Fournal of Glaciology, Vol. 48, No. 160, 2002

Basal conditions and glacier motion during the winter/spring
transition, Worthington Glacier, Alaska, U.S.A.

Joer. T. HARPER,' Nei. . HUMPHREY,” Mark C. GREENWOOD?
"Institute of Arctic and Alpine Research, University of Colorado, Campus Box 450, Boulder, Colorado 80309-0450, U.S.A.
E-mail: joelh@tintin.colorado.edu
? Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071-3006, U.S. A.
3 Department of Statistics, University of Wyoming, Laramie, Wyoming 82071, U.S. A.

ABSTRACT. Observations of the motion and basal conditions of Worthington Glacier,
Alaska, U.S.A., during late-winter and spring melt seasons revealed no evidence of a rela-
tionship between water pressure and sliding velocity. Measurements included borehole
water levels (used as a proxy for basal water pressure), surface velocity, englacial deform-
ation, sliding velocity, and time-lapse videography of subglacial water flow and bed char-
acteristics. The boreholes were spaced 10—15 m apart; six were instrumented in 1997, and
five in 1998. In late winter, the water-pressure field showed spatially synchronous fluctua-
tions with a diurnal cycle. The glacier’s motion was relatively slow and non-cyclic. In
spring, the motion was characterized by rapid, diurnally varying sliding. The basal water
pressure displayed no diurnal signal, but showed high-magnitude fluctuations and often
strong gradients between holes. This transition in character of the basal water-pressure
field may represent a seasonal evolution of the drainage system from linked cavities to a
network of 1solated patches and conduits. These changes occurred as the glacier was under-
going a seasonal-velocity peak. The apparent lack of correlation between sliding velocity
and water pressure suggests that local-scale water pressure does not directly control sliding
during late winter or early in the melt season.

1. INTRODUCTION

A central component of glacier dynamics is the process
whereby basal ice becomes partially decoupled from the
bed, causing sliding motion. Often, half of the motion of a
wet-based (temperate) glacier is due to basal slip, and it is
not uncommon for nearly all of a temperate glacier’s move-
ment to result from sliding (Paterson, 1994). Likewise, surges
and fast glacier flow phenomena are typically attributed to
sliding processes (e.g. Kamb, 1987, Raymond, 1987, Kamb
and others, 1994; Meier and others, 1994; Engelhardt and
Kamb, 1998). Despite the established significance of glacier
sliding, the difficulties associated with directly observing
basal conditions have impeded understanding of this process.

Sliding of a temperate glacier over a rigid or “hard” bed
entails complex processes involving interactions of basal ice,
water at the base of the glacier, and the bed itself. Numerous
studies have compared direct measurements of glacier motion
with observations of the subglacial hydrological system (e.g.
Iken and others, 1983; Kamb and others, 1985; Tken and Bind-
schadler, 1986; Kamb and Engelhardt, 1987, Hooke and
others, 1989; Blake and others, 1994; Jansson, 1995; Raymond
and others, 1995; Harbor and others, 1997; Tken and Truffer,
1997; Hanson and others, 1998). Yet, a predictable linkage
between sliding velocity and measurable parameters of the
hydrological system has been elusive. Spatial and temporal
changes in water inputs, drainage-configuration responses to
those inputs, and complex feedbacks between basal processes
and ice dynamics all confound the relationship between
glacier movement and hydrology (Kamb, 1970). Animportant
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aspect of the problem is that models of subglacial water flow
suggest that water pressure and water storage increase jointly
(Lliboutry, 1968; Iken, 1981; Fowler, 1987, Kamb, 1987). Indi-
vidual observations, however, have detected correlations
between velocity and either pressure or storage, but not with
both (Fountain and Walder, 1998).

