origin, and f has a simple pole of residue 1 at s = 0

but is otherwise holomorphic near s = 0. With this setup we see that

ME(α1, . . . , αk) =
∑

ǫ j=±1

1
2

(

1 +
k
∏

j=1

ǫ j

)

K(ǫ1α1, . . . , ǫkαk).

So by Lemma 2.5.2,

(3.6) ME(α1, . . . , αk) =
(−1)k(k−1)/2

(2πi)k

2k−1

k!

∮

· · ·
∮

K(z1, . . . , zk)
∆(z2

1, . . . , z2
k)2(

∏k
j=1 z j +

∏k
j=1 α j)

∏k
i=1

∏k
j=1(zi − α j)(zi + α j)

dz1 · · · dzk,

where ∆ is the Vandermonde determinant

∆(z1, . . . , zk) =
∏

1≤i< j≤k

(z j − zi),
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and where the paths of integrations enclose the ±α j ’s. Taking the αi ’s to be zero, we

obtain Corollary 1.3.

The precise form of the arithmetical factor is given in Proposition 4.4. The compu-

tation of the arithmetical factor relies on further knowledge of Q∗, which is discussed

in Section 4.

3.2 The Positive Rank Family

We now turn to the derivation of Conjectures 1.4 and 1.5. We follow the same pro-

cedure as in the previous section to obtain a conjecture on the shifted product

1

|F ′(X)|
∑

E∈F ′(X)

X
− 1

2

E ( 1
2

+ α1) · · ·X
− 1

2

E ( 1
2

+ αk)L( 1
2

+ α1, E) · · · L( 1
2

+ αk, E).

In this case, since the central values almost always vanish, this quantity will average to

zero, at least if one of the shift parameters is zero. However, we can differentiate the

moment conjecture (3.6) with respect to each αi and set αi = 0 to obtain a conjecture

for the moments of the first derivatives of the L-functions at the central point. The

derivation of the shifted moment conjecture goes through essentially unchanged.

Before stating the conjecture, we first set some new notation for this family. Set

Q∗
¤

(n1, . . . , nk) =
1

n∗2

∑

a,b(mod n∗)

λa,b2 (n1) · · ·λa,b2 (nk),

and

Q ′(n1, . . . , nk) = Q∗
¤

(n1, . . . , nk)
∏

p|n

(1 − p−7)−1.

The Dirichlet series formed from Q ′ is given by

H ′(z1, . . . , zk) =
∏

p

∑

e1

· · ·∑
ek

Q ′(pe1 , . . . , pek )

pe1( 1
2

+z1)+···+ek( 1
2

+zk)
.

As shorthand we write

YE(z1, . . . , zk) = X
− 1

2

E ( 1
2

+ z1) · · ·X
− 1

2

E ( 1
2

+ zk).

The general shifted moment conjecture then reads
∑

E∈F ′(X)

Z(E) =
∑

E∈F ′(X)

ME(α1, . . . , αk)
(

1 + O(N−δ
E )

)

,

where

(3.7) ME(α1, . . . , αk) = ck

∮

· · ·
∮

H ′(z1, . . . , zk)

×
∆(z2

1, . . . , z2
k)2

( k
∏

j=1

z j +
k
∏

j=1

α j

)

k
∏

i=1

k
∏

j=1

(zi − α j)(zi + α j)

YE(z1, . . . , zk)dz1 · · · dzk,
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and where

ck =
(−1)k(k−1)/2

(2πi)k

2k−1

k!
.

The behavior of ME for the positive rank family is drastically different from

the family of all elliptic curves because the polar behavior of H ′ is different than

that of H. A thorough study of Q ′ is undertaken in Section 5. For now we use

that Q ′(p, 1, . . . , 1) = −p−1/2 + O(p−3/2), Q ′(p, p, 1, . . . , 1) = 1 + O(p−1), and

Q ′(p2, 1, . . . , 1) = 0 to deduce the polar behavior of H ′. Precisely,

(3.8) H ′(z1, . . . , zk) =

∏

1≤i< j≤k ζ(1 + zi + z j)
∏

1≤i≤k ζ(1 + zi)
A ′

k(z1, . . . , zk),

where A ′
k is given by an absolutely and uniformly convergent Euler product in a

neighborhood of (0, . . . , 0).

