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Introduction. In this paper we develop a theory of Laplace transforms for 
generalized functions. Some fundamental results in this field were given by 
Schwartz in (3) for the ^-dimensional bilateral case from the point of view of 
topological vector spaces, and in (4) in a form amenable to operational use. 
Our presentation characterizes a one-dimensional theory of Laplace transforms 
with a half-plane of convergence (indicating an extension of the usual classical 
transform) and with the property that Laplace transforms are analytic functions 
satisfying the fundamental convolution-multiplication theorem. Section 1 is 
devoted to defining the Laplace transform of generalized functions and also 
to showing how the property of a half-plane of convergence is intrinsic to this 
definition. In §5 we show that the Laplace transform is an analytic function 
and then prove that the Laplace transform of the convolution of two distri
butions is the product of the Laplace transforms of these distributions. 

A vital part of any transform theory is the representation problem; in the 
Laplace transform of distributions, the representation problem was solved by 
Schwartz (3, pp. 202-203) for the bilateral and complex case. We shall quote 
this result for the usual case in §7 and give the accompanying inversion formula; 
further, we shall state and prove real representation and inversion theorems 
in §7. We shall also introduce the concept of uniform convergence for the 
Laplace transform of distributions and give a result analogous to the classical 
case in §4. Another notion that can be extended from the classical theory is 
that of the "growth" of Laplace transforms as the independent variable goes 
to infinity in certain ways. We shall discuss this concept in §6. As preliminaries 
to these fundamental results in a theory of Laplace transforms, we give a 
Lebesgue integral definition of the Laplace transform in §2, and in §3 we show 
that our definition of §1 is a legitimate generalization of the classical one. In 
§8 we consider the space of those distributions having a Laplace transform as 
an algebraic inductive limit, and give an indication of certain related and 
natural problems concerning some topological vector spaces. 

Finally, because of the traditional connection (5) between Laplace transforms 
and Tauberian theorems, we prove in §9 Wiener's Tauberian theorem for 
distributions. 

As is standard (2), we let 2J be the complex-valued C°°(— °°, °°) functions 
with compact support, and Q)K the subspace of Sf whose elements have their 
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supports in the compact set K. The topology on 2fK is given by the following 
convergence criterion: fn converges to 0 if for each p, fn

(p) —» 0 uniformly on 
(—oo, oo). A distribution T is a linear functional on Of whose restriction to 
each QtK is continuous. The space of distributions is denoted by 2)'. Also, we 
let y be those C°° functions / for which given any k and p we have 

lim 
kl-*» dxl = 0. 

A fundamental system of neighbourhoods of 0 for a locally convex topology 
on if is given by all sets V(m, k} e) where / £ V if for all p < m and all 
x e ( - » , °°), 

(1 + xl)*hm < e. 

The strong dual of Sf is then denoted by Sf'. 
We now let & + be the space of 1-dimensional distributions with support 

contained in [0, oo). Also, we denote the field of complex numbers by C, and 
a typical member of C by 5 = a + ir. When any confusion arises concerning 
which variable is to be considered when a function belongs to a given space, 
we write the subscript on the space symbol accordingly. Lastly, we recall 
Schwartz's fundamental result (2, p. 95), which states that T £ 5/J' if and only 
if T — / (w), where / is continuous and of the form 

with g bounded and for some k. Such an / will be called slowly increasing. 

1. Definition of the Laplace transform of generalized functions. 

DEFINITION 1. Let .5+ be the vector space of all complex-valued infinitely 
differentiable functions f defined on (— °° , °°), for which, given any non-negative 
integers k and m, we have 

lim \tkD(m)f(t)\ = 0, 
t-$co 

where, as usual, D™ = d<m)/dtm. 

Let k and m be non-negative integers and let e be any positive real number; 
further, define V(rn, k, e) to be the set of those elements / G ,9+ for which, 
given any t G [0, °o) and any non-negative integer p < m, we have 

|(1 +t*)*DWf(t)\ < t. 

I t is easy to check that a base at 0 for a locally convex topology on ,5̂ + is 
given by all sets of the form V(m, k, c). As such, ,9+ is a topological vector 
space and the space of continuous linear functionals on ,9+ is designated by ,99,

+. 
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THEOREM 1. Let T G 9'+. Then T G y + if and only if T G ^ ' . 

Proof. One way is obvious. Let T G . ^ ' and <£ € ^+, and define a complex-
valued infinitely differentiate function h on ( — oo, oo ) with the properties : 
(a) for some e > 0 and for all / G ( —€, oo), h(t) = 1, (b) for some M > e and 
for all t < —M, h(t) = 0. Then h<f> G Sf and (T, h<j>) has meaning. We now 
define 

(i) <r, 0) = <r, A*>. 