This study adds to the empirical linkages between sub-
glacial conditions and glacier movement. We describe the
results of simultancous monitoring of multiple parameters
related to the problem: surface velocities, internal deform-
ation, basal sliding velocities, borehole water levels, and dir-
ect observations of basal conditions. This range of
information enables the sliding velocity to be examined
with respect to the conditions present at the bed. In an effort
to reveal short time- and length-scale variability, measure-
ments were made at a time interval of hours and over a
length scale of 10—15m. All data were collected during the
same month (June) of two consecutive years, although data
from the two years were markedly different in character. We
hypothesize that this is due to variation in the timing of
seasonal transitions: one year’s data represent the late-
winter mode of the drainage system, while data from the
other year represent the transition from winter to spring;

The field research was conducted on Worthington Glacier,
Chugach Mountains, Alaska, U.S.A. Worthington Glacier is a
temperate valley glacier, about 8 km long, 1km wide and
200—220 m thick near the equilibrium line. The measure-
ments were made just down-glacier of the equilibrium line
(Fig. 1) in a reach of the glacier that has been mapped in
detail with ice-penetrating radar (Welch and others, 1998).
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Fig. 1. Vertical avr photograph of Worthington Glacier showing the location of the borehole and velocity measurements. Flow direction
is from left to right. Holes drilled in 1997 are shown as squares; holes drilled in 1998 are shown as open circles. T he survey sites in 1997

(97-Svy) and 1998 (98-Svy) are shown.

This reach has also been the focus of several detailed investi-
gations of stress—strain relationships and glacier motion (e.g.

Harper and others, 1998; Pfeffer and others, 2000).

2. DATA COLLECTION
2.1. Surface measurements

Seasonal velocity

Surface velocities were measured within the study reach
between 1992 and 1998. During most of these years, 20—60
velocity markers were surveyed daily to weekly between
June and August, and 4—12 markers were used to measure
the displacement over the period September—May. The
survey methods, data reduction and error analysis are
described in Harper and others (1996).

Short-term velocity

High-resolution surface velocity data were collected at one
point on the glacier surface using a laser ranging system.
The laser ranger was installed on the glacier, and retro
prisms were mounted on the valley wall, approximately
1.125 km from the ranger (Fig. 1). The laser ranger was fixed
to the glacier surface via three footings that were drilled
through the seasonal snow and into glacier ice.

Glacier displacement was measured as the laser ranger
moved toward the prism array. Displacements were measured
four times daily as weather permitted. The measurements
were not always made at equal time intervals but were made
within a 30 min window. Each measurement consisted of the
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mean and standard deviation of several hundred distance
recordings made by the laser ranger over approximately 10s.
An error component of velocity was then computed from the
standard deviation of these measurements.

The distance measured by the laser ranger was not dir-
ectly in line with the direction of maximum surface move-
ment. 1o correct for this, the laser ranger itself was surveyed
from the valley wall every 2—3 days. The flow path of the laser
ranger was then used to correct the measured displacements
in order to compute the high-time resolution velocity vector.

2.2. Borehole measurements

Boreholes extending approximately 200 m to the bed of the
glacier were drilled using hot-water methods. The diameter
of the holes was approximately 0.l m. In 1997, six boreholes
spaced 15 m apart were drilled for the study, and five holes
with a similar spacing were installed in 1998 (Tig. 1). The
bed was identified during drilling when the measured load
on the drill stem fell to zero as the stem came to rest on the
glacier bed. Connection of the holes with the basal hydro-
logical system was confirmed by monitoring the water level
in the holes during drilling: a sudden draining of the hole
indicated that communication had been established with
the basal system at a pressure below ice overburden pressure.

A submersible video camera was lowered down each hole
immediately after drilling. The holes were inspected for con-
nection with the basal drainage system, degree of water tur-
bidity and basal sediment character. Each hole’s connection
to the basal hydrological system was confirmed by visual
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inspection of the motion of air bubbles, turbidity clouds or
small sediment particles. The holes were re-filmed repeatedly
during the study periods, at least every other day and often
more frequently. The repeat video observations suggested
that during both years all of the holes remained connected
to the hydrological system for the entire period of study.