We now check that the moment conjecture is consistent with the Birch and Swin-

nerton–Dyer conjecture, that is that ME(α1, . . . , αk) = 0 if some αi = 0.

Proposition 3.3 The function ME(α1, . . . , αk) given by (3.7) vanishes at αi = 0, for

any i.

Proof We go back to the original representation of M as a permutation sum of the

form

S =
∑

ǫ1,...,ǫk∈{−1,1}

1
2
(1 +

∏

1≤l≤k

ǫl) f (ǫ1α1, . . . , ǫkαk)
∏

1≤i< j≤k

ζ(1 + ǫiαi + ǫ jα j),

where f is a symmetric, regular function near the origin. We know from Lemma 2.5.2

of [CFKRS] that these conditions ensure that such a sum is holomorphic in terms of

the shift parameters near the origin. In the case of M given by (3.7), we furthermore

know that (z1 · · · zk)−1 f (z1, . . . , zk) = g(z1, . . . , zk), say, is regular at the origin. Thus

S = α1 · · ·αk

∑

ǫ1,...,ǫk∈{−1,1}

1
2
(1 +

∏

1≤l≤k

ǫl)g(ǫ1α1, . . . , ǫkαk)
∏

1≤i< j≤k

ζ(1 +ǫiαi +ǫ jα j),

so (α1 · · ·αk)−1S is regular at the origin, and hence S vanishes when any shift param-

eter is set to zero.

Let M ′
E be the derivative of ME(α1, . . . , αk) with respect to all αi evaluated at

α1 = · · · = αk = 0. Now we derive Conjecture 1.5 by computing M ′
E using (3.7).

Again we consider the terms with
∏

z j and
∏

α j separately. It is obvious that the

former term is even with respect to each αi so that differentiating at αi = 0 yields

zero. By parity considerations it follows quickly that

∂

∂α1
· · · ∂

∂αk

(

∏

1≤ j≤k

α j

k
∏

i=1

k
∏

j=1

(z2
i − α2

j )
−1

)
∣

∣

∣

α1=···=αk=0
=

k
∏

i=1

z−2k
i .
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We now see that

M ′
E = c ′k

∮

· · ·
∮

A ′
k(z1, . . . , zk)

∏

1≤i< j≤k

ζ(1 + zi + z j)

× ∆(z2
1, . . . , z2

k)2

∏k
i=1 z2k

i ζ(1 + zi)
YE(z1, . . . , zk)dz1 · · · dzk.

By comparison with (1.2) we see that M ′
E has the same order of magnitude as Pk(N).

This completes the derivation of Conjecture 1.5.

4 The Arithmetical Factor for the Family of all Elliptic Curves

In order to understand the arithmetical factor it is necessary to understand the behav-

ior of Q∗(n1, . . . , nk). Because of the multiplicativity of Q∗, it suffices to understand

(4.1) Q∗(pe1 , . . . , pek ) =
1

p2

∑

a,b(mod p)

λa,b(pe1 ) · · ·λa,b(pek ).

We desire a usable formula for this expression. Such a derivation is the purpose of

this section.

4.1 The Case k = 1

We first derive a formula for Q∗(p j). To this end, we state

Proposition 4.1 Set

(4.2) Q(p j) =

∑

a,b(mod p)

p j/2λa,b(p j)

and let Tr j(p) be the trace of the Hecke operator Tp acting on the space of weight j

holomorphic cusp forms on the full modular group. Then for j 6= 0 and p > 3,

− 1

p − 1
Q(p j) = Tr j+2(p).

Remarks Here p j/2λa,b(p j) is an integer. The scaling factor (p − 1)−1 naturally

arises because |λ(p)| is fixed under quadratic twists (of which there are typically

p − 1). If we define the normalized trace Tr∗j (n) via Tr j(n) = n( j−1)/2Tr∗j (n), then

the proposition reads

Q∗(p j) = − p − 1

p3/2
Tr∗j+2(p)

for j > 0. Of course Q∗(1) = 1.
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Proof The proof of this result is implicitly contained in [B]. Birch computes the

related sum

p j/2
(

∑

a

∑

b

λa,b(p)
) j

.