It is trivial to show that (1) is independent of the particular hy satisfying (a) 
and (b), chosen. 

By (1), T is clearly linear on *$*+. 
Further, it is straightforward to show that if 0T —> 0 in *£+, then 

<r,4>7>-^o. 

In fact, this is done by representing T as / ( w ) , where / is a slowly increasing 
continuous function with support contained in [0, <»); and then noting that 

(2) (T, d>) = lim (fu ,(0, h(t)<t>y(t)U(t)), 

where, for R > 0, £B(t) is an infinitely differentiable function on (— °°, °°) 
that satisfies 

= / l for/ G ( - « , # ] , 
* M ; \0 îor t £ [R + r, œ),r > 0 being fixed. 

We then compute the right-hand side of (2) and find that 

(T,<t>y)= ( - 1 ) " Ff{t)<i>™{t)dL 

Then, because / is slowly increasing and <£7 G .S+, it is easy to show that 
(T,4>y)-*0. 

It is clear that 

exp[— (s — o0)t] G *$+* for all a > <r0 > — °°. 

THEOREM 2. Z^/ T G 2iï'+ and assume that exp( — <T0t)Tt G ïf1+u Then, 
(a) exp( — <rt)Tt G Sf'+tfor all a > <r0, 

and, further, 
(b) if o-i, (72 G [0*0, <r), / t o 

(exp( — (Ti/)r, exp(— [a — 0-1)/) = (exp( — a2t)T, exp[— (<r — er2)/]). 

Proof, (a) Let 0 G «9+ and exp ( — o-0t)Tt = f(m) (t), where/ is slowly increasing, 
continuous, and with support contained in [0, °°)« Then, because 

exp( — at)T = exp [—(a — o-0)/]exp( — <T0t)T 
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and Siï = Sf+, we can define 

/ ( 0 | s r { e x p [ - ( f f - ^ ] ^ ( 0 } * . 

Clearly then e~atT is linear on «5*4-, and, in a manner similar to that of Theorem 
1, e~atT is shown to be continuous on J/+. 

(b) It is obviously sufficient to show that 

(3) (exp( — tr0t)T, exp[— (cr — a0)t]) = (exp( —(n/)7\ exp[— (a - <n)*]). 

Now, 

X 7(m) 

( / ( 0 ^ - e X p [ - ( c T - e r 0 ) * ] < f t , 

and because Se = <9+ and exp[— (a — ai)t] is multiplied by the rapidly 
decreasing (on the right) function exp[— (en — o-0)£], it follows that 

(5) (exp(-<ri/)r , exp[— (cr — <n)t]) 
/»oo i (m) 

= ( - 1 ) " J o / ( 0 | s - {exp[-( f f l - <r0)/]exp[-(<r - «ri)/]} <ft. 

The right-hand sides of (4) and (5) are identical, and, hence, (3) holds. 

DEFINITION 2. Let T £ ^ ' + awd assume there is a0 6 (— °°, °°) 5wc/̂  £/za£ 
exp( — (T0t)T Ç y + - Further, let ac = inf{cr Ç (— °°, °°)|exp( — a-/) 7' t ^ 7 + } , 
and define A Q G to be 

A = {s £ C\* > ac}. 

The Laplace transform of T is a map ? ( 7") 

A-+C 
where 

2(T)(s) = < e x p ( - ( r i 0 r l f e x p [ - ( 5 - <n)t]) 

and <rc < (7i < <T (clearly, the equality is allowed only when 

exp(-act)T £ y+). 

Also, <rc is the abscissa of convergence of the Laplace transform of T. 

2. Integral definition of the Laplace transform. 

DEFINITION 3. Let B be the set of maps fi such that fi maps (— °°, °°) into 
[0, 1], and where 

(a) 0 G Cœ , 

(b) Bit) = I1 f°r l K °' 
U M W \0 fort> 8, where Ô > 0 is fixed. 
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Further, for R > 0, we define 

«/*(*) = P(t - R). 

The following example shows that B is not empty. 

Example. For t £ [R, R + 8], consider 

8B(t) = exp(- {R+\)_t + j~rj , 

where R > 0. We define aR(t) as follows: 

1 fort £ [-ooyR]y 

- ~ - J 6R(x) dx for / € [IS, iC + Ô], 
OUR\t0) J R+8 

aR(t) = 

where /o is such that 

0 for/ Ç [R + ô, oo ), 

•J R 

•*R+8 

6R(x) dx = 50* (/0) 

by the mean-value theorem. Note that since t0 6 (R,R + 8), then 0JR(/O) ^ 0. 
Clearly, a# satisfies the conditions of Definition 3. 