We believe that none of these boreholes intersected en-
glacial conduits. Three lines of evidence support this: (1) sudden
changes in water level in the hole were not observed while drill-
ing at depths above the bed; (2) each hole was filmed multiple
times with a video camera, and no conduits were observed
within the borehole walls; and (3) statistical analysis of the con-
centration of conduits within this reach of the glacier suggested
that conduits make up only (2.0 x10 %)~ (94 x 10 4 % of the ice
mass (Harper and Humphrey, 1995).

Ice deformational velocity

Englacial deformation within the study area was measured
by repeated inclinometry of boreholes. Data were collected
in the study reach in an array of 30 boreholes over a 90 day
interval during 1994 (Harper and others, 1998), and within
four boreholes over the year-long interval 1997/98. The latter
boreholes were fitted with wire cable in 1997, and then re-
drilled in 1998 by following the wire through frozen por-
tions of the hole. The drilling, inclinometry and data-
processing techniques are presented elsewhere (Harper
and others, 2001).

Sliding velocity

Sliding velocity was directly measured via time-lapse videog-
raphy of the bottom of boreholes. The procedure consisted of
lowering the camera to within 0.1m of the base of the holes
and fixing it in place. Video recordings of the bed were then
made over various time periods, from continuous filming
for up to 10 hours, to time-lapse filming at 30 min intervals
for 24 hours. Sliding velocity was measured by tracking the
displacement of features on the bed relative to the ice of the
borehole wall.

Water levels

Each year, the water level in one hole was measured at 5 min
intervals using a pressure transducer, installed at approxi-
mately 150 m depth and attached to a data logger at the sur-
face. The water levels in the other holes were measured
manually at least four times per day. The manual measure-
ments were not made at exactly the same time of day, but
within a 30 min window.

The water level in each hole was monitored as a proxy
measurement of the subglacial water pressure in the region
of the hole. Thus, holes were essentially used as manometers.
This technique is only valid provided that: (1) the hole 1s
well connected with the basal hydrological system; (2) sur-
face and englacial water inputs to the hole do not influence
the hydrological system or water level in the hole; and (3)
the volume of the hole is small compared to the volume of
water at the bed. Fluctuating water levels, as well as video
observations of water flow at the bed, imply that the holes
were always connected to the drainage system. As discussed
previously, several lines of evidence suggest that there were
no englacial conduit inputs to the boreholes. We also assume
that the presence of the boreholes did not significantly alter
the basal drainage system since existing holes showed no
discernible changes in water level or turbidity when new
holes connected to the drainage system. Nevertheless, we
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Fig. 2. Borehole video images of hole 98-H5 filmed 5 days apart
m 1998. (a) The hole initially encountered bare bedrock. (b)
Five days later the hole had moved over coarse sediment. The
sediment remained at the base of the hole throughout the obser-
vation pertod and overturned as the hole moved over the bed.

note that a major assumption is made hereafter by using
borehole water levels to refer to the “basal water pressure”

3. RESULTS
3.1. Bed observations

A combination of radar measurements, the depths of more
than 140 boreholes drilled for various studies, and video
observations of hummocks on the bed suggest that the topo-
graphic relief of the bed within the region is on the order of a
few meters up to a maximum of about 10 m. Video obser-
vations of the bed showed it to be a patchwork of bare bed-
rock and bedrock covered by coarse sediment with particles
10-100 mm in diameter (Fig. 2). Time-lapse recordings of
holes moving over cavities and hummocky terrain, and video
observations where drilling penetrated sediment cover both
suggest that the sediment layer was typically 10 cm, and was
not more than a few tens of cm, in thickness. Filming of adja-
cent holes spaced 10—15 m apart, both in this study and in pre-
vious work (e.g. Harper and Humphrey, 1993), suggests that
the patches cover considerably less than 50% of the bed and
the aerial extent of individual sediment patches is limited to
1-10 m. No differences in the character of the basal sediment
were noticeable between the two years of observation. There-
fore, we believe that the sediment cover is not of sufficient
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thickness and extent to allow till deformation to be a signifi-
cant contributor to glacier motion.

