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Fluttering-induced flow in a closed chamber
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We study the emergence of fluid flow in a closed chamber that is driven by dynamical
deformations of an elastic sheet. The sheet is compressed between the sidewalls of the
chamber and partitions it into two separate parts, each of which is initially filled with
an inviscid fluid. When fluid exchange is allowed between the two compartments of the
chamber, the sheet becomes unstable, and its motion displaces the fluid from rest. We
derive an analytical model that accounts for the coupled, two-way, fluid–sheet interaction.
We show that the system depends on four dimensionless parameters: the normalized
excess length of the sheet compared with the lateral dimension of the chamber, Δ; the
normalized vertical dimension of the chamber; the normalized initial volume difference
between the two parts of the chamber, vdu(0); and the structure-to-fluid mass ratio, λ.
We investigate the dynamics at the early times of the system’s evolution and then at
moderate times. We obtain the growth rates and the frequency of vibrations around the
second and the first buckling modes, respectively. Analytical solutions are derived for
these linear stability characteristics within the limit of the small-amplitude approximation.
At moderate times, we investigate how the sheet escapes from the second mode. Given the
chamber’s dimensions, we show that the initial energy of the sheet is mostly converted into
hydrodynamic energy of the fluid if λ� 1 and into kinetic energy of the sheet if λ� 1. In
both cases, most of the initial potential energy is released at time tp � ln[cΔ1/2/vdu(0)]/σ ,
where σ is the growth rate and c is a constant.

Key words: flow-structure interactions, bifurcation

1. Introduction

Many natural processes and technological applications rest on fluid–structure interactions
to maintain their regular functionality. Of particular interest are the mutual interactions
between slender elastic objects and a fluid medium that trigger elastohydrodynamic
instabilities. Such instabilities are vital for the control, for example, of the passage of air
through the lungs (Ishizaka & Flanagan 1972; Grotberg & Jensen 2004), the directionality
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Figure 1. Schematic overview of the system. A thin sheet of total length L̃, bending modulus B̃, density ρ̃sh and
thickness h̃ divides a closed rectangular chamber of dimensions L̃x × L̃y into two parts. The excess length of the
sheet compared with the lateral dimension of the chamber is given by Δ̃ = L̃ − L̃x (not shown in the figure). The
volumes of the chamber above and below the sheet, ṽi(t) (i = u, d), are filled with an inviscid and irrotational
fluid of density ρ̃�. At t̃ ≥ 0, fluid is allowed to exchange freely between the two compartments of the chamber.
In our formulation, the fluid exchange occurs through the upper and lower walls of the chamber (represented by
dashed-dotted blue lines). To model this exchange, we apply periodic boundary conditions along these walls.
One possible experimental set-up that corresponds to the above model involves a valve-controlled channel that
connects the two compartments of the chamber.

of blood flow (Pedley, Brook & Seymour 1996) and the blood pressure of tall animals
(Pedley et al. 1996). Moreover, bending deformations of slender objects in viscous or
inertial fluids have been manipulated for applications in soft robotics (Kim, Laschi &
Trimmer 2013; Matia & Gat 2015; Rothemund et al. 2018), the fabrication of microfluidic
soft actuators (Thorsen, Maerkl & Quake 2002; Hosoi & Mahadevan 2004; Holmes et al.
2013; Fargette, Neukirch & Antkowiak 2014; Gomez, Moulton & Vella 2017; Christov
et al. 2018; Boyko et al. 2019; Jiao & Liu 2021), the manufacture of semiconductors (King
1989) and the design of soft and active matter through catalytic reactions (Laskar et al.
2022; Manna et al. 2022) and dynamical wrinkles (Chopin, Dasgupta & Kudrolli 2017;
Kodio, Griffiths & Vella 2017; Box et al. 2019; Pocivavsek et al. 2019; O’Kiely et al.
2020; Diamant 2021; Guan et al. 2022, 2023).

Despite recent achievements, novel designs of small-scale devices still call for a deeper
understanding of elastohydrodynamic couplings. One such design was recently introduced
by Oshri (2021). In that set-up, a thin sheet is compressed between the two sides of
a closed chamber and divides it into two separate parts that are connected by a valve
(figure 1). At time t < 0, the valve is closed, and each part of the chamber is filled with
an incompressible fluid. In the absence of fluids, the sheet would have accommodated its
minimum energetic state, i.e. the lowest mode of buckling, but in the presence of fluids,
the sheet is forced to accommodate a higher energetic state. The additional energy can be
exploited to displace the fluid from rest, if, for example, the valve is opened to allow the
transfer of fluids between the two compartments of the chamber.

