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The three-dimensional (3-D) transition of the leading-edge vortex (LEV) and the force
characteristics of the plunging airfoil are investigated in the chord-based Strouhal number
Stc range of 0.10 to 1.0 by means of experimental measurements, numerical simulations
and linear stability analysis in order to understand the spanwise instabilities and the
effects on the force. We find that the interaction pattern of the LEV, the LEV from a
previous cycle (pLEV) and the trailing-edge vortex (TEV) is the primary mechanism that
affects the 3-D transition and associated force characteristics. For Stc ≤ 0.16, the 3-D
transition is dominated by the LEV–TEV interaction. For 0.16 < Stc ≤ 0.44, the TEV
lies in the middle of the LEV and the pLEV and therefore vortex interaction between them
is relatively weak; as a result, the LEV remains two-dimensional up to a relatively high
Reynolds number of Re = 4000 at Stc = 0.32. For 0.44 < Stc ≤ 0.54, and at relatively
low Reynolds numbers, the pLEV and the TEV tend to form a clockwise vortex pair,
which is beneficial for the high lift and stability of the LEV. For 0.49 ≤ Stc, the pLEV
and TEV tend to form an anticlockwise vortex pair, which is detrimental to the lift and
flow stability. In the last Stc range, vortex interaction involving the LEV, the TEV and the
pLEV results in an unstable period-doubling mode which has a wavelength of about two
chord-lengths and the 3-D transition enhances the lift.

Key words: vortex instability, vortex interactions

1. Introduction

A geometrically two-dimensional (2-D) airfoil undergoing plunging motion, or
experiencing an unsteady incoming flow, is a classical problem in unsteady aerodynamics.

† Email address for correspondence: jfluidmech@imperial.ac.uk
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It is encountered not only in biological locomotion (Shyy et al. 2010) and micro-aerial
vehicle control (Gursul, Cleaver & Wang 2014; Greenblatt & Williams 2022), but also
with traditional large-aspect-ratio wings in a gust (Jones, Cetiner & Smith 2022) as
well as helicopter rotor blades (McCroskey 1982). These flows are characterised by flow
separation at the leading and the trailing edges. The concentrated vortices, which are
formed by the rolling up of separated boundary layers and modulated by the motion of
the airfoil, play crucial roles in generating unsteady force and momentum. A thorough
understanding of the evolution characteristics of these vortices is important to uncover
the underlying mechanisms producing unsteady forces and thereby help improve the
aerodynamic performance of a wing inboard of the tip region.

The vortex structures in the wake have been observed to be closely correlated with
the unsteady force (Zhang 2017). For example, a symmetric airfoil undergoing plunging
can generate wake vortices, with increasing flapping frequency, that are in the form of a
Bérnad–von Kármán vortex street, a reverse Bérnad–von Kármán vortex street, a deflected
vortex street or aperiodic patterns (Lewin & Haj-Hariri 2003). The drag-to-thrust transition
is found to be correlated with the transition of Bérnad–von Kármán to reverse Bérnad–von
Kármán vortex street, although the thrust transition takes place at a slightly higher
frequency (Godoy-Diana, Aider & Wesfreid 2008; Andersen et al. 2017). Analogously, the
deflected vortex wake indicates a non-zero mean lift (Cleaver, Wang & Gursul 2012; Deng
et al. 2016). However, the wake pattern itself does not always provide a reliable indicator
of the force. Indeed, Floryan, Van Buren & Smits (2020) found that in some situations the
change in the wake patterns results in no change of the force, especially when the wake
contains self-interacting vortex patterns.

Heuristically, the effect of a vortex structure decreases when it moves away from the
body. Chang (1992) expressed the force exerted on a body by the fluid as the dot product
of a potential flow and the Lamb vector. The potential flow, which is first introduced
by Quartapelle & Napolitano (1983), represents the importance of a fluid element at a
specified spatial location. The velocity of this auxiliary potential flow decays as O(r−2) in
2-D space or O(r−3) in three-dimensional (3-D) space when the distance to the body r goes
to infinity. Lee et al. (2012) applied Chang’s method to the impulsively started finite plate.
They found that flow structures within three chord lengths of the plate contribute 99 %
lift. Using the finite-domain vorticity moment theory, Li & Lu (2012) found the vorticity
moment of body-connecting vortical structures make the largest contribution to the force.
Gao et al. (2019) subsequently studied the pressure Poisson equation of the incompressible
flow and observed that the source term of the pressure Poisson equation, within three chord
lengths, contributes almost all of the pressure force of a 2-D airfoil. It can therefore be
concluded that the near-body flow structures are at the heart of force generation. Therefore,
in the following analysis, we focus our study on resolving and analysing the near-body
flows.

The near-body vortex system around the plunging airfoil includes leading-edge vortex
(LEV), trailing-edge vortex (TEV) and the interaction of these vortices with the viscous
wall that can lead to additional secondary vortices (Lewin & Haj-Hariri 2003; Wu, Ma &
Zhou 2006). The primary LEV is found to be the key to high lift (Ellington et al. 1996;
Eldredge & Jones 2019) and thrust (Wang 2000). The LEV usually moves downstream
after its formation. Under high-frequency and low-amplitude plunging motion, however,
the LEV can move upstream and circumscribe the leading edge to the opposite side of the
airfoil (Lewin & Haj-Hariri 2003; Gao et al. 2019). Further, the interaction between the
LEV and the TEV can also greatly affect the thrust and propulsion efficiency (Lewin &
Haj-Hariri 2003; Choi, Colonius & Williams 2015).
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A plunging airfoil at a large angle of attack (AoA) generates strong LEVs and
contains rich vortex evolution phenomena and therefore is adopted in this study. The
plunging motion also enhances the lift of the post-stall airfoil and therefore provides
promising control methods (Gursul et al. 2014). The salient dimensionless parameters
that describe this flow are the AoA, the Reynolds number Re, the peak-to-peak amplitude
Ac = A/c and the chord-length-based Strouhal number Stc = c/(U∞T). We note that the
amplitude-based Strouhal number StA = A/(U∞T) is also often adopted instead of Stc.

Experimental studies of this problem include water tunnel studies by Gursul & Ho
(1992) who investigated the aerodynamic force of a static NACA 0012 airfoil submerged in
an unsteady incoming flow at a Reynolds number of 50 000 and AoA of 20◦. They found
the time-averaged lift is greatly enhanced around an optimal frequency of Stc = 0.25,
where the lift can be higher than three times the steady lift. The optimal frequency is
independent of the oscillating amplitude of the incoming flow but the peak lift increases
with this amplitude. This high lift was attributed to a vortex pair which formed around
the trailing edge. Cleaver et al. (2011) studied the lift enhancement by a plunging airfoil
with a peak-to-peak amplitude of Ac ∈ [0.05, 0.4] and a Strouhal number of Stc ∈ [0, 3].
The Reynolds number was 10 000 and the AoA was 15◦, while the spanwise length
of their airfoil was three times the chord length. Their frequency-lift curves show a
double-peak structure where the first peak arose around Stc = 0.5 for all amplitudes. The
second peak has a higher lift and occurs in the amplitude-based Strouhal number interval
StA ∈ [0.4, 0.5]. The drop in lift after the first peak was caused by an adverse interaction
between the LEV from a previous period and the TEV. Using the same airfoil geometry
and under the same Reynolds number, Cleaver et al. (2012) observed a bifurcation of
the frequency-lift curve, from a lift-increasing branch to a lift-decreasing branch, for
an AoA of ≤10◦. For an AoA ≥ 12.5◦, bifurcation was not observed. Son et al. (2022)
conducted combined volumetric particle image velocimetry (PIV) measurements and
numerical simulations of the vortical structures around a plunging airfoil at Re = 10 000,
where the plunging amplitude was Ac = 0.5, the AoA was 15◦ and the spanwise length b
was five chord lengths. At Strouhal numbers Stc = 0.32, 0.64, 0.95, they found 3-D vortex
structures behind the trailing edge of the airfoil and argued that the three-dimensionality
was caused by a Crow-type instability of the LEV–TEV or LEV–wall interaction vortex
pair.

Numerical simulations are widely used in the study of the vortex-dominated flows
generated by the plunging airfoil. Many of these numerical simulations have considered
2-D flow because of their relatively low computational cost. For the plunging airfoil at a
large AoA, 2-D simulations have been performed at a much lower Reynolds number, which
assumes the flow is Reynolds number independent. Andro & Jacquin (2009) studied the
plunging NACA 0012 airfoil at Re = 1000, StA = 0.27 and an AoA of 15◦. The Stc varies
from 0 to 2 by adjusting the plunging period and the amplitude simultaneously. They found
the first lift peak occurs at Stc ≈ 0.4. However, due to the decreasing amplitude with Stc,
the second lift peak is not apparent in their results. Choi et al. (2015) studied the horizontal
surging and vertical plunging of a NACA 0012 airfoil at Re ≤ 500. For the plunging wing,
the lift reaches a peak value around Stc = 0.5 and then drops almost vertically to less
than one-third of the maximum value. This dramatic drop in the lift was not observed in
experiments where the lift loss is only about 10 %. Choi et al. (2015) found the sudden
loss of lift was due to the formation of an adverse vortex pair whose induced velocity
was directed upstream. The second lift peak is very weak or not present. Gao, Sherwin &
Cantwell (2022) conducted 2-D simulations at Re = 400, using the same airfoil geometry
as Choi et al. (2015). They found the lift discontinuity around Stc = 0.5 is hysteretic in
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the range of 0.49 ≤ Stc ≤ 0.5. Although 2-D simulation provides some key features of the
vortex patterns, they exhibit many disagreements with experimental results, especially for
Stc around 0.5 and above.

Biglobal linear stability analysis is a useful tool to assess the validity of 2-D simulations
and for obtaining the critical Reynolds number and the dominating mode in the 3-D
transition. Meneghini et al. (2011), He et al. (2017) and Deng, Sun & Shao (2017) studied
the linear stability of the 2-D periodic flow around a static airfoil at a post-stall AoA.
They found two unstable modes whose spanwise wavelengths are 0.2 and 2 chord lengths,
respectively. The short-wavelength mode first becomes unstable. At an AoA of 15◦, the
critical Reynolds number of the NACA 0015 airfoil is Re = 730 (Deng et al. 2017). At
an AoA of 20◦, the critical Reynolds number was Re = 561 (He et al. 2017). Moriche,
Flores & García-Villalba (2016) studied the linear stability of the 2-D periodic flow
around a flapping airfoil at Re = 1000. They found a long-wavelength period-doubling
unstable mode, which has a wavelength of 4.078c and resembles mode A of the cylinder
flow. Similarly, Sun, Deng & Shao (2018) studied the linear stability of a plunging
NACA 0015 airfoil at zero AoA and Re = 1700. They identified a long-wavelength and a
short-wavelength unstable mode whose wavelengths were around 1 and 0.2 chord lengths,
respectively. Gao, Sherwin & Cantwell (2020) and Gao et al. (2022) studied the linear
stability of a plunging NACA 0012 airfoil at AoA of 15◦, Re = 400, Ac = 0.5, Stc ∈ (0, 1).
For Stc ≥ 0.5 where the lift is low, they found a period-doubling unstable mode whose
wavelength was about two chord lengths. For Stc ≤ 0.5 where a high lift is achieved, no
linearly unstable mode was obtained. The linear stability analysis partially answered the
2-D to 3-D transition mechanisms, but it was still insufficient to uncover the transition
mechanisms at lower frequencies and the features of the 3-D flows.