3.2. Seasonal velocity variability

The survey program defined a seasonal pattern to Worthington
Glacier’s surface velocity similar to those identified on numer-
ous other glaciers (e.g. Hodge, 1974; Hooke and others, 1983).
Worthington Glacier’s seasonal velocity pattern consists of a
period of rapid motion during the late spring to early sum-
mer, followed by a steady decrease in speed over the remain-
der of the summer and fall. Average weekly velocity during
the spring peak is on the order of 20-30% higher than
during the late summer (Harper and others, 1996). For
example, in 1994 the mean velocity of 64 stakes located near
the study reach was 225 mm d "' during 2 weeks of late June,
but slowed to <18lmmd ' by early August. The timing and
magnitude of the spring velocity peak is not necessarily con-
sistent from year to year and appears to be related to meteoro-
logical conditions driving water input to the glacier system
(Rothlisberger and Lang, 1987). While no mid-winter surveys
were conducted, measured displacements between late fall
and early spring suggest that velocities remain relatively low
throughout the winter.

Annual surveys may be used to infer the timing of the
1997 and 1998 measurements with respect to the seasonal
velocity changes. The annual surface displacement of ice
within the study reach averaged approximately 75 m in the
years 1992-96, with a variability of about 10% from year to
year. Stakes installed in late summer 1996 were displaced an
average of 72 m by June 1997. This suggests a full seasonal
cycle, including the spring speed-up, had nearly been com-
pleted between the June 1997 measurements and the previous
summer. In 1998, however, the measured displacements of
lyear-old markers averaged only 54 m. This implies that
the seasonal peak had not yet arrived during the 1998 study
period. The earlier arrival of the spring speed-up in 1997 was
likely the result of an earlier than usual melt wave due to
warm, dry conditions that resulted in bare ice across the
entire study reach by the end of June. Conditions in 1998
were more typical of our experiences at the site, with roughly
2 m of snow covering the study reach at the end of June.

3.3. Short-term surface velocity

The mean velocity from the 1997 record is 205 mmd ' (Fig.
3a). The time series is characterized by high-amplitude
swings between fast and slow events. Some sustained peri-
ods of velocity in excess of 250 mm d ' were observed, while
slow periods with movement at rates of 120-150 mmd '
were also present. Thus, the measured peak velocities were
about twice the minimum values.

Velocities during the 1998 study interval averaged about
25-30% less than those measured in 1997, with a mean
velocity of only 150 mmd ' (Fig. 3b). Compared to the 1997
time series, motion during 1998 was relatively steady with
small-amplitude velocity swings. Several sustained periods
with low velocity (e.g. 100-120 mm d ') were also observed.
The peak velocities were also lower than in 1997, typically
on the order of only 180 mmd .

3.4. Ice deformational velocity

Borehole inclinometry measurements revealed spatial gra-
dients in the flow field but no evidence for time-dependent
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Fig. 3. Time series of surface velocity during 1997 (a) and 1998
(b). In each pair, lower panel shows velocily and upper panel
shows the possible error component (o™ ). Error is calculated as
ot = /(0% + 03)/t, where o and o9 are the standard
deviations of the furst and second distance measurements and t
is the time interval between measurements. The error velocity is
considered a worst case, as the errors are not necessarily addi-
twe. Measured deformational velocity of hole 97-H6 during
1997/98 (83mm d ") is shown by solid horizontal line in each
velocity panel. Low-velocity spike at day 180.31s believed to be a

Survey error.

deformation (Harper and others, 1998). The profile of bore-
hole 97-H6 following 374 days of deformation is shown in
Figure 4. The hole, which was approximately straight and
vertical immediately after drilling (Harper and others,
2001), has an offset between its top and bottom of about
30 m due to internal ice deformation. The total velocity of
the top of the borehole that may be attributed to internal
deformation is 83 mmd . The other three boreholes
showed very similar profiles.