In the above mentioned study, Oshri (2021) analysed the quasi-static evolution of the
system, wherein the volume of fluid exchanged between the two parts of the chamber is
the control parameter. In contrast, the present work focuses on the dynamical evolution
of the system, wherein the fluid is driven by the spontaneous relaxation of the sheet from
higher to lower energetic states. We believe that the dynamic analysis of this set-up will
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Fluttering-induced flow in a closed chamber

open new avenues for designing advanced technological devices, such as micromechanical
switches (Krylov et al. 2008; Zhang et al. 2014; Preston et al. 2019) and microfluidic
mixing devices (Stroock et al. 2002; Liu, Kim & Sung 2004; Lee et al. 2011). Indeed,
the additional coupling between the sheet and the surrounding fluid confers increased
flexibility in the design of such switches. Different fluids with different viscosities can be
used to manipulate the time that is required for the sheet to release its stored energy, thereby
increasing, for example, the time scales over which the switches operate. In addition, when
the two parts of the chamber are filled with different fluids, the elastic energy released
from the sheet can be exploited for mixing: the pressure field induced in the chamber can
be utilized to inject the fluid from one side of the chamber into the fluid on the other side,
thereby inducing mixing of the two fluids. Typically, such devices function in conditions of
low Reynolds numbers, where the effects of viscosity are significant. However, our system
can also be applied in the design of pneumatic time-delay switches and soft pneumatic
actuators (Rothemund et al. 2018; Preston et al. 2019; Drotman et al. 2021), which typically
operate in the opposing limit of high Reynolds numbers.

While successful implementation of these applications is in itself a challenging task
(which we plan to pursue in future research), in this work, we aim to answer more
fundamental questions related to the underlying physical behaviour of the system. For
example, how much of the initial elastic energy is subsequently transferred from the sheet
to the fluid? How is the velocity of the fluid that is induced in the chamber related to the
elastic properties of the sheet? What is the maximum pressure difference that the sheet
induces in the chamber?

As a first step to answering these questions, we derive an analytical model that
encompasses the elasticity of thin sheets and the hydrodynamics of inviscid fluids. Our
model reveals that the system depends on four dimensionless parameters: the normalized
excess length of the sheet compared with the lateral dimension of the chamber, Δ, where
the total length of the sheet is used to normalize all lengths; the normalized vertical
dimension of the chamber, Ly; the normalized initial volume difference in the chamber,
vdu(0); and the structure-to-fluid mass ratio, λ. We show that for fixed dimensions of the
chamber, Ly and Δ, the system exhibits two asymptotic solutions as a function of λ. The
sheet’s inertia dominates the dynamics when λ� 1, and is therefore referred to below as
the ‘solid-dominated’ region, while the dynamics is governed by the fluid’s inertia when
λ� 1, and is therefore referred to as the ‘fluid-dominated’ region.

We investigate the system’s behaviour both in the early stages of its evolution and at
moderate times during which nonlinear effects control the dynamics. For the early stages,
we employ linear stability analysis around the (unstable) second buckling mode and the
(stable) first buckling mode. We obtain the highest growth rate, σ , and the lowest frequency
of vibration, ω, around these initial states. The two solutions exhibit similar behaviour as a
function of λ, namely they converge to a constant in the solid-dominated region, while they
exhibit the scaling λ1/2 in the fluid-dominated region. Furthermore, we show that in the
solid-dominated region only one mode of the sheet is essentially excited at the instability,
while an infinite number of modes are excited in the fluid-dominated region. Analytical
approximations are derived for each of these cases under the assumption that the amplitude
of the sheet remains small, i.e. Δ � 1 (Landau & Lifshitz 1986).

At moderate times, a weakly nonlinear analysis is performed around the second buckling
mode. Given a small initial volume difference between the upper and lower parts of the
chamber, we analyse the dynamic evolution of the system up to the peak time tp, at which
the sheet releases most of its initial potential energy. We show that, after some initial
delay, the sheet rapidly escapes from the unstable state. We derive the approximation σ tp �
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ln[cΔ1/2/vdu(0)], where σ is the growth rate of the linear instability and c is a constant,
and show that it agrees well with the numerical results. At tp, most of the initial potential
energy is converted into kinetic energy of the sheet if λ� 1 and into hydrodynamic energy
if λ� 1. We show that at t = tp a relatively large spike of pressure drop is applied on the
sheet.

The paper is organized as follows. In § 2, we first formulate the problem for finite
excess lengths. Then, we reduce this formulation to the small-amplitude approximation
and introduce the modal expansion of the solution. In § 3, we investigate the early stages
of the evolution. After recalling the static solution, we employ a linear stability analysis
around the second and the first modes of buckling. In § 4, we investigate the system’s
evolution at moderate times. In particular, we examine the energetic interplay between
the sheet and the fluid, derive the scaling for the peak time, tp, and explore the relation
between the volume difference and the pressure drop on the sheet. Finally, in § 5, we
discuss a possible experimental realization of the system and, in § 6, we draw conclusions,
and propose a direction for future study.