Note that given any ft £ B and any integer k > 0, there exists a constant 
N(k) > 0 such that for all / 

|/3<*>(*)| < # ( * ) . 

THEOREM 3. Let T £ Siï1 + and let a0 € (— °°, » ) fo s&cA / t o /br a// 
<r > Co, exp( —o-/)r Ç 5^'+. Then, for any <n G (<70, cr) there exists 

lim <exp(-<ri/)7\exp[-(s - c n ) ^ s ( / ) > = 8 ( r ) 0 ) . 
J2->oo 

Proof. Since the intersection of the support of J" and the support of apR is 
compact, we know that 

(exp( — o-i/)r, exp[— (5 — o-i)/]a^(/)) 

exists. Thus, since it is readily seen that 

R 
exp[— 0 — <Ji)t]am{t) —» exp[— (5 — en)/] in ,9+, 

the result follows immediately. 

THEOREM 4. If exp( — at)T £ ïf'+for all a > a0 and if en 6 (er0, o-), /Aew 

2(T)(s) = (5 - «n)* P 7 ( / ) e x p [ - ( s - en)/]*, 

wAere exp( —o"i/)r = fm(t) and f is continuous and slowly increasing. 
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Proof. A simple calculation shows that 

/ ( / ) exp [ - (s - ax)t] 
0 

+ ( - i r g ( - D \ r ) (* - "à* X f + V ( 0 e x p [ - ( 5 - « n ) ^ " ^ ) dt. 

Because of Theorem 3, it is sufficient to show that for k = 0, 1, . . . , m, 

J
*R+& 

/(0exp[-(s - nMT**® dt = 0, 
7 _ R 

but this is clear s ince/ is slowly increasing and ajfë~k) is bounded. 

3. Relation between classical and generalized function definition of 
Laplace transform. 

THEOREM 5. Let f be locally integrable on (—», ») and with support con
tained in [0, 00). If 

J»co 

f(t)exp( — s01) dt 
0 

exists, then for all a > <T\ > a0, 

i(f)(s)= rf(t)e~s'dt. 

Proof. We have that e-°ilf(t) 6 Sf'+ since 

lim I exp(—aix)f(x) dx = lim g(t) 

exists, implying that g(t) is bounded and continuous, and g'(t) = exp( — <rit)f(t). 
Classically, we know that for all a > a0, 

(œf(t)e-stdt 

exists. We need only show that for a > <J\ > <r0, there exists 

J»co 

f(t)e~stdt. 
~ ™ 0 

Now, 

(exp(—<nt)f(t),exp[—(s — <ri)t]apB(t)) 

J *R f*R+h 

e~s'f(t)dt+ f(t)e-s,a,B(t)dt, 
0 OR 

and thus it is only necessary to prove that 

J »R+8 

f(t)e-stapR(t) dt = 0. 
y„ R 
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In fact, when integrating by parts, we have 

J' >R+ô I I /»22+5 ! 

/(*)«"%«(*) dt\ = g'(t) exp [ - (5 - <n)t\af>B{t) dt 
R I I « / R I 

< K exp [ - (o- - *i)R] + (|s - <n\KM(p, 0) + X ¥ ( ^ , 1)) 

exp[—(o- — <r0)£] dty 
R 

where i£ is a bound on g, Af(/S, 0) bounds am, and Af (/?, 1) bounds af
0R. Since 

J
»i?+S 

exp[(cr — ai)t] dt = 0, 

(6) follows immediately. 

THEOREM 6. Ze£ / Z>e locally integrable on ( — °o, oo ) a^d zwYA support con
tained in [0, oo). If 2(f) (s) exists, then 

(7) 8 (/)(*) = P/(*)<r"<ft. 

Proof. Since 8(f)(5) exists, there is cri < 0- such that 

8(f)(5) = <exp(-cr i0/(0,exp[-(5 - <n)/]> 

= lim ( f f(t)e-stdt 

+ J {exp(-c71 t)f(t)}exp[- (s - <ri)t]apB(t) dtj 

where e x p ( - <n t)f(t) € «5^+. 
Thus, exp( — ait)f(f) = g(k)(t), where g is continuous and slowly increasing, 

and hence 

g{k)(t){exp[-(s - <Ji)t]aeR(t)} dt = 0, 
,w i2 

as is easily seen by integrating by parts k times. Therefore, (7) follows. 