3.5. Sliding velocity

Atime series of the displacement of a point on the bed relative
to the borehole wall is shown in Figure 3. These data were
collected over a 2hour interval (1930-2130h) on decimal
day 171, 1997. Displacements were calculated at 5 min inter-
vals, with an estimated measurement error of <lmm. A
least-squares fit to the displacement record gives a mean slid-
ing velocity of 128 mm d . Slight variations in the sliding rate
were observed, although these were relatively minor with no
major stick—slip events evident. Other time-lapse recordings
made during both 1997 and 1998 also contained no evidence
of stick—slip motion.

Seven surface velocity measurements were made during
the interval shown in Figure 5. The mean surface velocity
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g, 4. Trajectory of borehole 97-H6 after 1year of deform-
ation. Abscissa gives the displacement of points along the hole
relative to the bottom of the borehole. The hole was drilled to
the bed and measured to within I m of the bed.

during the interval was 199 mmd ', and steadily decreased
during the sliding-velocity measurement from a recent peak
of 300 mmd . Over the 2 hour interval, the mean sliding
velocity and the deformational velocity sum to 21l mmd ",
or to within about 5% of the measured surface velocity.
While the consistency of the three velocity components is
reassuring, we note that the surface velocity measurements
have high error since they represent small displacements
collected over short time intervals.

3.6. Water levels

The 1997 time series of water levels are displayed in Figure 6.
During the entire record, none of the holes showed cyclic
variations on a diurnal, or any other, time-scale. Each of the
holes did exhibit fluctuations in pressure over a wide range of
values, from greater than overburden pressure to less than
half of overburden.

The time series is divided into time intervals I and IT (Fig.
6) during which the fluctuations of borehole water levels were
different. During interval I, each of the boreholes exhibited
roughly similar pressure fluctuations over time intervals of
hours to days. In two instances, pairs of holes temporarily
showed variations in water level that were different from
those in the other holes. In each case the pairings involved
different holes.

Interval II is characterized by water-level variations that
differed from hole to hole. The period began with universally
low water pressure, followed by asynchronous changes over
the remainder of the record. For example, 97-H5 showed pres-
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Fig. 5. Sliding velocity from time-lapse video and effective
pressure in borehole 97-HS. (a) Displacement time series of
a point on the bed relative to the ice within the borehole wall.
Measurements were made from 1930 to 2130 h on the evening
of day 171 in 1997. (b) Effective pressure (overburden minus

water pressure) during the same period.

sure of less than 55% of overburden for the remainder of the
period; hole 97-H7 showed only minor variability, in the vicin-
ity of 80% of overburden; and hole 97-H4 showed several high-
and low-pressure events, including a period of artesian flow.
Pressure gradients between the holes were large, reaching
values as high as 48 kPam ' between holes 97-H4 and 97-H5
on day 180. Each hole showed at least one pressure spike
during the period. However, the timing, duration and magni-
tudes of spikes were inconsistent between holes.

The pressure time series of the five boreholes measured in
1998 is markedly different in character than the 1997 meas-
urements (Fig. 7). Throughout the 1998 study period, water
pressures remained continuously in the range of 70-90% of
overburden. The entire array of holes exhibited variations in
water level that were synchronous and similar in magnitude.
Water levels fluctuated diurnally, with other superimposed
variations that were minor. The maximum magnitude of the
diurnal swings was approximately 16% of the overburden
pressure.