2. Formulation of the problem

We consider an inextensible thin sheet of total length L̃, bending modulus B̃, thickness
h̃ and density ρ̃sh. The sheet divides a rectangular closed chamber into two parts, which
are connected by a valve (figure 1). The lateral, the vertical and the width dimensions of
the chamber are denoted by L̃x, L̃y and W̃, respectively. A Cartesian coordinate system is
located on the left edge of the sheet. A cross-section of the chamber on the x̃ỹ plane is
placed at 0 ≤ x̃ ≤ L̃x and −L̃y/2 ≤ ỹ ≤ L̃y/2. When t̃ < 0, the valve connecting the two
parts of the chamber is closed, and the volumes above and below the sheet, ṽu(t̃) and
ṽd(t̃), are filled with an incompressible, inviscid fluid of density ρ̃�. Hereafter, we denote
quantities related to the upper and lower parts of the chamber by the subscripts ‘u’ and
‘d’, respectively. At t̃ ≥ 0, the valve is opened, and free exchange of fluid is allowed in the
chamber.

In the analysis that follows, we normalize all lengths by the total length of the sheet, L̃,
and we normalize time by the inertial time scale of the sheet t̃� = L̃2(ρ̃shh̃/B̃)1/2, i.e.

t = t̃/t̃�, x = x̃/L̃, Lx = L̃x/L̃, vd(t) = ṽd(t̃)/L̃3, etc. (2.1a–d)

We choose this normalization because we anticipate that the wavelengths on the sheet
will scale with the sheet’s total length. In addition, since the dynamics in the system is
driven by the sheet’s motion, we chose the sheet’s inertial time scale for the normalization.
Note that our normalization with respect to lengths and time implies the normalization of
the hydrodynamic fields and of the elastic fields, as will be emphasized further during the
formulation. Hereafter, we denote all dimensional quantities with tildes over the symbols,
and the corresponding non-dimensional quantities without a tilde.

Our model is based on the following six assumptions. Firstly, we assume that the system
remains uniform along the width dimension of the chamber. Therefore, we set W = 1 and
consider a two-dimensional system. Secondly, we assume that the volume occupied by the
elastic sheet is negligible compared with the total volume of the chamber, i.e. h̃L̃/(L̃xL̃y) �
1, and as a result vu(t) + vd(t) = LxLy. Thirdly, we assume that the fluid exchange between
the two parts of the chamber occurs through the upper and lower walls, i.e. the walls
located at y = ±Ly/2. Fourthly, we assume that the vertical dimension of the chamber, Ly,
is larger than the typical length scale, �, over which the disturbances in the flow caused by
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the sheet’s motion decay to zero. In addition, we assume that there is no contact between
the sheet and the sidewalls of the chamber, or of the sheet with itself, at any time during
the system’s evolution. Lastly, we assume that at t = 0 the system is at rest and that the
sheet accommodates a configuration that is dictated by the volume difference vdu(0) =
vd(0) − vu(0).

For an inviscid and irrotational fluid, the state of the flow is determined by four fields.
Two of these are the fluid’s potential functions φi(x, y, t), where i = u, d, from which we
can determine the velocity profile of the fluid as vi = ∇φi, where ∇ is the two-dimensional
gradient operator. The other two fields that characterize the flow are the pressures pi(x, y, t)
in each side of the chamber. Using our normalization convention, we find that the potential
functions are normalized by φi = φ̃i(ρ̃shh̃/B̃)1/2 and the pressures by pi = p̃iL̃3/B̃. The
evolution of these hydrodynamic fields, in space and over time, is determined by the
continuity equation and Bernoulli’s equation:

∇2φi = 0, (2.2a)

λpi + ∂φi

∂t
+ 1

2
|∇φi|2 = ci(t), (2.2b)

where ci(t) are arbitrary functions that depend on time. Throughout the system’s
development, these functions are employed to maintain a constant pressure at a point
within each part of the chamber (Lamb 1945). In addition, in (2.2b) and (2.5), we define
the dimensionless parameters:

λ = ρ̃shh̃

ρ̃�L̃
, Δ = 1 − Lx. (2.3a,b)

The structure-to-fluid mass ratio, λ, accounts for the ratio between the densities of the
sheet and the fluid and the slenderness of the sheet. This dimensionless parameter plays a
role, for example, in the problem of a flag flapping under a uniform axial flow (Argentina
& Mahadevan 2005; Connel & Yue 2007; Alben 2008; Alben & Shelley 2008). The
parameter Δ accounts for the difference between the total length of the sheet and the lateral
dimension of the chamber. In dimensional form, it may be expressed as Δ̃ = L̃ − L̃x. For a
given system, the parameters λ and Δ remain constant throughout the dynamic evolution.