4. Uniform convergence. 

DEFINITION 4. The Stoltz region at s0 with half-angle 7 < w/2 is the set 

@**o7 = U G C| |arg(s - so)I < 7}. 

DEFINITION 5. Assume that 2(T)(s0) exists and let D be a subset of C such 
that <T > (T0 if s G C; also, let ai < <r0 and exp( — o-it)T £ S^'+. 2(T)(s) con
verges uniformly in D as R—> 00 if and only if for any fi £ B and any e > 0, 
there is an R0 > 0 such that for all R > R0 and for all s Ç Z>, we have 

\2((T)(s) ~ <exp( -<M)r ,exp[ - ( s - cn)*]a^(*))| < 6. 
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We now have the following result, which is identical with the classical 
statement; Landau's original proof remains valid except for that part where a 
number of extra integral terms must be considered. 

THEOREM 7. Given ®tsoy and assuming that 2(7') (so) exists, then 2(T)(s) 
converges uniformly in ®tsoy. 

Proof. Let s 6 @/507. Also, for <n < <r0 < <r, expi-afiT = f(m)(t) £ ?/\, 
where/ is continuous, slowly increasing, and with support contained in [0, <»). 

Given e > 0, we must find R' such that for all R > R' and for all s Ç @/S(m 

(8) \%(T)(s) - (fW(0, e x p [ - (s - *!)*]«,«(*)>! < €. 

Note first that for any k = 0, 1, . . . , m, there exists Sk > 0 such that for any 
/ > Sk and for any 5 £ ®tsoy, 

\s — o-i|*exp[—(o- — or0)t] < exp[—\((j — <r0)/]. 

Also, since 8(r)(s0) exists, there is an R0 > 0 such that 

»i2 

x /(0exp[—(s0 — ai)t]dt 
RQ 

<L^ML f o r a l l ^ > ^ " , 

where 

• 5 C") M = 2 + 42_ I , J max(M(/3, w - &), 17(0, m - & + 1)) 

and M{$,m — k) is the uniform bound on ajfë~k) (t). 
These last two inequalities, along with a derivation following Landau's 

(for the classical case) (5, p. 56), imply that the left-hand side of (8) is less than 

2e cos 7 sec 6 . . ^A / m \ /7l/r/n i\ nrr » . -. „w e cos 7 sec 0 
M + 5 \k) m a x ( ^ ' m - *)' M ( m - * + !» 0» M  

where 

sin 0 = 
\s — So\ 

Since the secant is an increasing function on [0, 7r/2), we have sec# < sec 7 
and hence (8) follows. 

5. Analyticity and the convolution-multiplication theorem. The 
analyticity of the Laplace transform was shown by Schwartz (3, pp. 202-203) 
in his representation result. Using the result of §4, we arrive at analyticity in 
the classical fashion by employing Weierstrass' Double Series Theorem. 

THEOREM 8. Let F(s) = 2(T)(s). Then F(s) is analytic for a > ac, and 

%((-t)pT)(s) = F^(s) for all p > 0. 
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Proof. With the usual terminology, 

oo f*n+l oo 

F(s) = £ (s - <n)m / (Oexp[ - (s - *i)t) dt = Z «.(*)• 

Then gn(s) is entire (5, p. 57). With a > <rc, consider any neighbourhood V of 
s such that for all z = x + iy Ç T we have x > <TO > 0"c for any such 
(To G (— °°, °°). Then ©k07 exists so that T C (&taoy. 

Thus, by Theorem 7, 

oo 

]C gn(*) 

converges uniformly in T. Hence, by the Double Series Theorem, F(s) is 
analytic for a > ac. Now, for p = 1, 

2(~tT)(s) = - < / e x p ( - i r i 0 7 \ e x p [ - ( * - en)*]>, 
and 

TO = ^ e x p C - ^ O ^ e x p ^ x O ^ ^ y ; 

thus the result holds for p = 1 and is proved for all p by a routine calculation 
using induction. 

Because of Theorem 8 it is clear that a number of formulas can be derived 
connecting the Laplace transforms of distributions with related slowly in
creasing functions. In fact, if %(T)(s) exists and for b £ (ac1 a), e~btT = f(m)(t) 
with / continuous and slowly increasing, we have 

-2-r%(T)(s) + HtT)(s) = (s - b)m f V ( 0 e x p [ - ( * - b)t]dt. 
s — o t/o 

THEOREM 9. Assume that 2(T)(s) exists with abscissa of convergence a = aci, 
and that 8 (S) (s) exists with abscissa of convergence a = ac2. Then 

8 ( r *S)(s) = 2(T)(sMS)(s) for all a > max(erci, ac2). 