4. STATISTICAL ANALYSIS

We use several statistical methods to examine the character
of the water level and velocity time series. Our statistical
objectives are not comprehensive; we simply evaluate the
time series for trends and periodic patterns (i.e. diurnal vari-
ations) by testing for a difference in velocities by time of day,
and by using Fourier analysis and state—space modeling
techniques. Secondly, we use cross-correlations to investigate
the relationship between pressure and velocity.
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We begin by examining the mean velocities at different
times of the day to test for evidence of time-dependent
motion. The mean velocities of four equal time intervals are
shown inTable 1. The evening hours in 1997 show a notably
larger mean velocity than other times of day, whereas in 1998
they show only a slightly higher mean velocity than other
time intervals. The means are formally compared by testing
for equality of the four means. However, there are significant
correlations between the different times of the day, which
must be accounted for to appropriately test for a difference
in the means. The statistic described by Jobson (1992, p.160),
which has an F' distribution and yields a p value, is used to
perform a test in the presence of these correlated obser-
vations. The p value gives a statistical measure of the differ-
ence between means of a group, with smaller p values
indicating more difference between the means. The p value
for the 1997 velocities indicates that the various time inter-

Table 1. Mean surface velocities (mmd ") over hourly time
intervals

Time of day p  Fdistri-
Year 2400-0600h 0600-1200h 12001800k 1800-2400h value bution”

1997 135 135 132 178
1998 130 132 134 143

00474 3,11
00623 3,18

* .
Numerator, denominator.

https://doi.org/10.3189/172756502781831629 Published online by Cambridge University Press

Harper and others: Winter/spring conditions, Worthington Glacier

100 98-H1

80: y\/\n,\/\}'\},/\/\/\/\f\/

60 \/M—\/\—N\"
162 164 166 168 170 172 174 176 178 180

100

] \PJ\/‘/\'\AW\,/\N\\/\,:

60/ 98-H3 ]

T
(]
B
=
Qa
[
2 100
2 10
S E E
o
é 80 1 1
° ] ]
‘5 604 98-HS i
§ 162 164 166 168 170 172 174 176 178 180
[

100

80 »/\p\(\'\

60 98-SF4 ]

162 164 166 168 170 172 174 176 178 180

100

604 98-H7
162 164 166 168 170 172 174 176 178 180

Decimal day 1998

Fig. 7. Time series of borehole water levels during 1998 dis-
played as a percentage of overburden pressure.

vals are significantly different from one another, while the
1998 p value suggests a smaller difference between mean
velocities of different time periods of the day (Table 1). Thus,
there is stronger evidence for time-variable motion in 1997
than there is in 1998.

State—space models are used to linearly decompose a ser-
les into trend, systematic and irregular components. The
trend component describes long-term changes in the mean
of the series, the systematic component represents repeating
patterns, and the irregular component models other, short-
term structures in the series (Shumway and Stoffer, 2000).
The observed series and independent components are
assumed to have errors that follow independent normal
(Gaussian) distributions that do not change over time. Our
original observations of water level and velocity were first
linearly interpolated to provide observations on an evenly
spaced time grid with four observations per day. State—
space models were then fit to each series using the Kalman
filter and Expectation-Maximization (EM) algorithm,
where the Kalman filter linearly filtered the series into these
different components and the EM algorithm was used to
estimate model parameters (Shumway and Stoffer, 2000).

Once the state—space model was fitted, the trend was
subtracted from the original series. Removal of the trend
allows Fourier analysis to focus exclusively on short-term
periodic variations in the series, including possible diurnal
patterns. The power spectrum at differing frequency oscilla-
tions was then computed using a discrete Fourier transform.
The periodogram for each “de-trended” series is displayed in
Figure 8. These periodograms differ only slightly from those
calculated directly from raw data. The periodograms of
1997 velocity and 1998 pressure display peaks of relatively
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high power at 1 cycle per day. In contrast, the 1997 pressure
and 1998 velocity show no major peaks at any cycle of up to
2 days. Fourier analysis relies on large-sample theory. Thus
the results should be used only as an indication of the
strength of the diurnal pattern and absence of variation at
other frequencies.