Fully 3-D numerical simulations clearly make the fewest assumptions and therefore
potentially provide the most salient information about the flow characteristics, although
they also come at a notable computational expense. Visbal (2009) studied the flow past
a plunging SD7003 airfoil using high-fidelity implicit large-eddy simulations (iLES) at
the chord-based Strouhal number of Stc = 1.25, Ac = 0.1 and AoA = 4◦. The spanwise
length of the airfoil is 0.2c. At Re = 40 000, an abrupt breakdown of the LEV due
to the spanwise instability is observed, however, the force is almost unaffected by the
flow transition. Visbal (2011) studied the 3-D transition of the plunging SD7003 airfoil
with respect to the Reynolds number from Re = 1000 to Re = 120 000, at Stc = 0.080,
Ac = 1.0 and AoA = 8◦. The spanwise length of the airfoil is 0.4c. The 3-D transition
of the flow is found at Re = 5000. A delay in the shedding of the LEV and the TEV is
observed with the increasing Reynolds number, which results in a phase shift in the force
coefficients. Zurman-Nasution, Ganapathisubramani & Weymouth (2020) performed 3-D
iLES of a NACA 0016 airfoil at Stc = 1.875, Ac ∈ [0, 0.64], Re = 5300 and AoA = 10◦
with a spanwise length of 6c. They observed the 2-D flow was valid only around the
peak-to-peak amplitude-defined Strouhal number of StA = 0.3. Away from this Strouhal
number, three-dimensionality can drastically change the wake patterns and aerodynamic
forces. Son et al. (2022) performed iLES of a NACA 0012 airfoil of length 5c at Ac = 0.5,
Re = 10 000 and AoA = 15◦, at Strouhal numbers of Stc = 0.32, 0.64 and 0.95. All
three cases show 3-D vortex patterns. Gao et al. (2022) performed 3-D direct numerical
simulations (DNS) of a NACA 0012 airfoil of spanwise length 10c at Ac = 0.5, Re = 400,
AoA = 15◦ and Stc ∈ (0, 1). The flow was found to be 3-D for the low-lift regime of
Stc ≥ 0.49, but 2-D for the high-lift regime of Stc ≤ 0.5. The dominating wavelengths in
3-D results, which are around two chord lengths, agree with the biglobal instability results.
In addition to the periodically plunging motion, Moriche et al. (2021a) also studied the
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3-D transition of a NACA 0012 airfoil undergoing a plunging-type manoeuvre, i.e. the
plunging duration of the airfoil is one period. They found the 3-D effect is notable only
when the plunging velocity is large enough so that the LEV interacts with the small vortex
pair formed below it.

The transition to 3-D flow has a notable effect on the aerodynamic performance
of the plunging airfoil at post-stall AoAs. Clarifying the transition boundary and the
aerodynamic force characteristics is important for both flow physics and flow controls such
as lift enhancement or alleviation. However, the transition map in the Strouhal number
range Stc ∈ (0, 1) is still rather unexplored and a significant discrepancy exists around
Stc = 0.50, between the numerical simulations at Reynolds numbers of order 102 and the
experimental results at Re = 10 000. In this paper, we take a complementary approach to
study the 3-D transition and the force characteristics of the flow around the plunging airfoil
at a post-stall AoA of 15◦. The main objectives are to identify the spanwise instabilities,
their origin, evolution with Reynolds number and their effect on the aerodynamic force
in a chord-based Reynolds number from Re = 400 to Re = 10 000. We consider data
from experimental measurements, 2-D and 3-D simulations, to identify flow regimes
over the Strouhal number range of Stc ∈ [0.10, 1.0) and explore the 3-D flow features in
each regime. Subsequently, we explore the instability mechanisms using biglobal stability
analysis and 3-D numerical simulations. Finally, we discuss the vortex origin of the lift
force using a novel Galilean invariant force decomposition theory. Initial findings of our
study were presented in Gao et al. (2020, 2022).

The paper is organised as follows. The experimental set-up, the numerical approach
and the validations are given in § 2. An overview of the flow transition features, including
the time-averaged force, regimes classification, the 3-D vortex patterns and the spanwise
wavelength, are presented in § 3.1. In § 3.2, the flow evolution with Reynolds number in
each of the first four regimes is explored. In § 4, we examine the biglobal linear instability
for the fourth regime with 2-D periodic base flows and the relevant instability mechanisms.
Then, in § 5, we discuss the vortex origin of the lift force. Finally, in § 6, we summarise
the main conclusions.

2. Methodology

2.1. Problem definition
We consider a spanwise homogeneous NACA 0012 airfoil with an AoA of α0 = 15◦,
undergoing sinusoidally plunging (or heaving) motion in a uniform incoming flow. The
position h of the leading edge moves vertically as

h(t) = A
2

cos(2πt/T), (2.1)

where A is the peak-to-peak amplitude and T is the plunging period. The plunging
amplitude A is fixed at 0.5 chord length in this work. We non-dimensionalise the
problem based on the chord length, c, and incoming flow velocity, U∞ and so introduce
the dimensionless plunging amplitude, Ac = A/c = 0.5, define the chord-based Strouhal
number as Stc = c/(U∞T) and define the Reynolds number as Re = U∞c/ν, where ν is
the kinematic viscosity of the fluid. The effective AoA of the airfoil is therefore

αe(t) = α0 + tan−1 (πAcStc sin(2πt/T)) , (2.2)

which varies from α0 − tan−1(πAcStc) to α0 + tan−1(πAcStc). The amplitude-based
Strouhal number StA = A/(U∞T) = StcAc is also used. The force coefficients are
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Freestream
Airfoil

Force
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Water
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Upper
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Lower
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(b)(a)

Figure 1. Experimental set-up.

non-dimensionalised using 0.5ρU2∞cb, where ρ is fluid density and b = 5c is the spanwise
length of the airfoil.

2.2. Experimental set-up
The force is measured experimentally in the water tunnel facility of the University of
Bath. The test section of the water tunnel is 381 × 508 × 1530 mm3 and the flow velocity
range is 0–0.5 m s−1 with a turbulence intensity of less than 0.5 %. The wing is vertically
mounted in the test section via the translation stage, which generates a linear motion
perpendicular to the freestream flow (see figure 1). The set-up is identical to that used in
our previous investigations (Son et al. 2022). Two end plates are used at the root and the tip
of the airfoil to approximate the 2-D cases. The chord length of the wing is c = 62.7 mm
and the aspect ratio is AR = 5. The wing is subjected to a sinusoidal plunging motion, as
in (2.1). Reynolds number, based on the chord length, is Re = 10 000 for the experiments.
The wing has a NACA 0012 profile and is manufactured from PA-2200 polyamide using
selective laser sintering with a polished smooth surface. A T800 carbon fibre bar with a
cross-section of 25 × 5 mm2 is inserted inside the wing to provide high spanwise stiffness
to the wing. A Zaber LSQ150B-T3 translation stage powered by a stepping motor provides
a sinusoidal plunging motion with an accuracy of 2 % of the peak-to-peak amplitude.
Force measurements are performed with an ATI Mini 40 force/torque sensor. The data
are collected for 50 periods of plunging motion and the data acquisition frequency is set
for each case to have 2000 data points in a plunging period. For the stationary cases, the
data are collected at 1000 Hz for 60 seconds. For the mean lift and drag, the data were
time-averaged whereas for the time-dependant lift and drag, a band-stop filter was applied
to the data to eliminate the vibrations at the natural frequencies of the wings. Then a
moving-average filter was applied for 100 points and the data were phase-averaged for 50
plunging cycles.

2.3. Numerical method
Numerical simulations are conducted at Reynolds numbers from 400 to 10 000. An
iLES technique, which converges to the DNS for sufficient grid resolution, is adopted.
At Reynolds numbers lower than or equal to 800, the numerical results have the DNS
resolution. For higher Reynolds numbers, simulations should be considered as iLES where
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Figure 2. Two-dimensional computational domain and spectral/hp element mesh used for the numerical
simulations. (a) Global view showing the full domain. (b) Close-up view of mesh around the airfoil.

the high-wavenumber modes are damped by the spectral vanishing viscosity (Moura et al.
2020).

The governing equations are the incompressible Navier–Stokes (N-S) equations and the
continuity equation. To avoid the need for a moving grid, the relative velocity is solved in
the body frame of reference. They are expressed as

∂tu + u · ∇u = −ρ−1∇p + ν∇2u − ḧey, (2.3a)

∇ · u = 0, (2.3b)

where the −ḧey term captures the effect of the plunging motion. On the airfoil surface,
a no-slip boundary condition u = 0 is imposed. In the far field, the flow velocity is
prescribed to be uniform in space,

u = U∞ex − ḣey (2.4)

and accounts for the sinusoidal motion of the frame of reference.
The momentum equation (2.3a) and the continuity equation (2.3b) are solved

using a high-order velocity-correction scheme (Karniadakis, Israeli & Orszag 1991).
A second-order implicit–explicit scheme is applied for time integration, in which the
nonlinear advection term is treated explicitly and the viscous term implicitly. At least 20
plunging periods are simulated to ensure that the flow is fully developed. The last 10
periods are used for analysis.

For 2-D simulations, the computational domain is spatially discretised with an elemental
decomposition using the spectral/hp element method, implemented in the open-source
code Nektar++ (Cantwell et al. 2015; Moxey et al. 2020). The size of the computational
domain is [−40c, 60c] × [−40c, 40c]. The domain is tessellated by 9921 quadrilaterals
and 64 triangles, where the height of the layer of elements adjacent to the airfoil surface
is 0.005c. The airfoil trailing edge is rounded with a radius of 0.00145c. The 2-D
computational domain and spectral element mesh are shown in figure 2. Within each
element, the solution is represented in terms of a tensor product of modified Jacobi
polynomials of order P, with Gauss–Lobatto–Legendre points for performing numerical
integration. The grid convergence study in Appendix A.1 indicates that using P = 4 is
sufficient for the range of flow configurations in this study. A reduced mesh with 3020
elements and an expansion order of P = 5 used by Son et al. (2022), where the grid
convergence has been tested, is also applied here for Re = 10 000 simulations.
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For 3-D simulations, the 2-D computational mesh described previously is extended
to a 3-D computational discretisation using a Fourier expansion with 128 planes in the
z-coordinate. Spectral dealiasing is applied to reduce the nonlinear error. The highest
wavenumber that can be captured is therefore 63. The grid convergence in the z-direction
has been assessed in Son et al. (2022) and is also presented in § A.3.

The boundary conditions are enforced numerically as follows. On the wall, a no-slip
condition is used for the velocity, while a high-order Neumann condition is used for
the pressure (Orszag, Israeli & Deville 1986). On the upstream boundary a Dirichlet
condition, imposing (2.4), is used for velocity, while a zero-Dirichlet condition is used
for pressure. The downstream boundary uses a high-order outflow boundary condition
(Dong, Karniadakis & Chryssostomidis 2014). The cross-stream boundaries are periodic.
A spectral vanishing viscosity (Moura et al. 2020) is applied with a coefficient of 0.1 to
stabilise the simulation.

In the visualisation of flow fields at Re ≥ 1000 where the numerical results have the LES
resolution, a Gaussian filter is applied to remove small-scale vortices that are affected by
numerical errors and only show the more physically realistic large-scale vortices. Based on
the performance of the spatial filter in the work of Son et al. (2022), the standard deviation
of the Gaussian filter is taken as 0.04c, which damps the wave amplitude by half and more
at a wavelength smaller than 0.2c.

2.4. Linear stability analysis
In linearising the N-S equations (2.3), the flow is considered as an infinitesimal
perturbation ũ around a 2-D time-periodic base flow U , with period T ,

u = U + ũ, p = P + p̃. (2.5a,b)

Since the base flow U satisfies the N-S equations (2.3), eliminating these terms and
perturbation terms of higher than linear order leaves the linearised N-S equations,

∂tũ + U · ∇ũ + ũ · ∇U = −ρ−1∇p̃ + ν∇2ũ, (2.6a)

∇ · ũ = 0. (2.6b)

describing the evolution of the perturbation. For the linearised problem, the condition
ũ = 0 is imposed on all boundaries.

The base flows for the required flow configurations are computed by solving (2.3)
using DNS. For each configuration, the solution over one time period is stored using 128
snapshots. During linear stability analysis, a fourth-order Lagrange interpolation is used
to generate the instantaneous base flow U at the required time through the cycle.

Based on Floquet theory, solutions to (2.6) can be expressed as

ũ(x, y, z, t0 + nT) = μnũ(x, y, z, t0). (2.7)

for integer n, where μ are the Floquet multipliers. For |μ| > 1, the corresponding mode
grows exponentially and is therefore unstable.

The disturbance may be 3-D and due to the symmetry of the problem a further
simplification is possible, whereby the solution can be represented using only a half
Fourier mode in the z direction,

ũ(x, y, z, t) = (
û cos(βz), v̂ cos(βz), ŵ sin(βz)

)
, (2.8a)

p̃(t, x, y, z) = p̂ cos(βz), (2.8b)

where û = (û, v̂, ŵ), and p̂ are functions of (x, y, t) only and λ = 2πβ−1 is the wavelength
in the z direction.
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Low-Reynolds-number flows past a plunging airfoil

Stc = 0.16 0.32 0.48 0.64 0.80

CFD CL 1.005 1.634 2.576 1.647 2.311
EXP CL 1.100 1.914 2.347 1.808 2.469
CFD CD 0.277 0.301 0.422 0.058 −0.121
EXP CD 0.247 0.332 0.298 0.027 −0.216

Table 1. Time-averaged force coefficients of the plunging airfoil from numerical simulation and experimental
measurement at Re = 10 000, A/c = 0.5 and AoA = 15◦.
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Stc = 0.32, exp

Stc = 0.64, CFD

Stc = 0.32, CFD
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t/T
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(b)(a)

Figure 3. Time-dependent (a) lift and (b) drag coefficients at Re = 10 000, A/c = 0.5 and AoA = 15◦. Phase
averaging is applied.