Convolution, here, is defined as usual in the theory of distributions, and the 
result itself is trivial if we use the tensor product definition of convolution. 
The theorem could also be proved by giving integral representations of the 
Laplace transforms (in terms of slowly increasing functions). This latter 
approach, however, becomes a long-winded exercise in manipulating Fubini's 
theorem. 

COROLLARY 9.1. If 2(T)(s) exists, then for all a > <rc and for all m > 0, 

g ( j w ) 0 0 = sm2(T)(s). 

Proof. 2(T™)(s) = 8 ( r *ô™)(s) = 2(ôW)(s)2(T)(s). Clearly, 

8 («(»)) (5) - sm, 
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since 

8 (ô ( " î ) ) (5 )= lim(8(m\e's'a,B(t)) 
R^oo 

"(s(?)(-̂ °r*(o)) = lim (-1)" 2J ( - « - " ( 0 ) = 5". 
R-^oo \ k=0 \K / / 

6. T h e g r o w t h of Laplace t r a n s f o r m s . Classically, we know t h a t if g is 
locally integrable with suppor t contained in [0, oo), and if %(g)(s) exists for 
all cr > crc, then for <rf > an 

8(g)(5) = 0(\r\), M - » , 

uniformly on [a\ 00). Unfortunately , we are not so lucky in the case of general
ized functions; in fact, we have the following result. 

T H E O R E M 10. Assume %(T)(s) exists with abscissa of convergence a = crc. 
Then for any a > ac there is an n > 0 such that 

F(a + ir) = 2(T)(s) = o(\r\n), \T\ -> 00. 

Proof. Given a > <rc, we choose ai = (<rc + a)/2 and let exp ( — ait) T = f{m) (t), 
where, as usual, / is continuous and slowly increasing. Then , 

G (s) s — ^ - p = r {f(t)exp(a1t)}e-stdtJ 

and we readily prove the result (5, pp. 92 -93) , not ing t h a t the Laplace t r ans 
form of f(t) exp (cri t) is G (s). 

T h e following example shows t h a t we cannot s t rengthen Theorem 10 in the 
direction of the classical result. 

Example. If T = 5', then for all a Ç (— °°, °°), %(T)(s) = s. Given a n y 
integer n > 1, 

. \<T + ir\ 
lim 1 |W = 0. 

Irkoo I r | 

I t is not t rue , however, t h a t given e > 0 there is a r0 such t h a t for all a in an 
interval [</, 00) and for all r satisfying |r | > |r0 | , we have 

cr + ir 
< 60. 

r 

In fact, it is obvious t h a t the choice of r0 depends on the a chosen. 

W e now define the real Laplace transform in the expected way : let T Ç 3)f+ 
and assume t h a t there is an x0 Ç (— °°, °°) such t h a t 

exp(—x 0 t )T Ç •¥"+; 

further, let 

xc = inf{x Ç ( - c o , ™)\e~xtTt Ç ff\\ 
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and define 

%(T)(x) = (exp(—xit)Tt, e x p [ - (x — Xi)t)), 

where xc < x\ < x (as in Definition 2, the equality is allowed only if 
exp(-xtt)Te y+). 

The natural partial representation result corresponding to Theorem 10 is 

THEOREM 10'. Assume 2(T)(x) = F(x) exists for all x > xc. Then an n > 0 
exists such that 

F(x) = o(xn), x—» oo. 

The proof of this result is again classical and straightforward although 
somewhat different from that of Theorem 10. We shall not prove it here, since 
it will be given in a stronger and more general way in our real representation 
theorem. We note now that Theorem 10' is a corollary of this representation 
theorem when n is taken large enough. 

7. Representation and inversion results. The fundamental complex 
representation theorem proved by Schwartz (3, pp. 202-203; 4, pp. 249-252) is 
the following. 

THEOREM 11. An analytic function F(s) is the Laplace transform of a general-
ized function T Ç S)\ if and only if there are a non-negative integer n and 
constants K > 0 and c such that 

\F(s)\ < K\s\n for alia > c. 

We recall that the difficult part of the theorem is to construct a distribution 
T such that %(T)(s) = F(s). In order to prove this part, we first consider the 
particular case of F(s) bounded in the half-plane a > c > 0 and such that 

F(s) = 0 ( l / | s | 2 ) , | s | - » . 