To solve the continuity equation (2.2a), we must first specify the boundary conditions
on the chamber’s walls and the fluid–sheet interfaces. Since the fluid that exits the upper
wall of the chamber enters through the lower wall, we set periodic boundary conditions
through y = ±Ly/2. Thereafter, we ensure that there is no penetration of fluid through the
sidewalls of the chamber. These restrictions give the boundary conditions:

φu

(
x,

Ly

2
, t
)

= φd

(
x, −Ly

2
, t
)

and
∂φu

∂y

(
x,

Ly

2
, t
)

= ∂φd

∂y

(
x, −Ly

2
, t
)

, (2.4a)

∂φi

∂x
(0, y, t) = ∂φi

∂x
(1 − Δ, y, t) = 0. (2.4b)

In addition to the periodic boundary conditions at y = ±Ly/2, it is necessary to ensure
that pu(x, Ly/2, t) = pd(x, −Ly/2, t) along these walls. By utilizing Bernoulli’s equation
(2.2a), and the periodic boundary conditions, it becomes apparent that this requirement is
satisfied when cd(t) = cu(t) ≡ c(t). Consequently, we can determine the function c(t) by
fixing the pressure at a specific point in the lower part of the chamber. In the following
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analysis we choose

pd

(
1 − Δ

2
, −Ly

2
, t
)

= 0. (2.5)

Two sets of equations model the contact between the sheet and the fluid. The first set
corresponds to the kinematic boundary conditions that ensure continuous contact between
the sheet and the fluid. The second set corresponds to the force balance equations on
the sheet that ensure proper transfer of the momentum between the solid and the fluid.
To obtain these two sets of equations, we first define the elastic fields that describe the
position of the sheet on the xy plane. It is important to note that, as we assumed the sheet
to be inextensible, the elastic model accounts only for bending deformations and does
not include stretching deformations. In contrast to the Eulerian description of the fluid,
it is convenient to adopt a Lagrangian description for the sheet and to define the elastic
fields as functions of the normalized arclength parameter on the sheet, s ∈ [0, 1]. With
this change of reference frame, we define the position vector to a point on the sheet as
xsh(s, t) = (xsh(s, t), ysh(s, t)) and the angle between the tangent to the sheet and the x
axis as θ(s, t) (see figure 1). These three elastic fields, i.e. xsh(s, t), ysh(s, t) and θ(s, t), are
not independent, since they are related by the geometric constraints

∂xsh

∂s
= cos θ, (2.6a)

∂ysh

∂s
= sin θ. (2.6b)

By using these definitions, the kinematic boundary conditions on the sheet–fluid interfaces
are given by

y = ysh(x(s), t),
Dysh

Dt
= ∂φi

∂y
, (2.7a,b)

where D/Dt = ∂/∂t + vi · ∇ is the two-dimensional convective derivative. The balance
of moments and forces on the sheet is given by

∂2θ

∂s2 = −Fx sin θ + Fy cos θ, (2.8a)

∂2xsh

∂t2
= −∂F

∂s
+ [

pd(xsh, ysh, t) − pu(xsh, ysh, t)
]

n̂d, (2.8b)

where F = (Fx(s, t), Fy(s, t)) is the vector of reaction forces per unit length at a
cross-section of the sheet and our normalization implies that F = F̃ L̃2/B̃. In addition,
n̂d = (− sin θ, cos θ) is a unit normal vector on the sheet that points outwards from the
lower part of the chamber, and the hydrodynamic pressures in (2.8b) are calculated on their
respective sides of the sheet–fluid interfaces. Note that in (2.8a) we neglect the rotational
inertia term. This is justified in the limit of a thin and inextensible sheet, as assumed in
this analysis (Neukirch et al. 2012; Goriely 2017; Kodio, Goriely & Vella 2020). Equations
(2.8) are supplemented by the following boundary conditions on the sheet’s edges:

xsh(0, t) = 0, xsh(1, t) = 1 − Δ, (2.9a)

ysh(0, t) = 0, ysh(1, t) = 0, (2.9b)

∂θ

∂s
(0, t) = 0,

∂θ

∂s
(1, t) = 0, (2.9c)

where we assume hinged boundary conditions in (2.9c).
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Fluttering-induced flow in a closed chamber

This completes the formulation of the problem. In summary, given the excess length Δ,
the vertical dimension of the chamber Ly, the parameter λ and the initial volume difference
in the chamber vdu(0), the dynamic evolution of the system is determined from the solution
of the coupled equations (2.2)–(2.9). In the analysis that follows, we always assume that
the sheet and the fluid are initially at rest, i.e. (∂xsh/∂t)(s, 0) = 0 and φi(x, y, 0) = 0.