The task of computing the Floquet multiplier that has the maximum absolute value can
be formulated as an eigenvalue problem and solved using a Krylov-based iterative Arnoldi
method (Barkley, Blackburn & Sherwin 2008). While the disturbance field is necessarily
simulated using the entire computational domain, only the near-body region is used for the
calculation of the Floquet multipliers. The maximum dimension of the Krylov subspace is
16 and the iterative tolerance is set to 10−4. Appendix A.2 demonstrates that the eigenvalue
results are independent of the chosen domain restriction.

2.5. Verification and validation
The time-averaged lift and drag coefficients, non-dimensionalised by 0.5ρU2∞cb, from
experiments and numerical simulations at Re = 10 000, are listed in table 1. The lift
and drag coefficients from numerical simulations roughly agree with those from the
experimental measurements, although a relative difference of about 10 % is observed. The
discrepancy in the drag coefficient is larger when the drag is close to zero or transits to
thrust for Stc ≥ 0.64, which may be caused by the large transient drag at high plunging
frequencies.

The time-dependent force coefficients at Stc = 0.32 and Stc = 0.64 are also compared
in figure 3, where lines represent experimental results and symbols are numerical
results. Good agreement of the force is found when the position of the airfoil is
around the equilibrium point, however, notable discrepancies exist when the airfoil is
at the lowest (t/T = 0.5) and highest (t/T = 0) positions. At Stc = 0.32, t/T = 0.5, the
numerical simulation exhibits small oscillations of the force, but the experimental data
is very smooth. At Stc = 0.64, t/T = 0 and t/T = 0.5, the magnitude of lift from the
numerical simulation is lower than that from the experimental measurement by 20 %.
However, because the signs of these discrepancies are different at the highest (t/T = 0)
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3

ω∗
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–0.3
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–3

(b)(a) (c) (d)

( f )(e) (g) (h)

Figure 4. Phase-averaged and spanwise-averaged vorticity field from numerical simulation and experimental
measurements at Re = 10 000, A/c = 0.5 and AoA = 15◦: (a,e) Stc = 0.16, t/T = 0; (b, f ) Stc = 0.16,
t/T = 0.25; (c,g) Stc = 0.32, t/T = 0; (d,h) Stc = 0.32, t/T = 0.5. The position of the airfoil is shown by
a black dot on a black line. Panels (a–d) are numerical results. Panels (e–h) are experimental results from Son
et al. (2022).

and at the lowest (t/T = 0.5) position, the relative difference of the time-averaged force
is 10 %.

In addition, the spanwise vorticity field is compared between the numerical simulation
and experimental data from Son et al. (2022), see figure 4. Both phase averaging and
spanwise averaging are applied. In experiments, because the laser is placed above the
airfoil, the flow field below the airfoil is not illuminated and therefore the corresponding
vorticity field is not available. Generally, the vortex patterns and locations of main vortices,
such as the LEV, the secondary vortex caused by the LEV–wall interaction and the
TEV, agree between the numerical simulation and experimental results. In experiments,
however, the shear layer is much thicker and the size of the vortex identified by the contour
plot is also larger.

3. Results

3.1. Overview of the flow transition features

3.1.1. Time-averaged force
The time-averaged lift and drag coefficients, non-dimensionalised by 0.5ρU2∞cb, are
shown in figure 5. The parametric space is α0 = 15◦, 0 ≤ Stc < 1, 400 ≤ Re ≤ 10 000
and Ac = 0.5. In the experimental measurements, the spanwise length of the airfoil is 5c
and end plates are attached on both ends. In the numerical simulations, the spanwise length
of the airfoil is also 5c, whereas a periodic boundary condition is applied on both ends.

At Re = 10 000, the 3-D numerical simulation captures the varying trend of the
experimental results, as indicated by the red plus symbols and the solid red line in figure 5.
Two lift peaks, previously observed by Cleaver et al. (2011), are captured. However, unlike
the results of Cleaver et al. (2011), where the second peak has a much higher lift for an
airfoil with a spanwise length of 3c and plunging amplitude of Ac ≤ 0.4, the two peak
values in the current study are almost the same. The first peak occurs at Stc = 0.48 and is
followed by a rapid drop in the lift. For Stc < 0.48, the lift force continuously grows with
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Low-Reynolds-number flows past a plunging airfoil

Re = 400, A/c = 0.5, 2-D
Re = 800, A/c = 0.5, 2-D
Re = 800, A/c = 0.5, 3-D
Re = 10 000, A/c = 0.5, 3-D
Re = 10 000, A/c = 0.5, exp

Re = 10 000, A/c = 0.5, 2-D

3.5(a)

(b)

I II III IV V
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0

1.0

0.5

CD
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–0.5

–1.0
0 0.2 0.4 0.6 0.8 1.0

Stc

0

Figure 5. Time-averaged (a) lift and (b) drag coefficients of the plunging airfoil at AoA = 15◦. Roman
numerals show the regimes classification. Black vertical lines indicate the starting Stc of each regime.

increasing plunging frequency/Strouhal number. The second peak is flatter in nature and
maintains a high lift value in the Stc range of 0.73 to 0.83.

The 3-D lift at a lower Reynolds number of Re = 800 is indicated by the black solid
circles in figure 5(a), which also has two lift peaks. The first peak occurs at Stc = 0.53−
and achieves a 16 % higher lift than the Re = 10 000 cases, however, the lift coefficient for
Stc > 0.50+ is slightly lower than the Re = 10 000 cases, resulting in a sharper drop of lift
around Stc = 0.5. The flow around Stc = 0.5 is found to be hysteretic since increasing Stc
from a lower value or decreasing Stc from a higher value allows the flow to maintain the
high or low lift value of the previous state, meaning that both states can be stably achieved
at Stc = 0.5. To distinguish cases in this hysteric region, superscripts ‘−’ and ‘+’ are used
to denote cases from the left (high lift) and right (low lift), respectively. Hysteresis is not
observed at Re = 10 000.

Two-dimensional simulations were also performed at Re = 400 and Re = 800 and the
force is shown by open symbols in figure 5. In this case, there is only one lift peak, which
is around Stc = 0.5. Similar to the 3-D results at Re = 800, the lift drop around Stc =
0.5 is hysteretic. The hysteresis process happens in a Strouhal number interval of Stc ∈
[0.48, 0.50] for Re = 400, and in the interval Stc ∈ [0.49, 0.54] for Re = 800. At Re = 800
and for 0.10 ≤ Stc ≤ 0.54−, the lift force of the 2-D simulation is identical to that of the
3-D simulation, which indicates the flow is 2-D within this parametric range.

The validity of 2-D simulations can be assessed by the comparison of the time-averaged
lift. At low plunging frequency, Stc ≤ 0.16, the 2-D lift coefficient at Re = 400 and
Re = 800 is slightly smaller than the 3-D lift coefficient at Re = 10 000. However, 2-D
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simulations at Re = 10 000, as indicated by empty circles in figure 5(a), significantly
over-predict the lift. In the Strouhal number range of Stc ∈ (0.16, 0.44], the lift coefficients
of the 2-D simulations and the 3-D simulations at both Re = 800 and Re = 10 000 are
almost the same. This phenomenon seems similar to the finding of Zurman-Nasution
et al. (2020) who reported that 2-D flow can exist in a medium Strouhal number range
of StA ≈ 0.3 for a NACA 0016 airfoil at an AoA of 10◦ and Re = 5300. Nevertheless, as
we shall demonstrate, the flow at Re = 10 000 is 3-D. In the Strouhal number range of
Stc ∈ (0.44, 0.54−], the transition characteristic from high lift to low lift and the transition
Strouhal number both depend on the Reynolds number. As already mentioned, hysteresis
exists in this Strouhal number range for Re = 800 but not for the case when Re = 10 000.
For Stc > 0.49+, the 2-D lift and 3-D lift are different. The 3-D lifts at Re = 800 and
Re = 10 000 have the same increasing or decreasing trends, but their magnitudes differ.

The time-averaged drag coefficients are shown in figure 5(b). Two different behaviours
exist. For Stc < 0.5− which corresponds to an increasing lift regime, the drag coefficient
at Re = 10 000 is at first almost independent of the plunging frequency for Stc ≤ 0.22,
before slightly increasing. This varying trend is in agreement with the results of Cleaver
et al. (2011). Drag coefficients at Re = 400 and Re = 800 keep increasing with Stc. For
Stc > 0.50+, the drag decreases and a drag-to-thrust transition occurs around Stc = 0.76.
Hysteresis also exists on the drag curve around Stc = 0.50 at Re = 400 and Re = 800.

Based on the varying trends of the 3-D time-averaged lift at Re = 800 and Re = 10 000,
five regimes can be identified in the frequency range of Stc ∈ [0.10, 1.00). They are regime
I [0.10, 0.16], regime II (0.16, 0.44], regime III (0.44, 0.54−], regime IV [0.49+, 0.80]
and regime V (0.80, 1). The regimes are labelled by Roman numerals in figure 5(a), with
the starting Stc indicated by black vertical lines. The force varies monotonically in each
regime, except for Stc around 0.50, which corresponds to regime III and the start of regime
IV, where a decrease of lift occurs. Regime I is separated because the 2-D lift differs from
the 3-D lift at Re = 10 000 in this Strouhal number range. The classification criterion for
regime III and regime IV is the near-field vortex pattern which is discussed in the following
and also in Appendix D. The upper boundary of regime III and the lower boundary of
regime IV vary with the Reynolds number.

3.1.2. Vortex patterns
Due to the large AoA of the airfoil, the effective AoA during the upward motion is much
smaller than during the downward motion, which results in a much weaker vortex shedding
from the lower surface. Therefore, the LEV in the following discussions refers to the one
shed from the upper surface if not otherwise specified.

The spanwise-averaged vortex patterns at Re = 800 and Re = 10 000 are shown in
figure 6, where phase averaging is also applied to reduce statistical errors of aperiodic
flows. The time snapshot at t/T = 0.5, when the airfoil just finishes the downward motion
and is at the lowest displacement, is selected, because the LEV and the TEV are strong
at this moment. Driven by the distance the LEV advects during the downward motion,
four distinct vortex-shedding patterns can be identified in the Strouhal number range of
0.10 ≤ Stc < 1.

In regime I where 0.10 ≤ Stc ≤ 0.16, the LEV advects past the trailing edge when
the airfoil is at its lowest displacement (t/T = 0.5). The separated shear layer that feeds
the LEV is cut off by the TEV which is also formed during the downward half period.
The remaining shear layer accumulates before the TEV and forms another concentrated
vortex, V2.
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Low-Reynolds-number flows past a plunging airfoil

Stc
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TEV
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ω∗
z
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Figure 6. Typical near-field vortex patterns at the lowest displacement (t/T = 0.5), coloured by the spanwise
vorticity. Phase-averaged and spanwise-averaged 3-D simulation results are shown.

In regime II where 0.16 < St ≤ 0.44, the LEV has not reached the trailing edge when
the airfoil is at the lowest displacement (t/T = 0.5) but the LEV from the previous period
(pLEV) has passed the trailing edge when the airfoil is at the highest displacement. When
the primary TEV forms at t/T = 0.5, the separation between the primary TEV and current
LEV as well as the previous LEV is so large that there is little vortex interaction among
them. A secondary vortex is generated between the wall and the LEV because of the
LEV–wall interaction.

In regime III where 0.44 < St ≤ 0.54−, the LEV has not reached the trailing edge when
the airfoil is at the lowest displacement (t/T = 0.5) and the pLEV has only just passed the
trailing edge when the airfoil is at the highest displacement (t/T = 0). When the primary
TEV forms at t/T = 0.5, the pLEV is still very close to the TEV and pairs with it. The
fully formed TEV has a weaker circulation than the pLEV. As a result, the induced motion
of the pLEV–TEV pair moves the vortex pair upwards and away from the airfoil, resulting
in a separate vortex system above the airfoil. This vortex pattern is observed at Re = 800
but is not found at Re = 10 000, which indicates that this regime only exists under a certain
Reynolds number.