For this situation we construct a continuous function f(t), with support 
contained in [0, oo), satisfying 

1/(01 < Ce«, 
for some C > 0, and then show 2(f) = F. To extend the result for the state
ment of Theorem 11, we let F(s) be any analytic function for a > c > 0 and 
for which 

F(s) = 0(|s|*)f |*|-> oo. 
Then 

F(s) 
sm+2 = °(w)' 

hence, there exists a continuous function g(t) for which \g(i)\ < Mect(M > 0) 
and such that 

Fis) 
m+2 J»oo 

g(t)e~stdt for alio- > c. 
o 
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The result is proved when we let T = gim+2)(t). 

We have the following useful corollaries to Theorem 11. 

COROLLARY 11.1. If %(T)(s) = F(s) exists, then there is a K > 0 and a c 
such that 

\F(s)\ < K\s\m, for alia > c 

where e~ctT = f{m)(f), with f continuous and slowly increasing. 

COROLLARY 11.2. If the conditions of Theorem 11 are satisfied for F, analytic, 
then there is a continuous function f such that 

8(f(n+2)(/))W = F(s). 

We note that although n + 2 plays the role of an upper bound (for order 
of derivation) in Corollary 11.2, it is possible to consider a lower order of 
derivation. In fact, if 

Y(t) = P' l > °' 
nt) \o, /<o, 

then we can choose n = 0 in Corollary 11.2, but we can t a k e / = Y such that 

2(f)(s) = l/s*. 

We shall now state the complex inversion result. The proof is essentially 
Bromwich's as given by Widder (5, p. 69). 

THEOREM 12. Assume %(T)(s) = F(s) exists with abscissa of convergence 
a = o-c. Further, let n be such that for some right half-plane a > c > 0, where 
c > (Tc, we have that there is a K > 0 for which 

(9) \F(s)\ < K\s\\ 

Then for any b > c and a > b, 

j(n+2) 

(10) Tt = e»ia^r(e-btg'{t)), 

where 
-i f*a-\r i R 

g(f) = lim ±-
F(s)es,ds 

s(s - b)n+-

Proof. By Corollary 11.1, (9) is clear and there is a continuous function/, 
with support contained in [0, <»), such that for some M > 0, 

1/(01 < Mea 

and 
g (T) (s) = S ( / w (/))(*). 
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Now, e~uT G ff+ implies that there is a continuous and slowly increasing 
function h for which 

*(»+»(/) = e~btT, 

and such that for all a > b 

~z%** = Jo h{t)exv[-(5 ~ b)t] dL 

We now apply the above-mentioned proof of Bromwich to deduce (10). 

COROLLARY 12.1 {uniqueness). If %(T)(s) = 0, then T = 0. 

We shall now prove our real representation theorem, and begin by defining 
the following differential operator. 

DEFINITION 6. Let G(x) G C°°. Then for all t > 0 and for any non-negative 
integer k, we define 

lUG{x)) = ( -D*prG^) + ( - D ^ Q V ^ ^ ) . ^y^_ {1c)i 

LEMMA 13.1. Let <j> be a real-valued and locally integrable function for which 

F(x) = fe-xt<j>{t)dt 
Jo 

is defined and converges for some x G ( — °°, °° ) ; for all t > 0 we assume that 
<t>(t+) and <t>(t — ) exist. Then 

\imk,t(F(x)) = 4>(t+) - 4>(t-). 

Proof. Given t > 0 and fixed. If k is so large that k/t lies in the region of 
convergence of F(x), then 

Lt(F(x))= ( - l ) * £ r {-lfuke-ku'l4>{u)du 

+ ( - l ) * f c ( j | §\-\T\k-xe-*ull4>(u)du 

= ( j Y f a 'e-*" / '*M*-1*(M)"di*-fy* Ja,é-tu"kuk-14>(u)du 

= - & i?~kUl'kuk~{l-ï)^)dU-
Making the change of variable u = ty, we obtain 

J»oo 

e-ky<t>(ty)yk-\l - y) dy 
0 

= -fe* P > ( r t ^ M (1 - y) dy, 
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where h(y) = log y — y and satisfies the conditions of Theorem 8a and Theorem 
8b in (5, pp. 296-298). 

We then follow the proof of Widder's Theorem 9 (5, pp. 298-299), verbatim. 

In proving our representation theorem we shall also make use of Bernstein's 
representation result (5, pp. 160-162), which states that / is completely 
monotonie on (a, oo ) if and only if 

/(*) = PV'datf), 
«Jo 

where a(t) is non-decreasing and the integral converges for x Ç (a, oo). 