It is actually simpler to work with (4.2). By modifying Birch’s arguments we easily

arrive at

1

p − 1
Q(p j) = 1 +

1

2

∑

t2<4p

U j

( t

2
√

p

)

Vw(t2 − 4p),

where Vw(D) is the number of classes of binary quadratic forms with discriminant

D < 0, divided by 3 if D = −3 and divided by 2 if D = −4. This should be

compared with [B, (3)]. The proof is completed by comparing the above equation

with the Eichler–Selberg Trace Formula [Se, 4.5].

4.2 The General Case

Now we may easily prove the following.

Proposition 4.2 Let Q∗ be given by (4.1). Then for p > 3 and even f =
∑

ei 6= 0

(4.3) Q∗(pe1 , . . . , pek ) =

c0
p − 1

p
−

∑

l≥1

cl

( p − 1

p3/2
Tr∗l+2(p) +

p − 1

p2
p−l/2

)

+
p − 1

p2
p− f /2

holds. In addition, the left hand side above is zero if f is odd or p = 2, and the right

hand side is 1 − p−2 if f = 0.

Recall that the cl = cl(e1, . . . , ek) are defined by (2.7) and satisfy (2.8).

Proof To see that the left hand side is zero when f is odd, simply apply the change of

variables a = d2a ′, b = d3b ′ where d is a quadratic nonresidue (mod p), and notice

that the same sum is obtained except multiplied by −1.

The right hand side is easily seen to be 1− p−2 when f = 0, since cl = 0 for l > 0,

and c0 = 1.

We may now assume f 6= 0 is even. To begin, split the summation into two pieces

as follows

Q∗(pe1 , . . . , pek ) =

1

p2

∑

a,b(mod p)
(p,∆)=1

λa,b(pe1 ) · · ·λa,b(pek ) +
1

p2

∑

a,b(mod p)
p|∆

λa,b(pe1 ) · · ·λa,b(pek ),

https://doi.org/10.4153/CJM-2010-049-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-049-5


Moments of Critical Values of Elliptic Curves 1175

where ∆ = −16(4a3 + 27b2) of course. Using the Hecke relations and the definition

of the cl given by (2.7), we have

Q∗(pe1 , . . . , pek ) =
1

p2

∑

l

cl

∑

a,b(mod p)
(p,∆)=1

λa,b(pl) +
1

p2

∑

a,b(mod p)
p|∆

λ
f
a,b(p).

In the first sum we separate the term l = 0 and remove the condition (p,∆) = 1 to

obtain

1

p2

∑

a,b(mod p)
(p,∆)=1

1 +
∑

l≥1

clQ
∗(pl) − ∑

l≥1

cl
1

p2

∑

a,b(mod p)
p|∆

λa,b(pl) +
1

p2

∑

a,b(mod p)
p|∆

λ
f
a,b(p).

One can parameterize all pairs (a, b) ∈ F2
p such that ∆ ≡ 0(mod p) by a = −3c2,

b = 2c3, where c runs modulo p. In particular, there are p such pairs, and hence

there are p(p − 1) pairs such that (p,∆) = 1. If p|∆ and l is even then we claim that

λa,b(pl) = p−l/2 unless p|(a, b) or p = 3, in which case λa,b(pl) = 0. To see this,

note that λa,b(pl) = λl
a,b(p) for p|∆, and if a = −3c2, b = 2c3, then

λa,b(p) = − 1√
p

∑

x(mod p)

( x3 − 3c2x + 2c3

p

)

= − 1√
p

∑

x(mod p)

( (x − c)2(x + 2c)

p

)

= − 1√
p

∑

x 6=c

( x + 2c

p

)

=
1√
p

( 3c

p

)

.