State—space modeling offers an independent check on
the Fourier periodograms through comparison of models
that include or do not include a diurnal component. Addi-
tionally, state—space models do not rely on the large-sample
assumptions of the Fourier analysis. Model fits were evalu-
ated using Akaike’s information theoretic criterion (AIC) as
described in Kitagawa and Gersch (1996). The AIC compar-
ison favors models with a diurnal component for the 1997
velocity and 1998 pressure series. Agreement of the hypoth-
esis-testing, Fourier and state—space methods adds confi-
dence to the conclusions regarding the presence or absence
of diurnal variations.

Finally, lagged and unlagged Pearson correlation coeffi-
cients were calculated between the pressure and velocity
records for a range of *1day. No statistically significant
cross-correlations between velocity and pressure were identi-
fied. This suggests that there 1s no significant linear relation-
ship between pressure and velocity. The possibility remains,
however, that the cross-correlations did not identify a rela-
tionship because the sampling was insufficient, or because
the relationship is non-linear and more complicated.

From the statistical analysis of pressure and velocity data
we draw the following conclusions: (1) a strong diurnal cycle
is present in both the 1997 velocity and 1998 pressure series;
(2) no significant diurnal cycle exists within the 1997 pres-
sure and 1998 velocity series; (3) there is no simple correla-
tion between water pressure and velocity. These results are
summarized inTable 2.
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Table 2. Characteristics of water-pressure and velocity time series

Late-winter mode Spring mode
(1998 measurements) (1997 measurements)

Mean velocity 150mmd ! 205 mmd '
Diurnal velocity variations None Present
Diurnal pressure variations Present None

Synchroneity of pressure
between boreholes

Complete Diminishing/none

5. DISCUSSION

5.1. Evolution of drainage system

Datasets were collected during the months of June 1997 and
June 1998. We assume, based on observations of surface melt
and annual displacements, that 1998 and 1997 data represent
late-winter and early-spring hydrological conditions, respect-
ively (see section 3.2). During late winter (1998 data) the
water pressure at the bed underwent diurnal fluctuations
and showed complete spatial synchroneity at the 15 m length
scale. Thus, all sampled points on the bed were in good com-
munication with each other, and at least some points on the
bed were well connected to the surface. The basal hydro-
logical system is inferred to have had a relatively low volume
due to the general lack of available water at this time of the
year; drainage in the borehole area likely occurred through a
system of linked cavities. Water flux through the system was
sufficiently small that daily increases in input caused a pres-
sure build-up over the bed, but were low enough that the
pressure fully recovered on a diurnal cycle.

Later in the hydrological year, during the spring velocity
peak (1997 data), meltwater production at the surface was rela-
tively high, with strong diurnal variations. Initially, regions of
the bed with similar water pressure encompassed several
holes, indicating that interconnected regions extended over
tens of meters. Eventually there was no common pattern in
the pressure of holes that were 15 m apart. We surmise that
interconnected areas of the bed had decreased in size to less
than the hole spacing. At no time did the pressure vary diur-
nally in response to input variations. We hypothesize that
during this transitional period the initial drainage configura-
tion of linked cavities was evolving into a new drainage
system. The low-pressure areas may have been connected to
a fast draining system while the adjacent high-pressure areas
were hydraulically isolated. If a conduit system was in fact
evolving, the process was episodic as holes tended to connect
and disconnect to the low pressure. This process could be
related to high sliding rates, which may cause sudden re-rout-
ing of the drainage over the hard bed.

Worthington Glacier’s apparent breakdown of spatially
synchronous and diurnally varying water pressure is the
reverse of observations of Haut Glacier dArolla, Switzer-
land, where these hydraulic characteristics were established
over time (Gordon and others, 1998). The Arolla data were
collected in summer, from late July to late August, when a
major subglacial channel is interpreted to have been estab-
lished. Assuming that the hydrological processes between
the two glaciers are similar, a possible interpretation would
be that our data represent the transition from a winter mode
with low sliding velocity (linked cavities) to a spring mode
with high sliding velocity (hydraulically isolated patches


https://doi.org/10.3189/172756502781831629

with areas of fast drainage), while the Gordon and others
(1998) data represent a later transition from the spring mode
to a summer mode.