Finally, before giving our theorem, we give the following convenient 
definition. 

DEFINITION 7. Let S £ ^ ' + . An order of derivation of S is an integer m for 
which there is a continuous, slowly increasing function f, with support contained 
in [0, oo ), such that f(m) — S. We denote an order of derivation of S by 

0(S) = m. 

THEOREM 13. (a) / / 2(T)(x) = F(x) exists with abscissa of convergence 
x = xCJ and if Ô(Te~~bt) = m for b > xc, then for any x0 > xc there is a K > 0 
and an n > 0 such that for all x > x0 

(ID 
dM( F(x) \ 
dxk \(x- x0)

mJ 
_K(k + n)l 

< (x - x0)
k+n+l ' k ~ °' h l  

(12) Forallt Ç. (0, oo), l i m / . , / , F(X\m) = 0. 

(b) Given F(x). If there is an x' such that F(x) G Cœ for all x > x', and if for 
all x0 > xr there is a K > 0 and integers m, n > 0 such that (11) and (12) hold, 
then T 6 2&'+ exists so that 2(T)(x) = F(x) and Ô{Te~bt) = m for all b > x'. 

Our following proof is for real-valued functions F(x)t and the extension to 
complex-valued F is obvious. 

Proof, (a) Given x > xc and let x0 G (xc, x). Then exp( — x0t)T = f{m)(t) for 
some m > 0 and some / continuous and slowly increasing; in fact, 

G(x) = y r^ = I exp(—xt)f(t)exp(x0 t)dt. 
{X — Xo) Jo 

Thus, there is an n > 0 and a K > 0 such that 

|/(*)exp(:M)l < K exp(x0 t)tn for all t > 0. 
Now, 

G™(x) = ( -1 )* r tkexp(-xt)f(t)exp(x0t)dty 
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and hence, for all k, 

\G(k) (x)\<K f tk+n exp [ - (x - *,)*] it = f(fe + w
+ ^ . 

Since f(t)exp(xot) is continuous, (12) is immediate from Lemma 13.1. 
(b) If (11) is satisfied, then for G(x) = F(x)/(x — x0)

m we have 

(-D{GW(«) + (-D- ,5i\+v&-l > o (* - *0)"+wJ 
and 

<-i)(-C<»M + (-«• ^ & ] > a 
Thus, the functions [w! X(x — Xo)~(rH_1) + G(x)] and 

[n\K(x - x0)- (n+1) - G(x)] 

are completely monotonie on (xo, °°). Hence, by Bernstein's theorem, there is 
a non-decreasing function /3(t) such that 

ax) = w!f.n+1 + r e-*< d/j(o, 
IX — XQ; «/o 

(x — Xo) «/o 

with the integral converging for x > x0. But, 

n\K 

where 

Thus, 

where 

J«CO 

e~atdy(t), forx > x0, 
o 

y(tj — I un exp(xou) . 
«/o 

i (Zw. 

x) = PV*^(0, 
«/o 

GC 

*(/) = 0(0 - X 7 « . 

Clearly, a is of bounded variation, and it can be shown (6, pp. 873-875) that 
a function <f>(t) exists for which 

ayt) = <A(x) dx 

and 

(13) \4>(t)\<Ky(t). 
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Now, by the definition of y(t), we have for all t > 0 and for some M > 0 

10(01 < K exp(x01) I -,—à+ï + 2J T"T7~1 w—(fc—1) / I I in-J-1 

\ | X o | £=1 #J |Xo| / |Xo| 

/ ^ i t ( n- , V̂  nHk \ 

\p0| k=l K\ \XQ\ / 

where x0 > 0. 
If Xo < 0, (13) implies that 

i0(oi <Kexp(Xot) (\± ( - i r ^ è t n l + c-ir1-^) + (-D 
\ L k=l K\ Xo J Xo / 

<xexP(*.o ( [ É (-ir*™U7l + c-ir1-^) 
\ L k=l Rl Xo J Xo / 

since 

(-l)"4r<0 
Xo 

if Xo < 0. Thus, <j)(t) = exp(xoO/(0 where/(/) is majored by some polynomial. 
Since 

J»oo 
e-xt<t>(t)dt, 

0 

and because we have (12), it follows that <£, and hence/, is continuous. 
By the definition of 7, #(0) = 0 and hence we can assume that the support 

of / is contained in [0, » ). 
Let T = fW(t)exp(x0t). 
To avoid problems in calculation we have not taken x0 = 0; this is clearly 

no restriction. 