In regime IV where 0.49+ ≤ Stc ≤ 0.80, the LEV has also not reached the trailing edge
when the airfoil is at the lowest displacement (t/T = 0.5) and the pLEV has not passed the
trailing edge either when the airfoil is at the highest displacement. The TEV forms in the
presence of the pLEV and again pairs with the pLEV. The main difference of this vortex
pair to the previous case is that the TEV has a stronger circulation than the pLEV, which
induces a velocity against the incoming flow and a downward motion on the vortex pair.
This vortex pattern exists at both Re = 800 and Re = 10 000. This different behaviour of
the pLEV–TEV pair, which is caused by the relative strength of the pLEV and the TEV, is
the classification criterion for regime III and IV.

In regime V where 0.80 < Stc < 1, the advection length of the LEV is even shorter.
The vortex-shedding pattern in this regime is similar to that in regime IV, but the LEV is
stronger due to the larger plunging velocity. This regime has a very chaotic vorticity field
and the input power is high whereas the lift force starts decreasing, therefore, this regime
is not discussed in detail in this work.

The 2-D vortex pattern bears a similar feature near the airfoil in regimes I, II and III, but
due to the lack of a 3-D effect, the concentrated vortices are preserved for a longer distance
in the wake. In regimes IV and V, the 2-D vortex patterns are drastically different from the
3-D results. Since the 2-D vortex patterns have been studied extensively in previous work
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Figure 7. Instantaneous 3-D vortical structures (Q∗ = 10) coloured by the streamwise vorticity when
the airfoil is at the lowest displacement: (a) Re = 800, Stc = 0.10; (b) Re = 800, Stc = 0.32; (c) Re =
10 000, Stc = 0.10; (d) Re = 10 000, Stc = 0.32.

LEV LEV LEV LEV

(b)(a) (c) (d )

( f )(e) (g) (h)

Figure 8. Instantaneous 3-D vortical structures (Q∗ = 10) coloured by the streamwise vorticity when
the airfoil is at the lowest displacement: (a,e) Re = 800, Stc = 0.50+; (b, f ) Re = 800, Stc = 0.73;
(c,g) Re = 10 000, Stc = 0.50+; (d,h) Re = 10 000, Stc = 0.73. Two successive periods are shown with panels
(a–d) taken at t/T = 0.5 and panels (e–h) taken at t/T = 1.5.

such as Lewin & Haj-Hariri (2003), Choi et al. (2015) and Deng, Sun & Shao (2015), the
relevant results are placed in Appendix C.

The three-dimensionality of the flow and the streamwise vorticity are also analysed.
The 3-D vortical structures, identified by the Q-criterion and coloured by the streamwise
vorticity, are shown in figures 7 and 8, where a dimensionless value of Q∗ = Qc2U−2∞ = 10
is chosen.

In figure 7, the instantaneous 3-D vortical structures at Stc = 0.10 and Stc = 0.32 are
shown, which correspond to regime I and regime II, respectively. At Re = 800 (figures 7(a)
and 7(b)), both Strouhal numbers do not show a 3-D effect. At Re = 10 000 and Stc = 0.10
(figure 7c), although the LEV can be observed in the spanwise-averaged vorticity field, see
figure 6, it breaks down into small-scale vortices and is almost invisible by the isosurface of
Q∗ = 10. The vortex V2 also breaks down into small-scale vortices. Meanwhile, the TEV
remains almost straight. At Re = 10 000 and Stc = 0.32 (figure 7d), the pLEV and LEV
are both almost straight. The TEV, which is relatively weak, has a larger displacement.
The streamwise vortices that formed from the LEV–wall interaction and are shown by the
blue and red spots on the LEV, reveal a short wave pattern.

The 3-D vortical structures at Stc = 0.50+ and 0.73 are shown in figure 8. Two
successive periods are presented to show the period-doubling feature of the flow. At Re =
800 and Stc = 0.50+, a spanwise periodic 3-D vortex pattern is observed. Its spanwise
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Figure 9. (a) Energy distribution of the spanwise velocity vs the spanwise wavenumber at Re = 10 000, t/T =
0.5, the number indicates the Stc of each line. (b) The most energetic wavelength λ/c. The background colour
indicates the regime classification.

wavelength is 2.5c and its period is twice the plunging period. The long-wavelength
3-D displacement pattern of the pLEV–TEV pair resembles the Crow instability of
an unequal-strength counter-rotating vortex pair. Further downstream, the crest of the
pLEV from a previous period forms an upward-oriented hairpin vortex, which is caused
by the stretching of the stronger previous TEV. At Re = 10 000 and Stc = 0.50+, the
spanwise wavelength is 2.5c and the period-doubling feature can also be observed from the
pLEV. However, the flow here contains many irregular small-scale vortices. The current
LEV–wall interaction also induces a short-wavelength 3-D pattern. At Stc = 0.73, the
flow field has much richer vortical structures, nevertheless, the long-wavelength spanwise
pattern and period-doubling feature can still be observed from the displacement of the
current LEV. In the middle of the span, the LEV bends to the right at t/T = 0.5, see
figure 8(d), whereas it bends to the left at t/T = 1.5, see figure 8(h).

3.1.3. Spanwise wavelength
At Re = 800 and Stc ≤ 0.73, the spanwise-varying pattern of the vortical structures is
periodic or almost periodic and therefore the wavelength can be measured directly from
the flow field. At higher frequencies or at Re = 10 000, however, the flow structures are
too chaotic to identify the spanwise wavelength. To evaluate the characteristic spanwise
wavelength in these circumstances, the energy distribution of the spanwise velocity w
in the spanwise wavenumber β space is calculated, see figure 9(a). For a 2-D flow, the
spanwise velocity w is zero. Therefore, the energy of w can be used to represent the
3-D energy of the flow and its peak energy corresponds to the characteristic spanwise
wavelength of the flow. Since the LEV and TEV are the main concern in this work, a
near-body fluid domain −c ≤ x ≤ 2.5c, −3c ≤ y ≤ 3c and one phase point at t/T = 0.5
is selected for the spatial integration. Phase averaging is applied on the dimensionless
wavenumber–energy (βc − E(w∗)) curve to reduce the statistical error. It should be noted
that because the spanwise length of the airfoil is 5c, only wavelengths of 5c/n, such as 5c,
2.5c, 1.7c, 1.25c, . . . , can be captured.

With increasing Stc, the 3-D energy of the flow decreases in regime I and increases
in regime IV. The 3-D energy is low in regime II and it reaches the lowest level around
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Figure 10. Flow evolution with Reynolds number at Stc = 0.10 in regime I. (a) Time-averaged lift and drag
coefficients. The black vertical line shows the onset Reynolds number of the 3-D flow. (b) 3-D vortical
structures (Q∗ = 10) coloured by ω∗

x at Re = 1000. (c) 3-D vortical structures coloured by ω∗
x (Q∗ = 10) at

Re = 2000. The spanwise vorticity on the plane z/c = 0 is also shown.

Stc = 0.32 where the pLEV–TEV and LEV–TEV interactions are weak. In regime V, more
3-D energy is distributed to small-scale structures, indicating a more chaotic flow field.

In regime I, the 3-D energy does not have a clear peak in the wavenumber space and the
most energetic wavelength, which decreases with the plunging frequency, is 2.5c at Stc =
0.10 and 1.25c at Stc = 0.16. Inside regime II, the 3-D energy distribution has a flat peak.
The most energetic wavelength, which is 0.83c for 0.32 ≤ Stc ≤ 0.38 at Re = 10 000, is
much shorter. A second dominating wavelength of 2.5c also exists, and its energy is lower
than the most energetic wavelength by only 4 % at Stc = 0.32. In regimes IV and V, the
flow is dominated by a long-wavelength mode which has a sharp peak and a wavelength
of 2.5c or 1.7c. With increasing Stc, the wavelength in regimes IV and V is also likely
to become shorter. A summary of the most energetic wavelength λ = 2πβ−1 is shown in
figure 9(b), where background colours show the regimes classification. Since regime III
does not exist at Re = 10 000 and the LEV in regime III is still 2-D at Re = 800, no data
is presented for regime III in figure 9(b) and therefore its range is marked by the dashed
lines.

3.2. Flow evolution with Reynolds number
To further clarify the 3-D transition features of the flow in the first four regimes, one
Strouhal number from each regime is selected and the flow evolution with the Reynolds
number is analysed. It should be noted that, once the flow becomes 3-D, the aerodynamic
force and the flow field from 2-D simulations are obviously no longer physically realisable.

3.2.1. Regime I, Stc = 0.10
At a Strouhal number of Stc = 0.10 in regime I, the effective AoA of the airfoil is always
positive and it varies from 6◦ to 24◦. The 2-D to 3-D transition of the LEV occurs between
Re = 1000 and Re = 2000, as shown by figure 10. An increase in lift is observed after
the flow transitions to a 3-D state, however, both before and after the flow transition,
the lift force is almost independent of the Reynolds number. The variation of drag is
non-monotonic. Before the 3-D flow transition, the drag decreases slowly with increasing
Reynolds number. In the 2-D-to-3-D transition process, an increase in drag is observed. To
examine the 3-D effect on the force, the lift and drag coefficients of the 2-D simulations are
also indicated. The 2-D simulation predicts higher lift and drag than the 3-D simulation.
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Figure 11. Comparison of the phase-averaged and spanwise-averaged ω∗
z field in 2-D and 3-D simulations:

(a,e) Re = 1000; (b, f ) Re = 2000; (c,g) Re = 6000; (d,h) Re = 10 000. The airfoil is at the lowest
displacement. Here Stc = 0.10. Panels (a–d) are 2-D simulations; panels (e–h) are 3-D simulations. The
‘2-D’ label in panels (b–d) highlights these are 2-D simulations of 3-D flows and therefore are not physically
realisable.

The lift force of the 2-D simulation also keeps increasing instead of reaching a constant
value. At Re = 2000, the relative errors of the lift and drag in 2-D simulations are 16 %
and 10 %, respectively. At Re = 10 000, the relative errors of the lift and drag increase to
47 % and 32 %, respectively.

The 3-D vortical structures identified by the Q-criterion (Q∗ = Qc2U−2∞ = 10) and
coloured by the streamwise vorticity are shown in figure 10(b,c). At Re = 1000, the flow
is 2-D and only straight vortex columns are observed. At Re = 2000, the LEV, the TEV
and the concentrated vortex upstream of the TEV, all become 3-D. The energy distribution
of the spanwise velocity on the spanwise wavenumber space is computed in the near-body
domain −c ≤ x ≤ 2.5c, −3c ≤ y ≤ 3c. At Re = 2000, results show that the 3-D energy
distributes across wavelengths from 0.71c to 2.5c, without a strong dominating wavelength
being identifiable. At a higher Reynolds number of Re = 6000 and Re = 10 000, the flow
becomes more chaotic and the dominating wavelength is 1.7c.

To uncover the flow physics behind the variation in force, the dimensionless
spanwise-averaged vorticity fields (ω∗

z ) at Stc = 0.10 are shown in figure 11, where both
2-D and the spanwise-averaged 3-D simulation results are provided. We first consider the
2-D simulations. At Re = 2000, the LEV rolls up earlier than the LEV at Re = 1000,
because of the stronger fluid inertia against the viscosity. The change of LEV formation
time at Re = 2000 results in a stronger LEV being shed and higher lift. At higher Reynolds
numbers of Re = 6000 and 10 000, the free shear layer rolls up into smaller vortices above
the airfoil, which enhances the lift in a similar mechanism as the LEV. In 3-D simulations
and at Re = 2000, the concentrated vortex before the TEV breaks down and annihilates
with the TEV, resulting in a weaker TEV and a lower lift than the 2-D results. The free
shear layer above the airfoil does not roll up into a concentrated vortex but instead disperses
in a broad region. The 3-D simulation results at higher Reynolds numbers of Re = 6000
and Re = 10 000 do not change significantly compared with Re = 2000, which explains
why the time-averaged lift force is almost constant for Re ≥ 2000 in 3-D simulations.

3.2.2. Regime II, Stc = 0.32
At a Strouhal number of Stc = 0.32 in regime II, the effective AoA of the airfoil varies
from −12◦ to 42◦. The 2-D-to-3-D transition of the LEV at t/T = 0.5 occurs between
Re = 4000 and Re = 5000 with dominating wavelengths of 1.7c and 0.21c, as shown
in figure 12. Also shown in this figure are the 3-D vortical structures identified by the
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Figure 12. Flow evolution with Reynolds number at Stc = 0.32 in regime II. (a) Time-averaged lift and drag
coefficients. The black vertical line shows the onset Reynolds number of the 3-D LEV. The larger empty
symbols have a refined mesh. (b) 3-D vortical structures (Q∗ = 10) coloured by ω∗

x at Re = 4000. (c) 3-D
vortical structures coloured by ω∗

x (Q∗ = 10) at Re = 5000. The spanwise vorticity on the plane z/c = 0 is also
shown.