Hence we obtain

Q∗(pe1 , . . . , pek ) =
p − 1

p
c0 +

∑

l≥1

clQ
∗(pl) − (p − 1)

p2

∑

l≥1

cl p
−l/2 +

(p − 1)

p2
p− f /2,

for p > 3. Applying Proposition 4.1 completes the proof.

Corollary 4.3 We have Q∗(p, 1, . . . , 1) = 0 and Q∗(p, p, . . . , 1) = 1 − p−1.

Proof The former assertion was already stated in Proposition 4.2. As for the latter,

we compute that c0(1, 1, 0, . . . , 0) = c2(1, 1, 0, . . . , 0) = 1 since U1(x)2
= 4x2

=

1 + (4x2 − 1) = U0(x) + U2(x).

Now we can compute the arithmetical factor.
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Proposition 4.4 Let H be given by (3.4). Then

H(z1, . . . , zk)

(4.4)

=
∏

p|3q

k
∏

j=1

(

1 − λr,t (p)

p
1
2

+z j
+

1

p1+2z j

)−1
∏

p∤6q

{

1 +
(

1 − 1

p

)(

1 − 1

p10

)−1

[(

−1 +

∫

k
∏

j=1

(

1 − 2 cos θ

p
1
2

+z j
+

1

p1+2z j

)−1

dµST

)

− 1

p1/2

∑

l

Tr∗l+2(p)
∫

Ul(cos θ)
k
∏

j=1

(

1 − 2 cos θ

p
1
2

+z j
+

1

p1+2z j

)−1

dµST

− p + 1

p2

∫

(

−1 +
(

1 − 2 cos 2θ

p
+

1

p2

)−1) k
∏

j=1

(

1 − 2 cos θ

p
1
2

+z j
+

1

p1+2z j

)−1

dµST

+
1

p

(

−1 +
1

2

( k
∏

i=1

(

1 − p−1−zi
)−1

+
k
∏

i=1

(

1 + p−1−zi
)−1

))]}

.

Furthermore, H has the form

(4.5) H(z1, . . . , zk) =

(

∏

1≤i< j≤k

ζ(1 + zi + z j)
)

Ak(z1, . . . , zk),

where Ak is given by an Euler product that is uniformly convergent in the region Re(zi) ≥
−δ, 1 ≤ i ≤ k, for some δ > 0.

Proof Recall H satisfies (3.5), so

H(z1, . . . , zk) =
∏

p|3q

k
∏

i=1

(

1 − λr,t (p)

p
1
2

+zi
+

1

p1+2zi

)−1

∏

p∤6q

(

1 + (1 − p−10)−1
∑

e1,...,ek
e1+···+ek>0

Q∗(pe1 , . . . , pek )

pe1( 1
2

+z1)+···+ek( 1
2

+zk)

)

.

We apply Proposition 4.2 and sum over the four terms given by (4.3) separately. We
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compute, using c0 = 0 if f is odd,

∑

e1,...,ek

2| f 6=0

c0(e1, . . . , ek)

pe1( 1
2

+z1)+···+ek( 1
2

+zk)
= −1 +

∑

e1,...,ek

∫ Ue1
(cos θ) · · ·Uek

(cos θ)

pe1( 1
2

+z1)+···+ek( 1
2

+zk)
dµST

= −1 +
∫

k
∏

j=1

(

1 − 2 cos θ

p
1
2

+z j
+

1

p1+2z j

)−1

dµST

=
∑

1≤i< j≤k

p−1−zi−z j + (higher degree terms),

this final estimation being easily seen using that c0(1, 1, 0, . . . , 0) = 1. This term

accounts for the Riemann zeta factors.

The term involving traces requires a computation as follows

∑

l≥1

Tr∗l+2(p)
∑

e1,...,ek

2| f 6=0

cl(e1, . . . , ek)

pe1( 1
2

+z1)+···+ek( 1
2

+zk)

=
∑

l≥1

Tr∗l+2(p)
∑

e1,...,ek

∫ Ue1
(cos θ) · · ·Uek

(cos θ)

pe1( 1
2

+z1)+···+ek( 1
2

+zk)
Ul(cos θ)dµST

=
∑

l

Tr∗l+2(p)
∫

Ul(cos θ)
k
∏

j=1

(

1 − 2 cos θ

p
1
2

+z j
+

1

p1+2z j

)−1

dµST .