While solutions to our set of nonlinear equations can, in practice, be sought only
numerically, some analytical progress that sheds light on the underlying physics of the
system can be achieved under the assumption that the excess length remains small,
i.e. Δ � 1. For this reason, in the next section, we reduce our model to this so-called
small-amplitude approximation (Landau & Lifshitz 1986) and exploit this formulation to
study the time-dependent behaviour of the system.

However, before we proceed to the next section, we should add a comment regarding
the system’s energy. Since we assumed an ideal fluid, i.e. one without viscous dissipation,
and since we consider an elastic model, our equations have a conserved first integral that
corresponds to the system’s total energy. In accordance with Appendix A, it can be shown
that the total energy of the system is given by the sum of the energies of the sheet and
the fluid, E = Esh(t) + Ef (t), where Esh(t) accounts for the sum of the kinetic and the
potential energies of the sheet, which are designated Ep

sh(t) and Ek
sh(t), respectively, and

Ef (t) accounts for the kinetic energy of the fluid. Therefore, the total energy is given by

E = 1
2

∫ 1

0

[∣∣∣∣∂xsh

∂t

∣∣∣∣
2

+
(

∂θ

∂s

)2
]

ds +
∑

i=u,d

1
2λ

∫∫
vi(t)

|∇φi|2 dx dy, (2.10)

where | · | corresponds to the norm of the enclosed vector and our normalization implies
that E = ẼL̃/B̃. Since our system starts from rest, the total energy of the system equals the
initial potential energy of the sheet, E = Ep

sh(0), and this energy is conserved throughout
the system’s evolution.

2.1. The small-amplitude approximation
The assumption that the amplitude of the sheet remains small, or equivalently that Δ �
1, implies that the geometric relations (2.6) reduce to ∂ysh/∂s � θ and ∂xsh/∂s � 1 −
1
2 (∂ysh/∂s)2. The nonlinearity in the derivative of xsh(s, t) is retained in the leading order
of the theory so as to satisfy the constraint on the excess length (2.9a). Indeed, in the
small-amplitude approximation, this constraint is given by

Δ = 1
2

∫ 1

0

(
∂ysh

∂x

)2

dx. (2.11)

Here, we replace the arclength coordinate of the sheet with the Eulerian coordinate of
the fluid, s � x, according to our level of approximation. Correspondingly, the balance of
forces and moments on the sheet (2.8) reduces to

∂2ysh

∂t2
+ ∂4ysh

∂x4 + Fx(t)
∂2ysh

∂x2 + [
pu(x, 0, t) − pd(x, 0, t)

] = 0, (2.12)

where the lateral compression, Fx(t), is a function that depends solely of time. In addition,
the pressure difference that the fluid exerts on the sheet, i.e. the last term in (2.12), is
calculated at the sheet–fluid interface, y = 0.
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Thus far, we have approximated only the elastic part of the model. To further simplify the
hydrodynamic part, we need to estimate the order of its corresponding fields. Given that
the initial energy of the sheet scales linearly with the excess length, Esh(0) ∝ Δ, and that
the total energy of the system is conserved, the energy of the fluid is, at most, proportional
to Ef ∼ Δ. Therefore, if we approximate the energy of the fluid by Ef ∼ |v|2�, where |v| is
the typical velocity in the chamber and � is the decay length of the disturbances in the flow,
we obtain |v| ∼ √

Δ/�. Furthermore, if we assume that the order of approximation of a
derivative over the potential function, with respect to either a spatial dimension or time,
does not change, then we can approximate Bernoulli’s equation (2.2b), and the kinematic
boundary conditions by

λpi + ∂φi

∂t
= c(t), (2.13a)

∂ysh

∂t
=
(

∂φi

∂y

)
y=0

. (2.13b)

These approximations will further be verified a posteriori in § 4, where we analyse
the nonlinear dynamics of the system. In particular, we compare the results of this
approximation with the numerical solution of the nonlinear model (2.2)–(2.9). Note that
since the continuity equations (2.2a) are already linear in the potential functions, they
remain unchanged in our approximated model.

This completes the reduction of our model to the small-amplitude limit. In summary,
(2.2a) and (2.11)–(2.13), supplemented by the linearized form of the boundary conditions
(2.5), (2.4), (2.9b) and (2.9c), form a closure and describe the coupled dynamics of
the sheet and the fluid in the small-amplitude approximation. A comment is necessary
regarding this simplified formulation. In accordance with the derivation in Appendix B,
it can be shown that the reduced model emanates from the minimization of the action
S = ∫ T

0 L dt, where

L =
∫ 1

0

[
1
2

(
∂ysh

∂t

)2

− 1
2

(
∂2ysh

∂x2

)2

+ Fx(t)

(
1
2

(
∂ysh

∂x

)2

− Δ

)

+ 1
λ

[φd(x, 0, t) − φu(x, 0, t)]
∂ysh

∂t

]
dx

− 1
2λ

∫ Ly/2

0

∫ 1

0
|∇φu|2 dx dy − 1

2λ

∫ 0

−Ly/2

∫ 1

0
|∇φd|2 dx dy, (2.14)

with respect to the elastic fields ysh(x, t) and Fx(t) and the hydrodynamic fields φi(x, y, t).
In the next section, we employ a modal expansion of these fields and combine it with the
Lagrangian formulation to derive a simplified set of equations that are dependent solely
on time.