Q-criterion and coloured by the streamwise vorticity, where Q∗ = 10 is once again applied.
The smaller LEV (sLEV) indicated by the black arrow in figure 12(c) has the most
significant 3-D displacement whereas the primary LEV is almost straight. After the flow
transitions to 3-D, the time-averaged force, which is mainly influenced by the primary
LEV, is still very close to that of the 2-D simulation, with a relative difference smaller
than 10 %. Although the LEV becomes 3-D from Re = 5000, the 3-D transition of the TEV
occurs between Re = 3000 and Re = 4000. Flow transition in the far wake is observed at
Re = 2000.

A sudden increase of lift is observed at Re = 4000 and Re = 8000. Further simulation
on a refined grid shows this change of lift is grid-independent. This change of lift is
related to a change in the self-interaction of the vortex system around the primary LEV.
At Re = 4000 and t/T = 0.5, the sLEV whose vortex centre is located at (0.12c, 0.18c),
as indicated by the black arrow in figure 12(b), is still in close proximity to the aerofoil.
At Re = 5000 and t/T = 0.5, however, this sLEV which is now centred at (0.23c, 0.30c),
has already lifted up through the induced motion of the primary LEV and it even merges
with the primary LEV at Re = 10 000. The advection speeds of the primary LEV are
also different. At t/T = 0.75, the vortex centre of the LEV is (1.02c, 0.01c) at Re = 4000
and (1.22c, 0.04c) at Re = 5000. The interaction among the sLEV, the secondary vortex
and the primary LEV at Re = 4000 and Re = 8000 delays the advection of the primary
LEV causing it to remain for a longer duration above the airfoil and therefore produce an
increased time-averaged lift.

3.2.3. Regime III, Stc = 0.50−
At a Strouhal number of Stc = 0.5, the effective AoA of the airfoil varies from −23◦
to 53◦. Simulations were conducted from Re = 800 to Re = 10 000 using the flow field
at Stc = 0.50−, Re = 800 as an initial condition. The time-averaged force is shown in
figure 13, where the 3-D vortical structures identified by the Q-criterion and coloured by
the streamwise vorticity are also shown. The flow is 2-D at Re = 2000. The lift and drag
coefficients decrease with increasing Re, for Re ≤ 6000, and the lift and drag coefficients
of the 3-D simulation remain consistent with those of the 2-D simulation. For Re > 6000,
3-D simulations have a notably lower lift and are clearly different from the 2-D simulation.
The vortical structures also show strong three-dimensionality.

The 3-D vortical structures identified by the Q-criterion and coloured by the spanwise
vorticity are shown in figure 14 plotted for an isocontour of Q∗ = 10. The corresponding
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Figure 13. Flow evolution with Reynolds number at Stc = 0.50. The flow field at Re = 800, Stc = 0.50− is
used as the initial condition of the simulation. (a) Time-averaged lift and drag coefficients. The black vertical
line shows the onset Reynolds number of a 3-D LEV. (b) 3-D vortical structures (Q∗ = 10) coloured by ω∗

x at
Re = 2000. (c) 3-D vortical structures coloured by ω∗

x (Q∗ = 10) at Re = 7000. The spanwise vorticity on the
plane z/c = 0 is also shown.

3

ω∗
z

1

0.3

–0.3

–1

–3

(a) (b) (c) (d )

(e) ( f ) (g) (h)

Figure 14. (a–d) Instantaneous vortical structures (Q∗ = 10) coloured by ω∗
z at different Reynolds numbers

and (e–h) the corresponding phase-averaged and spanwise-averaged ω∗
z fields: (a,e) Re = 3000; (b, f ) Re =

5000; (c,g) Re = 6000; (d,h) Re = 7000.

spanwise-averaged vorticity field is also shown. The 2-D-to-3-D transition of the
pLEV–TEV pair occurs between Re = 2000 and 3000. The pLEV has the most significant
3-D displacement with dominant wavelengths of 1.3c and 0.36c. At Re = 5000, strong 3-D
flow is observed in the pLEV–TEV pair, especially in the pLEV, but the spanwise-averaged
vortex pattern still bears a similar characteristic to the Stc = 0.50−, Re = 800 case. At
Re = 6000, however, the self-induced motion of the pLEV–TEV becomes anticlockwise,
which is a feature similar to the Stc = 0.50+, Re = 800 case. The dominating wavelength
also becomes 2.5c. The flow at Re = 6000 is a marginal case, where the LEV is still 2-D
at t/T = 0.5. For Reynolds numbers Re ≥ 7000, the anticlockwise moving pLEV–TEV
vortex pair is observed. The strong blockage effect caused by this vortex pair weakens the
LEV and results in a lower lift and a 3-D LEV. Therefore, regime III only exists below a
critical Reynolds number, which is Re ≤ 5000 at Stc = 0.50−.

3.2.4. Regime IV, Stc = 0.73
At a Strouhal number of Stc = 0.73, the effective AoA of the airfoil varies from −34◦
to 64◦. The time-averaged force for Reynolds numbers from Re = 400 to Re = 10 000 is
shown in figure 15(a). The lift coefficient increases, and the drag coefficient decreases,
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Figure 15. Flow evolution with Reynolds number at Stc = 0.73 in regime IV. (a) Time-averaged lift and drag
coefficients. (b) 3-D vortical structures (Q∗ = 10) coloured by ω∗

x at Re = 800. (c) 3-D vortical structures
coloured by ω∗

x (Q∗ = 10) at Re = 2000. The spanwise vorticity on the plane z/c = 0 is also shown.

gradually with the Reynolds number. For Re ≥ 5000, the lift coefficient becomes almost
constant. In the 2-D simulation, strong oscillations exists in the time-averaged force curve.
The 2-D forces do not agree with the 3-D results either.

The 3-D vortical structures identified by the Q-criterion and coloured by the streamwise
vorticity are shown in figure 15(b,c) for a value of Q∗ = 10. Even at a very low Reynolds
number of Re = 800, the flow shows strong three-dimensionality. The flow is very chaotic
at higher Reynolds numbers. At Re = 800, Re = 2000 and Re = 10 000, the dominating
wavelength is 2.5c. At Re = 6000, the dominating wavelength is 1.7c. The flow transition
mechanism and the vortex dynamics explanation of the force are presented in the next two
sections.

4. Flow transition mechanisms

In regime IV, the three-dimensionality of the flow is dramatically different from the
previous regimes, with a much lower transition Reynolds number. The 3-D effect also
has a significant impact on the vortex evolution and the aerodynamic force. In flying
or swimming, the optimal Strouhal number, which is between 0.25 to 0.35 in the
amplitude-based Strouhal number StA (Triantafyllou, Triantafyllou & Grosenbaugh 1993),
lies in regime IV which has an amplitude-based Strouhal number of 0.25 ≤ StA ≤ 0.40
(0.49 ≤ Stc ≤ 0.80). Therefore, the instability mechanism in regime IV deserves further
investigation.

4.1. Floquet results
Linear stability analysis is conducted using the periodic 2-D base flows to identify the
onset of the three-dimensionality and the transitional nature of the flow. A convergence
study of the base flow and the sensitivity of the Floquet multipliers is reported in
Appendix A and validation against previously published results for the NACA airfoils
at AoA of 20◦ at Re = 500 are provided in Appendix B. Since the 2-D base flow deviates
significantly from the spanwise-averaged 3-D flow for Stc > 0.70, the linear stability
analysis mainly considers cases where 0.50+ ≤ Stc ≤ 0.70, which corresponds the optimal
amplitude-based Strouhal number StA of 0.25 to 0.35.

The absolute value of the Floquet multiplier |μ| as a function of the spanwise
wavenumber β = 2πλ−1 at Re = 225, Re = 400 and Re = 800 is shown in figure 16,
where β is scaled by c−1. The most amplified dimensionless wavelength λc−1 and the
Floquet multiplier are also provided in table 2. For the static airfoil shown by the green
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Figure 16. Floquet multiplier vs dimensionless wavenumber βc from linear stability analysis. (a) Varying
with Stc at Re = 800. From high to low, Stc = 0.0, 0.70, 0.64 and 0.50+. (b) Varying with Reynolds number at
Stc = 0.50+. From high to low, Re = 800, 400. (c) Varying with Reynolds number at Stc = 0.64. From high to
low, Re = 800, 400, 225.

Cases Stc = 0 Stc = 0.50+ Stc = 0.64

Re = 800, A/c = 0 0.40(−1.521) — —
Re = 800, A/c = 0.5 — 2.2(−1.646) 2.5(−1.989)
Re = 400, A/c = 0.5 — 2.0(−1.057) 2.0(−1.652)
Re = 225, A/c = 0.5 — — 1.6(−1.007)

Table 2. Comparison of the most amplified wavelength with Floquet multiplier in brackets, λc−1(μ), for the
static case and the plunging cases at Stc = 0.50+ and Stc = 0.64.

line in figure 16(a), only a short-wavelength (high-wavenumber) period-doubling mode
is observed to be unstable, which is consistent with findings of Deng et al. (2017) at
AoA = 15◦. The most amplified wave length is 0.4c at Re = 800. For plunging cases
in regime IV, a long-wavelength (low-wavenumber) period-doubling mode is the only
unstable mode. The growth rate of this period doubling mode increases with the plunging
Strouhal number Stc and the Reynolds number as can be seen from figures 16(b) and 16(c)
where we plot the Floquet multipliers at Stc = 0.50+ and Stc = 0.64. The most amplified
wavelength, which is around 2c, increases with the Reynolds number. At slightly higher
Stc, a short wave mode also appears but this mode is stable under the current Reynolds
number.

The wavelength and period-doubling feature predicted by the linear stability is
confirmed by the current and previous (Gao et al. 2022) 3-D simulations, which have
spanwise wavelengths of 1.7c or 2.5c in this parametric range. Since the spanwise length
of the flow is 5c, only spanwise wavelengths of λ = 5c/n, such as 5c, 2.5c, 1.7c and 1.25c,
can be efficiently captured.

Figure 17 shows the dimensionless amplitude function of the spanwise vorticity, ω̂∗
z =

(∂xv̂ − ∂yû)c/U∞, of the most unstable mode at Re = 800, Stc = 0.50+, λ = 2.2c (β =
2.9c−1). The effective AoA of the airfoil varies from −23◦ to 53◦. The dimensionless
spanwise vorticity of the base flow, Ω∗

z = Ωzc/U∞, is also shown by solid lines (positive
value) and dashed lines (negative value). The period-doubling feature of the instability
can be seen in figure 17(a,c), which are separated by one period of the plunging motion.
When the airfoil is at the lowest displacement at t/T = 0.5, the disturbance vorticity is
almost invisible in the LEV region, R0, whereas it is very strong in the pLEV region,
R2, as well as the TEV region. The disturbance vorticity in each concentrated vortex has
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Figure 17. Amplitude function of the spanwise vorticity of the most unstable mode at Re = 800, Stc =
0.50+, λ = 2.2c(β = 2.9c−1): (a) t/T = 0.5, (b) t/T = 1 and (c) t/T = 1.5. Black lines are the contours of the
spanwise vorticity of the base flow, Ω∗

z = −3, −1, −0.3, 0.3, 1, 3 with negative values represented by dashed
lines. Green rectangles show the LEV regions.
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Figure 18. Three-dimensional reconstruction of the most unstable mode at Re = 800, Stc = 0.50+, λ =
2.2c(β = 2.9c−1). Isosurfaces are the dimensionless Q∗ = 50 coloured by the streamwise vorticity. Inset plots
in (a,c) shows the pLEV–TEV pair from a different view.

two subregions of different signs, which indicates the concentrated vortex experiences a
bending displacement in this unstable mode. The bending orientations are different for the
pLEV and the TEV. Even for the LEV itself, the bending orientation also changes with
time. When the airfoil is at the highest displacement at t/T = 1, disturbance vorticity
appears in the LEV region, R1. Figure 18 shows the 3-D reconstruction of the base
flow and the most unstable mode, where (2.8a) was used for the reconstruction of the
perturbations. The kinetic energy of the disturbance flow is 9 % of that of the base
flow in the region −0.2c ≤ x ≤ 3c, −c ≤ y ≤ 1.4c. The bending displacement of the
counter-rotating pLEV–TEV pair, which resembles the Crow-type instability, and the
period-doubling feature are clearly shown.