Since the traces are zero for l + 2 < 12, this sum is uniformly convergent in a product

of half-planes containing the origin.

The other term involving cl involves

∑

l≥1

p−l/2
∑

e1,...,ek

2| f 6=0

cl(e1, . . . , ek)

pe1( 1
2

+z1)+···+ek( 1
2

+zk)

=
∑

l≥1

p−l
∑

e1,...,ek

∫ Ue1
(cos θ) · · ·Uek

(cos θ)

pe1( 1
2

+z1)+···+ek( 1
2

+zk)
U2l(cos θ)dµST

=
∑

l≥1

p−l

∫

U2l(cos θ)
k
∏

j=1

(

1 − 2 cos θ

p
1
2

+z j
+

1

p1+2z j

)−1

dµST

=
∫

(

−1 +
( 1 + 1

p

1 − 2 cos 2θ
p

+ 1
p2

)) k
∏

j=1

(

1 − 2 cos θ

p
1
2

+z j
+

1

p1+2z j

)−1

dµST ,

where the summation over l is executed using the identity

∞
∑

n=0

U2n(x)t2n
=

1 + t2

1 + 2t2(1 − 2x2) + t4
,

which is easily derived from (2.5) by replacing t with −t and adding.
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The final term is

∑

e1,...,ek

2| f 6=0

1

pe1(1+z1)+···+ek(1+zk)
= −1 +

1

2

∑

e1,...,ek

1 + (−1)e1+···+ek

pe1(1+z1)+···+ek(1+zk)

= −1 +
1

2

[ k
∏

i=1

(

1 − p−1−zi

)−1

+
k
∏

i=1

(

1 + p−1−zi

)−1]

The proposition follows by appropriately summing the four terms above.

To obtain a formula for ak, we use that the leading coefficient of Pk(N) is

Ak(0, . . . , 0)2k
k−1
∏

j=1

j!

2 j!
= Ak(0, . . . , 0)2k/2 G(1 + k)

√
Γ(1 + 2k)√

G(1 + 2k)Γ(1 + k)
=: akgk,

where ak = Ak(0, . . . , 0). This computation can be found in [CFKRS]. Then we

compute

(4.6) ak =

( φ(6q)

6q

) k(k−1)/2
∏

p|3q

(

1 − λr,t (p)

p
1
2

+
1

p

)−k
∏

p∤6q

(

1 − 1

p

) k(k−1)/2

×
{

1 +
(

1 − 1

p

)(

1 − 1

p10

)−1[(

−1 +

∫

V p(θ)kdµST

)

− 1

p1/2

∑

l

Tr∗l+2(p)
∫

Ul(cos θ)V p(θ)kdµST

− p + 1

p2

∫

(

−1 +
(

1 − 2 cos 2θ

p
+

1

p2

)−1)

V p(θ)kdµST

+
1

p

(

−1 +
1

2

((

1 − 1

p

)−k

+
(

1 +
1

p

)−k))]}

,

where

V p(θ) =

(

1 − 2 cos θ

p1/2
+

1

p

)−1

.

5 The Arithmetical Factor for the Positive Rank Family F
′

The computation of the arithmetical factor for the family F
′ is more difficult than

that for the family of all elliptic curves F. This author does not know an explicit

formula similar to (4.4). Nevertheless, we can compute Q∗
¤

(pe1 , . . . , pek ) when e1 +

· · · + ek is even. The reason for this is that the change of variables x → rx, a → r2a

gives

∑

a(mod p)

λa,c(pl) =

( r

p

) l
∑

a(mod p)

λa,r−3c(pl),
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so applying b → r2b for l even gives that

∑

a

∑

b

λa,b2 (pl) =
∑

a

∑

b

λa,rb2 (pl).

We conclude that

∑

a

∑

b

λa,b2 (pl) =
∑

a

∑

b

λa,b(pl),

Using the same arguments as in the proof of Proposition 4.2 shows that

Q∗
¤

(pe1 , . . . , pek ) = Q∗(pe1 , . . . , pek )

for e1 + · · · + ek even.