2.1.1. Modal expansion
The continuity equations (2.2a), and their corresponding boundary conditions on
the fluid–chamber interfaces (2.4), are satisfied when the potential functions are
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Fluttering-induced flow in a closed chamber

given by

φi(x, y, t) = a0(t)
(

y ± Ly

2

)
+

∞∑
m=1

cos(πmx)
[

am(t) exp
(

πm
(

y ± Ly

2

))

+ cm(t) exp
(

−πm
(

y ± Ly

2

))]
, (2.15)

where am(t) (m = 0, 1, 2, . . .) and cm(t) (m = 1, 2, 3, . . .) are unknown time-dependent
coefficients and the ± signs correspond to the solutions of the potential functions in the
lower and the upper parts of the chamber, respectively. Similarly, we expand the solution
of the sheet’s height function in the following normal modes:

ysh(x, t) =
∞∑

n=1

An(t) sin(πnx), (2.16)

where the functions sin(πnx) automatically satisfy the boundary conditions on the sheet
edges (2.9b) and (2.9c), and An(t) are as-yet unknown coefficients.

With these expansions, the solution to our problem reduces to finding the unknown
coefficients, am(t), cm(t) and An(t), and the compression force Fx(t), from the solution of
the force balance equation (2.12), Bernoulli’s equation (2.13a), the kinematic boundary
conditions (2.13b) and the geometric constraint (2.11). Equation (2.16) involves infinite
summation over the modes of the height function, but, in practice, we will truncate this
series at n = N. A closed system of equations is then obtained when the coefficients of
am(t) and cm(t) are truncated at N − 1.

However, instead of directly using these equations, we take a different – yet equivalent
– approach, by utilizing the Lagrangian formulation (2.14). To this end, we follow the
analysis in Appendix C and substitute the potential functions (2.15), and the height
function (2.16), into the Lagrangian (2.14). We then integrate over the spatial coordinates.
Thereafter, we minimize the Lagrangian with respect to am(t) and cm(t) and express these
coefficients in terms of An(t). Substituting am(t) and cm(t) back into the Lagrangian gives

L [A1, . . . , AN, Fx] = Tnk
dAk

dt
dAn

dt
− VnkAkAn + Fx(t)CnkAkAn − ΔFx(t), (2.17)

where Einstein’s summation rule is implied for repeated indices, and we define the
following symmetric matrices:

Tnk = 1
4
δnk + Ly

2λ
W(n, 0)W(k, 0) +

N−1∑
m=1

2
πmλ

tanh
(

πmLy

2

)
W(k, m)W(n, m), (2.18a)

Vnk = π4

4
n2k2δnk, Ckn = π2

4
nkδnk, (2.18b)

where δnk is the Kronecker delta, and W(n, m) = (n/π)((1 − (−1)n+m)/(n2 − m2)) for
n /= m and zero otherwise.

Two comments are in order regarding this Lagrangian. First, since the matrix Tnk is
coupled to the kinetic terms in the Lagrangian, it takes on the role of a mass matrix in this
formulation. This mass matrix has contributions from both the inertia of the sheet, i.e. the
first term in Tnk, and the hydrodynamics of the fluid, i.e. the terms proportional to 1/λ.
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K. Goncharuk, Y. Feldman and O. Oshri

The latter hydrodynamic terms are frequently referred to as added mass or virtual mass,
since they describe an additional mass that the sheet appears to acquire when it accelerates
in the fluid (Munk 1924; Lighthill 1960; Coene 1992).

The second comment is related to the potential functions φi(x, y, t) that result from the
minimization. Using (C2b), we substitute cm(t) = −am(t) in the potential functions (2.15)
to obtain

φi(x, y, t) = a0(t)
(

y ± Ly

2

)
+ 2

N−1∑
m=1

am(t) cos(πmx) sinh
[
πm

(
y ± Ly

2

)]
. (2.19)

This solution implies that at y = ±Ly/2 the velocity of the fluid is oriented only in the
y direction, i.e. ∂φi/∂x(x, ±Ly/2, t) = 0. It also implies that φi(x, ±Ly/2, t) = 0, which,
given (2.5) and (2.13a), yields a constant zero pressure along the inlet and the outlet walls
of the chamber, pi(x, ±Ly/2, t) = 0. We anticipate that these conditions will occur only
when the disturbances that the sheet induces in the flow decay to zero. Therefore, the
small-amplitude model holds strictly when Ly � �, where � � 1/(πm), for the smallest
non-zero mode, is now explicitly identified as the decay length of the hydrodynamic
disturbances.