Our final result in this section is the real inversion formula. We derive this 
formula, as in the complex case, from the classical setting (5, pp. 288-293). 
It is then trivial to show that the following theorem holds. 

THEOREM 14. Let T 6 3t'+ and assume that %(T)(x) = F(x) exists with 
abscissa of convergence x = xc. Then, for b > xc and for all t > 0, we have 

where m = 0(e~htT) and 

T f F(x) 1 ( - l ) * d w / F(k/t) \(k\+1 

*•!(*-&rJ k\ df \(k/t-b)mJ \tJ • 

8. An inductive l imit space. Let 3>'+ have the induced topology from 
3l' and define ££'„ to be the set of those elements T Ç. ©'+ for which 
T € e"Sf'. Also, let 

&' = f / |y ' .k e ( -» ,» ) } . 
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Clearly if o\ < o-2, then ^'ai Ç ^'a2 ; and T £ ££' if and only if there is a <TQ such 
that ^{T) (s) exists for all <r > a0. For the real Laplace transform, the analogous 
notation for -£' a and ££' will be 3?1

 x and ^ ' A , respectively. Now, we let A c be 
the set of analytic functions defined by the complex representation theorem, and 
AR be the corresponding set (of C°° functions) for the real representation result. 
We consider the topology of compact convergence on both these sets. It is 
then natural to investigate the dual spaces and maps of 

and #''R-*AB. 

This programme has been carried out for the bilateral Laplace transform in 
the cases of distributions with compact support (by Lions) and analytic 
functionals (by Malgrange), and will be carried out for the map £. We note in 
closing that <&' and .3?'R can be considered as strict inductive limits. 

9. Wiener's Tauberian theorem. Using the standard spaces of distribu
tions, Q!'L> and 2l h<*> (1, p. 55), we shall prove the following. 

THEOREM 15. Let f Ç Ll(— œ , oo) and assume that 
/»oo 

eixtf(t)dt^0 for all x. 

Further, let T G 2)' v and a £ @Lm- If there exists a constant K such that 

Xoo 

f(t) dt, 
— ^ -oo 

then 
lim (T *a)(x) =K(T,1). 
X-^oc 

Our proof of Theorem 15 involves the following lemma and Beurling's 
(1, pp. 134-136) proof of the classical Wiener theorem. 

LEMMA 15.1. Let f G L'{ — oo, oo), assume that a{t) is n times differentiate 
and that for any i = 1, . . . , w, there exists a constant Mt > 0 such that 

|a<*>(0| < Mi 

for all t £ ( — oo, oo ). Then if (f * a) (x) —» 0 as x —> <*>, we have 

Joo 

f(t)a{i\x - t)dt = 0 for any i = 1, . . . , n - 1. 
- - ^ - -oo 

Proof. Let n = 2 ; / * a ( x ) - > 0 a s x - > oo implies that, for all h ^ 0, there 
exists 6 = 6(x - t, h) 6 (0, 1) such that 

lim 
-ïccX Xoo 

f(t)[a'(x - t) + \ha"(x - t + Bh)] dt = 0. 
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Arguing by contradiction, it is a simple matter to show that 

/»oo 

lim I f(f)a'(x-t)dt = 0. 
£-}co J— oo 

We proceed in a similar manner for the other values of n. 

Proof of Theorem 15. Using Lemma 15.1 and the properties of 2ft ' L>, it is 
easy to show that 

lim [(/ * a) * T](x + ym) = 0 
m-*cr> 

whenever 

lim 7m = °° • 
W-xx> 

We then rewrite Beurling's proof. 

We note that our Tauberian condition, the hypothesis that a € 2ft i?>, is 
stronger than the corresponding classical condition which only demands that 
a G L°°(— oo, co). This strengthening of the Tauberian condition is, of course, 
compensated for by the fact that our theorem is true for the elements of 
2ft' v instead of Z/(— oo, oo). Further note that our Tauberian condition can
not be weakened effectively to achieve the same conclusion since it is necessary 
(in general) that a £ 2ft L^ in order to define T * a for T £ 2ft'L>. 

We remark that Lemma 15.1 has recently been strengthened by S. Silverman 
so that the conclusion is true for i = 1, . . , n. Also, our Wiener theorem has 
been proved using the fact that the translates o f / a r e dense in 2ft* L*. 

Finally, if T G 2ft'v and 

T = itfr\ nt> l,ft GL', 

then (T, 1) = 0. This is clearly a generalization of the property that if / and 
/ ' are in L'(— °°, °°), then 

Jf = o. 
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