On the other hand, Q∗
¤

(pl) is not so easily analysed for l odd. For l = 1 we

compute directly

Q∗
¤

(p) = −p−5/2
∑

a

∑

b

∑

x

( x3 + ax + b2

p

)

.

The summation over a clearly vanishes unless x = 0, in which case the summation

over a is p. The summation over b is p − 1. Hence

Q∗
¤

(p) = −p−1/2 + p−3/2.

We now have enough information to deduce that (3.8) holds, as desired. Obtain-

ing a formula for A ′
k similar to the analogous formula (4.4)–(4.5) for Ak requires a

formula for Q∗
¤

(pl) for l odd.

For the application to the Riemann Hypothesis described in Section 7, it is relevant

to know the region of convergence of A ′
1(α). We compute

∞
∑

e=0

Q∗
¤

(pe)

pe( 1
2

+α)
= 1 − 1

p1+α
+ O(p−3( 1

2
+α)) + O(p−2−α)

= (1 − p−1−α)(1 + O(p−2(1+α)) + O(p−3( 1
2

+α))),

so A ′
1(α) is given by an absolutely and uniformly convergent Euler product in the

region Re(α) > − 1
6
. This region could be improved with better bounds on Q∗

¤
(pe)

for e ≥ 3. We have made no such attempt.

6 Conjecture 1.6

Our arguments follow those of [CKRS], so we shall be brief. For further elaboration

of the method see their paper. The idea is to consider the following ratio

Rq,k = lim
X→∞

(

∑

E∈F
+
r,t (X)

L(1/2, E)k
)/(

∑

E∈F
+
r ′ ,t ′

(X)

L(1/2, E)k
)

.
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Arguments as in [CKRS] lead to the conjecture that Rq(X) ∼ Rq,− 1
2
. Our Conjec-

ture 1.1 gives the asymptotic behavior of Rq,k for general k.

The expectation is that

Rq,k =

∏

p|q

(

1 − λr,t (p)

p1/2 + 1
p

)−k

∏

p|q

(

1 − λr ′ ,t ′ (p)

p1/2 + 1
p

)−k
,

since all other factors are independent of the choice or r and t(mod 6q). By random

matrix theory considerations, taking k = −1/2 above gives the prediction.

7 The Riemann Hypothesis

At the Riemann Hypothesis conference in 2002 at Courant sponsored by AIM,

Iwaniec described an approach to RH using positive rank families of elliptic curves,

such as the family F
′ considered in this paper. Conrey [C] has given a brief summary

of the approach. Here we show how to use the moment conjectures to frame the

method.

The identity

lim
1

|F ′(X)|
∑

E∈F ′(X)

λE(p) = − 1√
p

+ O(p−3/2)

and multiplicativity suggests

lim
1

|F ′(X)|
∑

E∈F ′(X)

λE(n) ≈ µ(n)√
n

,

for n squarefree. The point is that the Möbius function can be obtained by averaging

Dirichlet series coefficients of these positive rank elliptic curves.

Consider (3.7) with k = 1. A quick calculation gives that

M(α) =
A ′(α)

ζ(1 + α)
X
− 1

2

E ( 1
2

+ α),

where A ′(α) is the arithmetical factor that converges uniformly on compact subsets

of the region Re(α) > − 1
6
, using the computation at the end of Section 5.

Thus we obtain the following conjecture.

Conjecture 7.1 Let |Re(α)| < 1
6
. Then

∑

E∈F ′(X)

L( 1
2

+ α, E) =
A ′(α)

ζ(1 + α)

∑

E∈F ′(X)

(1 + O(N−δ
E )).

To deduce a quasi-Riemann Hypothesis, let 1+α be a nontrivial zero with Re(α) >
− 1

6
. The left hand side is obviously holomorphic at α, but the right hand side is not.

Corollary 7.2 Conjecture 7.1 implies that the Riemann zeta function ζ(s) has no zeros

for Re(s) > 5
6
.
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