Keeping in mind these limitations of the small-amplitude model, we go back to derive
the equations for the coefficients An(t). Given an initial volume difference, which, in turn,
corresponds to an initial configuration of the sheet, i.e. a set of initial conditions for the
coefficients An(0), and keeping in mind that the system starts from rest, i.e. (dAn/dt)(0) =
0, we can determine the dynamic evolution of the system from the minimization of (2.17)
with respect to An(t) and Fx(t). This minimization yields N + 1 algebraic differential
equations that, in our matrix notation, read

Tnk
d2Ak

dt2
+ (Vnk − Fx(t)Cnk)Ak = 0, (2.20a)

CnkAkAn = Δ. (2.20b)

Once An(t) are determined from the solution of (2.20), the position of the sheet in time
and in space is given by (2.16), and the hydrodynamic potentials and the pressure fields are
determined from (2.15), (C2) and (2.13a). In the next section, we utilize this formulation
to investigate the early time evolution. Then, in § 4 we use it to analyse the dynamics at
later times.

3. The early time evolution

In this section, we investigate the system’s stability close to an initial equilibrium state.
The section is divided into two parts. In the first, we recall the static solutions of the
system in the small-amplitude approximation. In the second, we employ a linear stability
analysis around the first two buckling modes to extract the growth rates and the flow fields
of the perturbation around these modes.

3.1. Recap of the quasi-static solution
Following the analysis in the study of Oshri (2021), the quasi-static evolution of the
system is governed by two different branches of solutions, which we call ‘asymmetric’
and ‘symmetric’. Here, we recall the height functions in these branches.
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Fluttering-induced flow in a closed chamber

On the one hand, when the initial volume difference is set as 0 ≤ vdu(0) ≤ vcr
du, where

vcr
du = (2(3 + π2)/π

√
3(15 + 2π2))Δ1/2, the system is governed by the asymmetric

branch. In this branch, the lateral compression is constant, Fx(0) = 4π2, and the height
functions are given by

ysh(x, 0) = pud(x, y, 0)

16π4

[
2π2(1 − x)x + 1 − cos (2πx)

]

+ 1
π

√
Δ − 15 + 2π2

768π6 pud(x, y, 0)2 sin (2πx) , (3.1a)

pdu(x, y, 0) = 24π4

3 + π2 vdu(0), (3.1b)

where pud(x, y, 0) = pu(x, y, 0) − pd(x, y, 0) is the pressure difference between the upper
and lower parts of the chamber. The potential energy of the sheet in this branch is given
by

Eas = 4π2Δ − 6π4

3 + π2 vdu(0)2. (3.2)

Note that when vdu(0) → 0 we know from (3.1b) that the pressure difference vanishes,
pud(x, y, 0) → 0, and the elastic configuration converges to the second, asymmetric,
mode of buckling, ysh(x, 0) →

√
Δ/π2 sin(2πx). The total energy of the system in this

configuration is given by Eas = 4π2Δ. Note also that we considered solutions with an
initial volume difference that is greater than zero. This is because the static solution has
mirror symmetry around the x axis. Solutions with vdu(0) < 0 (and pud(x, y, t) < 0) are
obtained by a reflection of the height functions (3.1) around the horizontal axis.

On the other hand, when the volume difference is set as vcr
du ≤ vdu(0) <

√
2Δ/3, the

system is governed by the symmetric branch. In this case, the inextensibility of the sheet
implies an upper limit on the volume difference. In the case of a hinged sheet, this limit is
given by

√
2Δ/3. The height functions in this branch are given by the parametric solution:

ysh(x, 0) = pud(x, y, 0)

8u2 (1 − x)x + pud(x, y, 0)

16u4

[
1 − cos

[
2u(x − 1/2)

]
cos u

]
, (3.3a)

pud(x, y, 0) = − 16
√

6u7/2 cos u√
6u + 4u(6 + u2) cos2 u − 15 sin(2u)

Δ1/2, (3.3b)

vdu(0) = − 2
√

2
[
u(3 + u2) − 3 tan u

]
cos u√

3u3/2
√

6u + 4u(6 + u2) cos2 u − 15 sin(2u)
Δ1/2, (3.3c)

where u = √
Fx(0)/2 is a function of the lateral compression. Given the initial volume

difference, vdu(0), and the excess length, Δ, we can determine the lateral compression,
Fx(0), from (3.3c), and then substitute this solution into (3.3a) and (3.3b) to obtain
the height profile. When pud(x, y, 0) → 0, the height function converges to the first,
symmetric, mode of buckling, which is given by ysh(x, 0) →