4.2. Linear stability mechanism
To further investigate the instability mechanism of the long-wavelength, period-doubling
mode, the enstrophy of the disturbance flow, which is a localised quantity, is analysed. The
governing equation of the enstrophy can be obtained as the inner product of disturbance
vorticity ω̃ = ∇ × ũ and the curl of (2.6a). For a 2-D base flow, it is

∂tẼ = −U · ∇Ẽ − ũ · ∇Ωzω̃z + ω̃ · ∇U · ω̃ + Ωz∂zũ · ω̃ + νω̃ · ∇2ω̃. (4.1)

Here Ẽ = 0.5ω̃·ω̃ is the enstrophy of the disturbance flow and Ωz is the vorticity of the
base flow. The physical meanings of the terms on the right-hand side are listed in table 3.

973 A43-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

73
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.735


Low-Reynolds-number flows past a plunging airfoil

Name Term in (4.1) Nonlinear term Meaning

Advection −U · ∇Ẽ −u · ∇ω Advection by the base flow
Induction −ũ · ∇Ωzω̃z −u · ∇ω Vortex filaments induction
Strain ω · ∇U · ω ω · ∇u Vorticity growth in a strain-rate field
Stretch Ωz∂zũ · ω̃ ω · ∇u Vortex stretching by disturbance strain rate
Viscous νω̃ · ∇2ω̃ ν∇2ω Viscous diffusion and dissipation

Table 3. Physics interpretation of right-hand side terms of enstrophy equation (4.1).

0.0010 0.4

0.2

–0.2

–0.4

0

0.0005

–0.0005

–0.0010

0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
t/T t/T

Residual
Viscous
Advection
Stretch
Strain
Induction
dε̃/dt

(a) (b)

Figure 19. Evolution of the terms in the disturbance enstrophy equation (4.1). (a) Integration over the
leading-edge region x2 + y2 ≤ 0.36c2. (b) Integration over the near-body region −c ≤ x ≤ 1.4c, −2.5c ≤ y ≤
2.5c. The subplot shows the distribution of the induction term at t/T = 0.625.

In the following, we calculate the magnitude of each term integrated over regions of
the flow during the evolution of the instability to analyse the dominating mechanism
in flow instability. To this end, it is convenient to consider two Eulerian integration
regions. The first is a region around the leading edge, {(x, y) | x2 + y2 ≤ 0.36c2}, which
only contains the LEV during the early stage of the downward half period. The second
is a near-body region, {(x, y) | − c ≤ x ≤ 1.4c, −2.5c ≤ y ≤ 2.5c}, which contains the
near-body vortices, including the LEV, TEV and pLEV, and excludes vortices from
earlier periods. The integral of each term in (4.1) within these two regions are shown
in figure 19 where figure 19(a) shows the leading-edge region and figure 19(b) shows
the near-body region. In both the leading-edge and the near-body regions, the term
−ũ · ∇Ωzω̃z is the main contribution to the change in enstrophy as indicated by the growth
of the red solid line and the dẼ/dt line (in black). This term represents the mechanism
where the vorticity of the base flow is displaced by the inducing of the disturbance
vorticity. Figure 19(b) shows the distribution of the induction term at t/T = 0.625 when
it reaches the maximum magnitude. In the bending direction of the pLEV and TEV, the
induction term −ũ · ∇Ωzω̃z is positive which further enhances the bending displacement;
perpendicular to the bending direction, it is negative. We further observe that viscous
diffusion is the main stabilisation effect. The advection term −U · ∇Ẽ becomes notable
when the vortex leaves the integration region but otherwise, all other terms are very weak.

The eigenvector of the most unstable mode can also be activated in different zones
to elucidate the key process that sustains this absolute instability. To achieve this, the
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Figure 20. Evolution of the enstrophy with different initial conditions. (a) Integration over the leading-edge
region. (b) Integration over the near-body region.

disturbance velocity in a specific region is retained whilst the initial disturbance velocity
outside of this region is set as zero. We then consider the enstrophy growth triggered by
different parts of the initial eigenvector and compare it with the growth when using the
full eigenvector.

As shown in figure 17(a), regions R0 and R2 are selected when the airfoil is at the lowest
position. A further region R1, as indicated in figure 17(b), is selected when the airfoil is at
the highest position. Using the disturbance flow activated in these three regions as well as
in the whole domain, we plot the integral of the perturbation enstrophy in the leading-edge
and near-body regions over three base flow periods in figure 20.

Since the masked initial conditions do not satisfy incompressibility, there is a short
adjustment period in the initial evolution stage. However, after this initial adjustment, the
regions R1 and R2 efficiently capture the whole enstrophy, particularly in the near-body
region. In the leading-edge region, R2 captures the whole domain slightly better than
region R1, however, we observe that the initial condition in region R0 leads to a reduction
in the enstrophy magnitude over the first 1.5 periods.

In terms of the leading-edge region, the fast decay of disturbance triggered by R0
implies that the disturbance in the LEV does not grow by itself. Instead, pLEV is the more
important region captured by R1 and R2, since the disturbance vorticity in these regions
induces the LEV in region R0 to deform thereby triggering the next stage of instability.

This absolute instability mechanism can therefore be summarised as follows. Starting
from t/T = 0.5, when the airfoil is at the lowest position, the disturbance in the pLEV
(R2 of figure 17a) is key since it induces a disturbance in the current LEV. During the
downward motion of the first half period, the Crow-like instability of the counter-rotating
pLEV–TEV pair amplifies the disturbance. The displacement of the pLEV continues to
grow and the vortex centreline of the TEV also bends backwards. The new LEV is also
influenced by the displacement of the pLEV–TEV vortex pair, leading to a bending motion
in a direction opposite to the motion of pLEV, which results in the period doubling of the
disturbed flow. The key amplification mechanism in this unstable mode is therefore the
Crow instability of the pLEV–TEV vortex pair, and the self-sustaining mechanism of the
disturbance is the interaction of the LEV with the pLEV–TEV vortex pair which requires
the pLEV–TEV vortex pair being sufficiently close to the LEV during the upwards half
period. This also explains why the base flow in regime III does not experience the same
instability, since the pLEV–TEV vortex pair does not remain sufficiently close to the LEV.
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5. Vortex origin of the lift force

5.1. Decomposition of the aerodynamic force
The force element theory (Chang 1992; Lee et al. 2012), which is based on the volume
integral of the projection of the Lamb vector (ω × u) and originates from the work of
Quartapelle & Napolitano (1983) and Chang (1992) is a powerful tool for identifying the
main vortex structures that affect the aerodynamic force exerted on the body. Applications
of this theory can be found in the literature such as Martín-Alcántara, Fernandez-Feria &
Sanmiguel-Rojas (2015), where they found the thrust is mainly generated by the growing
LEV, and Moriche et al. (2021b), where they found the main LEV contributes most
to the force during the manoeuvre of the airfoil. Martín-Alcántara & Fernandez-Feria
(2019) compared the force element theory with theories based on the integral of the Lamb
vector and the momentum, and they found the force element theory always achieves better
accuracy in predicting the total force.

One inconvenience of the force element theory is that the Lamb vector depends on
the choice of frame of reference, making the contour plot of the volume force element,
i.e. the projection of Lamb’s vector, as well as the force decomposition result, not
Galilean invariant (Gao & Wu 2019). This problem becomes more serious in moving-body
problems where no special frame of reference exists. To overcome this inconvenience, a
modified force-element theory (Gao et al. 2019) that is based on the weighted integral of
the second invariant of the velocity gradient tensor is adopted in this work.

In the modified force element theory, the force can be expressed as

F · ej =
∫

Vol∞
2ρQφj dV +

∮
∂B

ρφjn · a dS +
∮

∂B
−ρνφjn · ∇2u dS + F f · ej, (5.1)

where ej is the unit vector in the jth direction, ∂B is the body surface and Vol∞ is the whole
flow domain. Furthermore, Q = −0.5∇u : ∇u is the second invariant of the velocity
gradient tensor, a is the acceleration of the Lagrangian points on the body surface in the
inertial frame of reference, n is the unit inward-pointing normal vector on the body surface
and F f is the viscous friction force.

The function φj introduced in the work of Quartapelle & Napolitano (1983) is an
auxiliary harmonic function which satisfies ∇2φj = 0 in the fluid, ∇φj · n = −ej · n on the
body surface, and φj = 0 in the far field at infinity. Function φj represents the sensitivity
of the aerodynamic force on the spatial location and it only depends on the body geometry
in a flow of constant density. The derivation and application of (5.1) can be found in the
work of Gao et al. (2019), Gao & Wu (2019) and Menon & Mittal (2021a,b). Here, we
briefly explain the physical meaning of each term on the right-hand side of (5.1).

Since the pressure field in incompressible flow satisfies ∇2p = 2ρQ, the first term on
the right-hand side of (5.1), which is denoted by F Q, represents the force contributed by
the source of the pressure Poisson equation,

F Q · ej =
∫

Vol∞
2ρQφj dV, (5.2)

with a positive Q generating an attractive pressure force and a negative value generating
a repulsive pressure force on the body. The corresponding force coefficient, scaled by
0.5ρU2∞, is denoted by (CD,Q, CL,Q) and the integrand 2φjQ was named the volume force
element by Chang (1992). Since Q is widely used in the identification of vortical structures,
this term was named vortex-induced force by Menon & Mittal (2021a). For 3-D simulation
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results, the spanwise-averaging, which is denoted by an overline, is applied to the Q field

Q̄ =
∫

Q(x, y, z) dz, (5.3)

which, as well as 2ρQ̄φj, can be shown as a contour plot on the x–y plane.
The second term on the right-hand side of (5.1), which is denoted by F a, represents the

force contributed by the body acceleration. The corresponding force coefficient scaled by
0.5ρU2∞ is denoted by (CD,a, CL,a). For the translational motion of a rigid body where the
acceleration a does not depend on the spatial location, the body-acceleration-related force
F a equals the added-mass force of the potential flow, which is

F a = ej

∮
∂B

ρφjn · a dS = −aiMijej, (5.4)

with

Mij = −ρ

∮
∂B

φjni dS (5.5)

being the added-mass matrix. For the NACA 0012 airfoil with a chord length of c = 1 and
at AoA = 15◦, Mij is calculated as

M = ρ

(
0.062066 0.192912
0.192912 0.730332

)
. (5.6)

In a periodic flow, the added-mass force has a zero-mean value and it has no contribution
to the time-averaged force.

The third term on the right-hand side of (5.1), which is denoted by F p,vis, represents the
viscous effect in the Neumann-type pressure boundary condition on the airfoil surface ∂B,

n · ∇p = −ρn · a + ρνn · ∇2u. (5.7)

The corresponding force coefficient, scaled by 0.5ρU2∞, is denoted by (CD,p,vis, CL,p,vis).
The fourth term F f is the friction force

F f =
∮

∂B
ρν(n × ω) dS. (5.8)

The force coefficient of the friction force, scaled by 0.5ρU2∞, is denoted by (CD, f , CL, f ).
The third and the fourth terms are small in the current Reynolds number range and the
total force is dominated by the vortex-induced force F Q and the added-mass force F a.

It should be noted that although the vortex-induced force introduced in (5.2) can be
used to evaluate the impact of vortex structures on the force, it can not reveal how the
vortex structures are formed, which is discussed in detail in § 3. Since (5.1) is derived from
the exact Navier–Stokes equations, for the DNS result at Re = 800, the force computed
using (5.1) equals the wall-stress integral result with high accuracy. For the wall-resolved
iLES results, however, a large error may be experienced in the volume-integral term F Q.
Therefore, in the following analysis, the F Q is only computed at Re = 800.

5.2. Quantitative analysis of the lift force
In the four terms on the right-hand side of (5.1), F a is determined by the instantaneous
wall acceleration; the other three terms are determined by the instantaneous velocity field
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Figure 21. Time-dependent lift coefficients at Re = 800 and 10 000: (a) viscous effect, CL, f + CL,p,vis;
(b) CL − CL,a = CL,Q + CL, f + CL,p,vis; (c) added-mass force, CL,a.

and its spatial gradients. As a result, vortex structures identified from the instantaneous
velocity field can only reflect the origin of the force component F − F a, which is mainly
due to the vortex-induced force F Q. For the lift components, ey, which is the unit vector of
the y-axis, and φy are used in (5.1).