5.2. Relationship between velocity and pressure

The study reach showed sliding variability that at no time
matched local pressure fluctuations: when diurnal pressure
variations were present, there were no corresponding vari-
ations in motion, whereas daily sliding variations occurred
with no corresponding pressure signal. This suggests that
local water pressure was not the primary factor driving the
sliding velocity of the reach.

The relevant pressure, however, may be associated with a
longer length scale than the 15 m spacing of the boreholes.
Kamb and others (1994) suggest that sliding velocity is con-
trolled by the mean coupling length over which basal shear
stress 1s effectively averaged by ice dynamics. The longitudin-
al coupling length for Worthington Glacier, using Kamb and
Echelmeyer’s (1986) analysis, is on the order of 200600 m.
The local water pressure may differ from the 200-600m
mean due to local differences in the drainage system. A diffi-
culty with this explanation is that it requires a period when
local pressure varied diurnally while the regional mean did
not, and another period when the regional mean varied diur-
nally while local pressure did not.

Another possible explanation for the lack of correlation
between local pressure/velocity cycles is that the local
velocity resulted from longitudinal forcing by the ice. If the
glacier below the study reach was experiencing enhanced
sliding rates, the result could be pulling on the study reach
from below. A diurnal cycle in the pulling could explain
diurnal motion of the study reach at times when the reach’s
pressure was non-cyclic. Differential sliding rates between
the study reach and the lower glacier could result from
focused water input to the bed at the lower icefall, differ-
ences in the subglacial drainage systems of the two locations,
or a time lag in meltwater generation and routing to the bed
along the length of the glacier (Fountain and Walder, 1998).

A final explanation for the lack of correlation between
pressure and velocity could be that water storage at the bed
is the primary factor in determining the sliding speed. Force-
balance modeling of basal processes suggests that sliding
speed directly correlates with storage but storage does not
necessarily correlate with pressure (Humphrey, 1987). Conse-
quently, sliding speed may not necessarily correlate with
pressure. Unfortunately, we do not have measurements of
basal water storage and can only offer qualitative field obser-
vations suggesting the magnitude and cycles of sliding speed
were similar to the magnitude and cycles of water input.

6. SUMMARY AND CONCLUSIONS

The character of Worthington Glacier’s motion and sub-
glacial hydrological conditions showed significant change
between a late-winter mode and a spring mode. In late
winter the glacier’s surface velocity was relatively small
and steady, averaging 150 mm d . During a few brief inter-
vals, the glacier moved almost entirely by ice deformation.
In late winter, the basal water pressure measured in bore-
holes spaced 15 m apart was characterized by synchronous
diurnal variations without spatial pressure gradients.

In contrast, during the spring velocity peak the surface
velocity fluctuated diurnally, averaged 205 mm d ', and had
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peak periods in excess of 250 mmd . Comparisons of sur-
face velocity with measurements of internal deformation in-
dicate that sliding dominated the motion. Water pressures
during this time fluctuated widely but did not exhibit cyclic
behavior. Each borehole showed unique changes in water
level, with strong spatial pressure gradients between holes
spaced only 15 m apart. We hypothesize that the changes in
the pressure field from late winter to spring represent the
breakdown of a linked-cavity system.

Analysis of the data collected on Worthington Glacier
identified no simple relationship between water pressure
and sliding speed, in terms of either magnitudes or temporal
cycles. Diurnal variations in sliding speed occurred when
there were no diurnal water-pressure fluctuations, while
diurnal water-pressure variations were observed when slid-
ing was non-periodic.
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