The force decomposition based on (5.1) is shown in figure 21. As shown in figure 21(a),
the viscous components Cf + CL,p,vis are very small at Re = 800, and they become even
smaller at Re = 10 000. Therefore, the lift component CL − CL,a = CL,Q + Cf + CL,p,vis
is almost entirely due to the vortex-induced lift CL,Q. Therefore, the CL − CL,a, which is
shown in figure 21(b), can be used to represent the vortex-induced lift.

The vortex-induced lift reaches the maximum value around t/T = 0.25 when the airfoil
has the maximum downward velocity. At Stc = 0.73, a negative lift peak is observed
around t/T = 0.75 when the airfoil has the maximum upward velocity. At lower Strouhal
numbers, this negative lift peak is, however, not found due to the missing LEV from the
lower surface. In terms of the plunging Strouhal number, cases with a higher plunging
frequency have a larger vortex-induced lift. Regarding the Reynolds number, cases at
Re = 10 000 have larger vortex-induced lift than cases at Re = 800, except at Stc = 0.32,
where both cases have the same time-averaged lift. These phenomena are in agreement
with the time-averaged lift shown in figure 5(a).

The added-mass force is calculated using (5.4) from potential-flow theory and, as a
result, it does not depend on the Reynolds number, see figure 21(c). The added-mass
force varies as a cosine function that achieves the maximum lift at t/T = 0.0 and the
minimum lift at t/T = 0.5, which correspond to the highest displacement and the lowest
displacement, respectively. Although the vortex-induced lift and the added-mass force
have the same magnitude, they do not cancel each other out in the total lift because of
the phase difference of π/2. The maximum total lift CL occurs between the positive peak
of the vortex-induced lift and that of the added-mass force.

The phase-averaged maximum and minimum values of CL − CL,a and CL,a are shown
in figure 22. The solid black lines show the added-mass force, which is symmetric about
the y = 0 line. The symbols show the maximum and minimum values of CL − CL,a, which
is biased to the positive value. In flow regimes I, II and III, the maximum vortex-induced
lift grows with the Stc while the minimum CL − CL,a is almost a constant. A drop of
vortex-induced lift is observed around Stc = 0.5 when the flow switches from regime III
to regime IV. In regimes IV and V, the maximum vortex-induced lift keeps increasing
in a similar trend with the added-mass force. The minimum vortex-induced lift starts
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Figure 23. Dependence of the lift decomposition results on the integration domain −4c ≤ x ≤ xw, −4c ≤ y ≤
4c at Re = 800 and t/T = 0.25: (a) Stc = 0.10; (b) Stc = 0.32; (c) Stc = 0.50−. Here CL,a = 0. The top row is
ωz; the middle row is 2ρφyQ; the bottom row is the force coefficients vs xw.

decreasing with the Stc in regime IV and it decreases faster in regime V. Cases at
Re = 10 000 have a slightly higher vortex-induced lift in terms of the absolute value.

To further identify the vortex structures that are responsible for the vortex-induced lift
CL,Q, the integration of the volume lift element is computed in the truncated fluid domain
−4c ≤ x ≤ xw, −4c ≤ y ≤ 4c, at t/T = 0.25 and t/T = 0.75 when the vortex-induced
lift has the maximum or the minimum value. The added-mass force equals zero at these
two phases. Dependence of this volume integration result, denoted by CL,Q(xw), on the
downstream location xw of the integration domain is shown in figures 23 and 24. For
xw ≤ −0.5c, the vortex-induced lift CL,Q(xw) is almost zero. For xw ≥ 2.5c, the total lift
CL,Q(xw) + CL,p,vis + CL, f hardly changes and equals the wall-stress integral result, which
indicates that vortex structures in the range of x < −0.5c or x > 2.5c have a negligible
contribution to the lift force.

The distribution of the spanwise vorticity ωz, scaled by U∞c−1, and the volume lift
element 2ρφyQ, or 2ρφyQ̄ when scaled by ρU2∞c−1, are also shown in figures 23 and 24,
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Figure 24. Dependence of the lift decomposition results on the integration domain −4c ≤ x ≤ xw, −4c ≤
y ≤ 4c at Re = 800: (a) Stc = 0.50+, t/T = 0.25; (b) Stc = 0.73, t/T = 0.25; (c) Stc = 0.73, t/T = 0.75. Here
CL,a = 0. The top row is ωz; the middle row is 2ρφyQ̄; the bottom row is the force coefficients vs xw.

where their x-axes are aligned with the xw-axis in the bottom xw − CL plot. In the centre
of a concentrated vortex where rotation is stronger than the strain rate, Q is positive and it
contributes a suction vortex-induced force. At the edges of the airfoil and the surroundings
of the vortices where the strain rate is stronger, Q is negative and it contributes a repulsive
vortex-induced force. In the boundary layer and straight free shear layer, Q is very small
and has little contribution to the force.

We first consider three cases from regimes I to III in figure 23 where t/T is 0.25 and the
vortex-induced lift reaches the maximum value. All three cases have stable 2-D flows. The
strong strain-rate field from the lower surface induces a positive lift when the fluid passes
the sharp leading edge. This lift is, however, cancelled out by the strain field on the left
side of the LEV from the upper surface because the φy has different signs on the upper and
on the lower surfaces. The LEV suction is the main cause of the vortex-induced lift and it
grows with the Stc. The strain-rate-dominated region on the right side of the LEV reduces
the lift. At Stc = 0.10 in regime I, the LEV-induced TEV is very close to the airfoil and,
therefore, significantly contributes to the lift. At Stc = 0.32 in regime II, the TEV is at a
downstream location of x = 1.5c and almost has no contribution to the lift. At Stc = 0.50−
in regime III, the pLEV–TEV pair has a small positive contribution to the lift.

Two cases at Stc = 0.50+ and Stc = 0.73 in regime IV are shown in figure 24(a,b), at
t/T = 0.25. Both cases are 3-D and therefore the spanwise-averaged vorticity and Q are
used. At Stc = 0.50+, t/T = 0.25 in regime IV, the suction peak of the LEV is reduced
by 50 % compared with the case at Stc = 0.50− in regime III. On the left side of the
TEV, the strong strain-rate field, which stretches the pLEV making it become 3-D, also
contributes a strong negative lift. The TEV at the moment of t/T = 0.25 is still very
close to the airfoil and contributes a relatively strong lift. The net contribution of the
pLEV–TEV pair is positive. The chaotic wake has little contribution to the lift. Since more
lift is generated around the trailing edge, the centre of pressure also moves to the trailing
edge by 0.05c, compared with the case at Stc = 0.50−. A similar situation is observed at
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Stc = 0.73, t/T = 0.25. It can be concluded that both the LEV and the TEV are the main
cause of the lift in regime IV.

The case at Stc = 0.73, t/T = 0.75 in regime IV is shown in figure 24(c) to explore
the cause of the negative lift peak at t/T = 0.75. At this moment, the airfoil is moving
upward and a small LEV is formed on the lower surface. The negative volume lift element
in the centre of this LEV has a magnitude of O(500) while its surrounding positive value
has an order of O(50). As a result, this LEV from the lower surface contributes a strong
negative lift via vortex suction. The LEV on the upper surface also has a strong positive
lift contribution, which is however largely cancelled out by the strain-rate field on both
sides of the upper LEV. The net contribution of the upper LEV is not strong at this time
instant.

6. Conclusions

This work conducts a parametric study of the plunging airfoil using experimental
measurements, spanwise homogeneous DNS and iLES. The airfoil has a profile of a NACA
0012 airfoil at a post-stall AoA of 15◦, a spanwise length of 5 chord lengths and plunges at
a peak-to-peak amplitude of 0.5 chord length. We focus on the lift characteristics, 3-D
transition properties and the relevant flow mechanisms in the Reynolds number range
of Re = 400 to Re = 10 000 and chord-based Strouhal number range of Stc = 0.10 to
Stc = 1.0. The results have a DNS resolution for Re ≤ 800 and an iLES resolution for
Re ≥ 1000. The numerical results are carefully validated and good agreement of the lift
force between the numerical simulations and the experimental measurement is achieved.

Our primary finding is that the interaction pattern of the LEV, LEV from the previous
cycle (pLEV) and the TEV, which is determined by the advection length of the LEV in
one-half period or one period, is the main factor that affects the 3-D transition of the LEV
and the force features. Based on the vortex interaction pattern, five regimes of different lift
and transition properties are identified as Stc is varied.

(1) Regime I, 0.10 ≤ Stc ≤ 0.16. The lift increases with the Stc and the LEV has been
advected past the trailing edge when the airfoil is at the lowest displacement. The
transition of the LEV is dominated by the LEV–TEV interaction. For Stc = 0.10, the
3-D transition of the flow occurs at Re = 2000 and the dominant wavelength is 1.7c
at Re = 10 000. Once the LEV becomes 3-D, the lift first increases with, and then
becomes independent of, the Reynolds number. The 2-D simulation over-predicts
the lift and drag due to the strong concentrated vortices formed by the free shear
layer on the upper surface.

(2) Regime II, 0.16 < Stc ≤ 0.44. The lift increases with the Stc and the TEV is in the
middle of the LEV and the pLEV. Vortex interactions between the TEV and the LEV
as well as the pLEV are very weak due to the large distance between two nearby
vortices, and therefore the transition of the LEV is dominated by the LEV–wall
interaction. For Stc = 0.32, the 3-D transition of the LEV occurs at Re = 5000 and
the dominant wavelength is 0.83c at Re = 10 000. Compared with other regimes,
the time-averaged force of a 3-D simulation, even after the flow transits to 3-D,
is still very close to that of the 2-D simulation, with a relative difference smaller
than 10 %. With varying Reynolds numbers, the LEV and the secondary vortex it
induces may form self-organised vortex patterns, which results in oscillations of the
time-averaged force with respect to the Re.

(3) Regime III corresponds to 0.44 < Stc ≤ 0.54− and only exists below a critical
Reynolds number. A very high lift, which is 25 % higher than the lift peak of
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regime II, can be achieved in this regime. The pLEV pairs with the TEV, forming a
clockwise moving vortex pair, which moves upward and leaves an isolated LEV on
the upper surface of the airfoil. Although the pLEV–TEV pair can be 3-D, the LEV
is always 2-D and the 2-D simulation has approximately the same time-averaged
force as the 3-D simulation. Above a critical Reynolds number of Re = 5000 for
Stc = 0.50−, the pLEV–TEV pair breaks down and an anticlockwise pLEV-LEV
pair is formed instead, which is the feature of regime IV. The transition of the vortex
pattern between regime III and regime IV is caused by the different relative strengths
of the vortices in the pLEV–TEV pair and it is hysteretic. In order to distinguish the
two regimes, superscripts ‘−’ and ‘+’ are used to denote regime III and regime IV,
respectively.

(4) Regime IV, 0.49+ ≤ Stc ≤ 0.80. The lift first drops to a very low value and
then gradually recovers to the peak value of regime II. At the beginning of this
regime, the pLEV and the TEV form an anticlockwise moving vortex pair, which
induces a velocity directing upstream that blocks the incoming flow and, as a
result, reduces the strength of the LEV. For Stc = 0.50+, the flow becomes 3-D
from Re = 400 with a dominant wavelength of 2 chord lengths and the 3-D flow
has a period equal to twice the plunging period. Biglobal linear stability analysis
reveals that the Crow-type instability between the pLEV and the TEV is the main
disturbance-amplification mechanism and that the interaction between the LEV
and the pLEV-LEV pair is the reason for the doubled period in the disturbed
flow. The wavelength, which is about two chord lengths, predicted by the biglobal
linear stability agrees with 3-D simulation results. At higher Stc, the pLEV breaks
down and the blockage effect of the pLEV–TEV pair is relieved. As a result, the
time-averaged lift increases to the peak value of regime II.

(5) Regime V, 0.80 < Stc ≤ 1.00, the lift decreases with Stc and part of the vorticity
in the LEV circumvents the leading edge, moving to the lower surface during the
upward half period. Due to the loss of lift and the highly chaotic characteristics of
the flow, this regime is not discussed in depth in this work.

A quantitative analysis of the vortex origin of the lift force is also performed using
a modified force-element theory, which is based on the weighted integral of the second
invariant of the velocity gradient tensor and has a Galilean invariant volume force element.
It is found that the time-dependent lift is dominated by the added-mass force and the
vortex-induced lift. These two lift components have the same order of magnitude but the
phase of the added-mass force is ahead of the vortex-induced lift by π/2. Meanwhile,
the time-averaged lift is mainly contributed by the vortex-induced force. In regimes I, II
and III, the LEV is the main cause of lift. In regime IV, both the LEV and the TEV have
significant contributions to the lift force.

This work clarifies the discrepancy between 2-D numerical studies at the Reynolds
number of order 102 and experimental studies at a Reynolds number of Re = 10 000. The
vortex pattern transition between regime III and regime IV is clarified and the instability
mechanism in regime IV is fully uncovered. This work provides physical insights into
the validity of 2-D simulations and the Reynolds number dependence of the flow past a
plunging airfoil.
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Stc P CD (CDmin, CDmax) CL (CLmin, CLmax)

0.64 4 0.212 (−1.931, 1.816) 1.620 (−7.033, 8.778)
0.64 6 0.212 (−1.930, 1.816) 1.620 (−7.030, 8.776)
0.96 4 −0.516 (−5.631, 3.972) 0.979 (−14.634, 18.946)
0.96 6 −0.522 (−5.699, 3.962) 0.959 (−14.620, 19.023)

Table 4. Time-averaged force coefficients and their minimum and maximum values of the 2-D simulation at
Re = 800 and A = 0.5c.
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Appendix A. Convergence study

A.1. 2-D base flow
The p-type grid independence of the 2-D base flow at the Reynolds number of Re = 800
and two Strouhal numbers Stc = 0.64, 0.96 are tested. The time-averaged drag and lift
coefficients as well as the corresponding phased-averaged minimum and maximum values
are presented in table 4. Here P represents the highest basis polynomial order and P + 1 is
the number of modes used in each spatial direction. For P = 4, the total number of degrees
of freedom is 0.14 million for each velocity component.

At the moderate Strouhal number of Stc = 0.64, the relative difference of force
coefficient is within 0.1 %. At the high Strouhal number of Stc = 0.96, the relative
difference is within 2 %.

A.2. Floquet analysis
Floquet results of base flows from § A.1 are presented in table 5. The effects of polynomial
order, domain size, number of base flow slices and base flow interpolation method are
tested.

At Stc = 0.64, the relative difference of the Floquet multiplier is within 0.1 %. At Stc =
0.96, the relative difference is 6 %.

A.3. Re = 10 000 results
The 3-D simulation at Re = 10 000 uses the mesh and numerical setting of Son et al.
(2022), where the total number of degrees of freedom is also 0.14 million for each
velocity component on the x–y plane. The grid convergence with the number of spanwise
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Base flow Number of
Stc P Domain N slices interpretation μ iterations

0.64 4 [−0.5, 3.5] × [−0.8, 0.8] 128 4th order −1.7882 6
0.64 4 [−1, 7] × [−2, 2] 128 4th order −1.7881 7
0.64 4 [−0.5, 3.5] × [−0.8, 0.8] 128 Fourier −1.7880 6
0.64 4 [−0.5, 3.5] × [−0.8, 0.8] 64 4th order −1.7900 6
0.64 6 [−0.5, 3.5] × [−0.8, 0.8] 128 4th order −1.7886 6
0.96 4 [−0.5, 3.5] × [−0.8, 0.8] 128 4th order −1.1695 9
0.96 6 [−0.5, 3.5] × [−0.8, 0.8] 128 4th order −1.1066 6

Table 5. Convergence study of the Floquet multiplier at Re = 800, A = 0.5c and λ = 2c.

Nz P CD (CDmin, CDmax) CL (CLmin, CLmax)

2 5 0.057 (−2.236, 2.136) 2.181 (−4.545, 12.027)
32 5 0.063 (−1.925, 1.675) 2.334 (−3.700, 9.914)
64 5 0.033 (−2.067, 1.684) 2.357 (−3.943, 10.255)
128 5 0.040 (−2.072, 1.685) 2.365 (−3.846, 10.114)

Table 6. Time-averaged force coefficients and their minimum and maximum values of the 3-D simulation at
Re = 10 000, A = 0.5c and Stc = 0.73.

Fourier planes, Nz, is given there and also presented here. The time-averaged drag and
lift coefficients as well as the corresponding phased-averaged minimum and maximum
values are presented in table 6. The relative difference of the time-averaged lift coefficients
between Nz = 64 and Nz = 128 is 0.3 %, which shows that a good grid convergence is
achieved.

Appendix B. Validation of linear stability analysis

The Floquet analysis of a static NACA 0012 and a NACA 0015 airfoil at Re = 500 and
AoA = 20◦ are also calculated and compared with previous works, see figure 25. For the
long-wavelength mode, the Floquet multiplier is insensitive to the airfoil thickness and
good agreement is found between present results and Meneghini et al. (2011) and He et al.
(2017). For the short-wavelength mode, current results agree with Meneghini et al. (2011)
and Deng et al. (2017).

Appendix C. 2-D wake patterns at Re = 800

A compilation of 2-D wake patterns at Re = 800, Ac = 0.5 is shown in figures 26 and 27.
Near the airfoil, the 2-D vortex pattern is similar to the 3-D vortex pattern in regimes I,
II and III, but due to the lack of 3-D effects, the concentrated vortices are preserved for a
longer distance in the wake. In regimes IV and V, the 2-D vortex patterns are drastically
different from the 3-D results.

In regime I, a series of small vortices are shed from the trailing edge between two
successive LEVs and they are rearranged in a meandering way. The 2-D wake pattern
in this regime is one pair and several single vortices, see figure 26(a,b).

In regime II, the typical 2-D wake pattern is a classical wake pattern of two-single
vortices aligned in a straight line, see figure 26(d,e).
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1.5

1.0

0.5
0 5 10 15 20

NACA0012, Meneghini (2011)
NACA0015, Deng (2017)
NACA0015, He (2017)
NACA0012, present
NACA0015, present

βc

|μ|

Figure 25. Floquet multiplier as a function of the dimensionless spanwise wavenumber βc, of NACA airfoil
at Re = 500 and AoA = 20◦.

V2 LEV

LEV

pLEV

ωz
∗

–3 –1–0.3 0.3 1 3

(a) (b) (c)

(d ) (e) ( f )

Figure 26. 2-D vortex patterns at Re = 800, coloured by spanwise vorticity: (a) Stc = 0.10; (b) Stc = 0.16;
(c) Stc = 0.22; (d) Stc = 0.32; (e) Stc = 0.41, ( f ) Stc = 0.50−. Two time snapshots are shown for each Strouhal
number with the position of the airfoil given by the black dot on the black line.

In regime III where the pLEV and the TEV form an upward-moving vortex pair, smaller
vortices shed after the primary TEV also form another vortex pair beneath the main vortex
pair. The typical 2-D wake pattern is two pairs, with the main vortex pair deflected upward,
see figure 26( f ).

In regime IV and V where the pLEV and the TEV form an anticlockwise-rotating
and downward-moving vortex pair, a secondary vortex with positive z-vorticity is also
generated by the LEV–wall interaction and is then advected above the LEV by the time it
reaches the trailing edge where it interacts with the free shear layer to make a weaker vortex
pair above the primary vortex pair. The typical 2-D wake pattern is two pairs, with the main
vortex pair deflected downward, see figure 27(a–e). The 2-D flow becomes aperiodic for
Stc ≥ 0.99, see figure 27( f ).
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ωz
∗

–3 –1–0.3 0.3 1 3

(a) (b) (c)

(d ) (e) ( f )

Figure 27. 2-D vortex patterns at Re = 800, coloured by spanwise vorticity: (a) Stc = 0.50+; (b) Stc = 0.54;
(c) Stc = 0.64; (d) Stc = 0.73; (e) Stc = 0.80; ( f ) Stc = 0.99. Two time snapshots are shown for each Strouhal
number with the position of the airfoil given by the black dot on the black line. The black arrow in (d) indicates
the LEV formed on the lower surface.

It should be noted that the width of the 2-D vortex wake grows with the plunging
frequency in regime IV, which is caused by the increasing rotating radius of the
self-induced motion of the pLEV–TEV pair. At Stc = 0.50+, as shown in figure 27(a), the
strength of the LEV is significantly reduced and therefore the ratio of the TEV circulation
to the pLEV circulation, which is greater than 1, is large. As a result, the rotating radius
of this vortex pair is very small, resulting in a much narrower wake. With growing
plunging frequency, the strength of the LEV grows, which is also reflected by the growing
time-averaged lift, and the ratio of the TEV circulation to the pLEV circulation reduces,
resulting in a larger rotating radius and a wider wake. The stronger LEV also generates a
stronger secondary vortex with positive ωz, which can be seen in the upper vortex pair.

At the critical Strouhal numbers of regimes classification, such as Stc = 0.16 and 0.44,
hybrid features may occur. At Stc = 0.16, see figure 26(b), the LEV just reaches the trailing
edge when the airfoil is at the lowest displacement and it suppresses the formation of the
TEV. The LEV pattern is similar to the higher Stc cases, while the wake is similar to the
lower Stc cases. At Stc = 0.44, the pLEV starts pairing with the TEV when the airfoil is at
the highest displacement, but the LEV–TEV system is still similar to the lower Stc cases.

Appendix D. Hysteresis of flow at Re = 800, Stc = 0.5

From the previous discussion of the different flow patterns in the Strouhal number space
in Appendix C, it is evident that the most dramatic transition arises at Stc = 0.50 and
so deserves some further discussion. A detailed 2-D vortex evolution at Stc = 0.50− and
Stc = 0.50+ are shown in figure 28 with the corresponding vorticity and velocity fields
shown in figure 29. In this figure, we show the evolution of the vortex centre of the pLEV,
the TEV, as well as their circulations.
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t/T
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|/(
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∞
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pLEV, Stc = 0.5–

TEV, Stc = 0.5–

pLEV, Stc = 0.5+

TEV, Stc = 0.5+

(a) (b)

Figure 28. (a) Time history of streamwise locations of the pLEV and the TEV at Stc = 0.50− and Stc =
0.50+. (b) Time history of circulations of the pLEV and the TEV. Empty symbols are Stc = 0.50− and solids
symbols are Stc = 0.50+. 2-D simulation results at Re = 800 are shown.

TEV

TEV

pLEV

pLEV

sLEV

sLEV

LEV

LEV
–1.0 –0.1 0.3

(a) (b) (c) (d ) (e)

( f ) (g) (h) (i) ( j)

Figure 29. Instantaneous spanwise vorticity field at Re = 800, A/c = 0.5: (a, f ) t/T = 0 (highest
displacement); (b,g) t/T = 0.125; (c,h) t/T = 0.25; (d,i) t/T = 0.5 (lowest displacement) and the vectors show
the instantaneous relative velocity fields; (e, j) t/T = 0.75. The position of the airfoil is shown by a black dot
on a black line. Panels (a–e) have Stc = 0.50−; panels ( f – j) have Stc = 0.50+ and 2-D simulation results
are shown.

First, considering lines with empty symbols in figure 28 and the corresponding vortex
patterns in figure 29(a–e) where Stc = 0.50−, the pLEV is formed at approximately
t/T = −0.75, x/c = 0.2. It then grows in circulation and propagates downstream. As
discussed previously, this pLEV interacts with the TEV to form a vortex pair at t/T =
0, x/c = 1. This vortex pair then propagates downstream at approximately the incoming
flow speed. In the pLEV–TEV vortex pair, the circulation of the pLEV is stronger than
the TEV producing an overall circulation that is clockwise. The self-induced motion of
the pLEV–TEV vortex pair is therefore upward and rotating clockwise, leading to a vortex
system above the airfoil.

Next, considering the case shown by lines with solid symbols in figure 28 and the
corresponding vortex patterns in figure 29( f – j) where Stc = 0.50+, we see a similar
formation of the pLEV at t/T = −0.75, x/c = 0.2 which first grows in circulation but
forms with an initially weaker circulation that does not grow as much as the previous
case at Stc = 0.50−. When the LEV reaches the trailing edge at t/T = 0, x/c = 1, it
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becomes involved in the formation of the TEV and they form a pLEV–TEV vortex pair.
The TEV circulation grows very rapidly becoming larger in magnitude than the pLEV
circulation, leading to a vortex pair that has a net circulation which is now anticlockwise.
The self-induced motion of the pLEV–TEV vortex pair is therefore upstream and rotating
anticlockwise, resulting in the blockage of the advection speed of the pLEV at x = 1 and
finally resulting in the downwards deflection of the vortex wake. The adverse velocity
induced by the pLEV–TEV vortex pair, therefore, generates a blockage effect that reduces
the effective incoming flow velocity, which further reduces the strength of the current LEV.
Due to this closed-loop mechanism, the flow state at 0.50+ is stable in a neighbouring Stc
range.
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