√
4Δ/π2 sin(πx) and

vdu(0) = 8Δ1/2/π2. The total elastic energy of this shape is given by Es = π2Δ. An
example of the evolution of the sheet and the pud(x, y, 0)–vdu(0) relation in this static
solution, where 0 ≤ vdu(0) <

√
2Δ/3, is plotted in figure 2. In the following sections,
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Figure 2. Evolution of the static solution in the small-amplitude approximation, where Δ = 0.01. (a) The
volume difference, vdu(0), as a function of the pressure difference, pud(x, y, 0). In the asymmetric branch
the pud(x, y, 0)–vdu(0) relation is given by (3.1b), while in the symmetric branch it is given by (3.3b) and
(3.3c). The volume difference at the asymmetric-to-symmetric transition, vdu(0) = vcr

du, is labelled by 3©. The
pressure difference in the chamber vanishes when the sheet accommodates either the second or the first mode
of buckling, labels 1© and 4©. As the volume difference approaches its limiting value vdu(0) → (2Δ/3)1/2,
the pressure difference diverges. (b) Evolution of the sheet’s profile as the volume difference increases; see the
corresponding labelled numbers in (a). Note, that despite the relatively large change in the pressure difference
in the symmetric branch, the elastic configurations remain almost unchanged.

we use these height functions (3.1a) and (3.3a) as the base solutions for our perturbative
time-dependent expansion.

Before we proceed, we emphasize that while the sheet’s configuration evolves
continuously from the moment that we open the valve, the static pressure difference, given
in (3.1b) and (3.3b), changes instantaneously at t = 0. This is because we assumed an
incompressible fluid, in which the speed of sound is infinite. Nonetheless, the asymmetric
and the symmetric modes of buckling, obtained respectively from (3.1a) and (3.3a) in the
limit pud(x, y, 0) → 0, are exceptions. These configurations remain in static equilibrium,
which can nevertheless be unstable, when the valve is opened. For this reason, in the next
section, we investigate the linear stability of the system around these two limiting initial
states.

3.2. Linear stability
To derive the linear stability around the two limiting scenarios, i.e. the second and first
buckling modes, we assume that the sheet’s height function is given by the static solution,
up to a small perturbation that grows exponentially with time. Correspondingly, we first
perturb the amplitudes of the normal modes and the lateral compression around the base
solutions, i.e. An(t) = An(0) + εĀn eσ t and Fx(t) = Fx(0) + εF̄x eσ t, where Ān and F̄x are
unknown constants, σ is the growth rate and ε � 1 is an arbitrarily small parameter. Then,
we substitute these perturbed functions into the equations of motion (2.20), and expand
them up to linear order in ε. The leading order of this expansion, order ε0, is given by

VnkAk(0) − Fx(0)CnkAk(0) = 0, (3.4a)

CnkAk(0)An(0) = Δ, (3.4b)

and the subleading order, order ε, is given by[
σ 2Tnk + Vnk − Fx(0)Cnk

]
Āk − CnkAk(0)F̄x = 0, (3.5a)
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Fluttering-induced flow in a closed chamber

CnkAk(0)Ān = 0. (3.5b)

The above equations in the subleading order always have the trivial solution Ān = 0
and F̄x = 0, unless their corresponding determinant vanishes. This condition gives the
growth rate, σ . Once σ is determined, its corresponding eigenfunction is obtained from
the solution of (3.5). The hydrodynamic fields related to this eigenfunction are determined
from (2.15) and (C2).

3.2.1. Linear stability around the second mode of buckling
When the initial configuration of the sheet is given by the second mode of buckling,
the base solution is derived from (3.1a) in the limit pud(x, y, 0) → 0. This solution reads
ysh(x, 0) =

√
Δ/π2 sin(2πx) and Fx(0) = 4π2. A projection of this configuration on the

normal mode expansion (2.16) gives An(0) =
√

Δ/π2δ2n. As expected, this initial state
exactly satisfies the equilibrium equations at order ε0 (3.4). At the next order, i.e. order
ε, we find that F̄x = 0 and Ān = 0 for all the even perturbations, i.e. n = 2, 4, 6, . . . .
Consequently, (3.5) yields linear and homogeneous equations that involve only the odd
perturbations. These equations always have the trivial solution Ān = 0, except when the
corresponding determinant vanishes. A tractable solution to this condition, which also
gives a good approximation to the highest growth rate, is obtained at the lowest order
when N = 2. This solution reads

σ =
√

3π2√
1 + 8Ly

π2λ

. (3.6)

In figure 3, we plot this analytical approximation for the growth rate as a function of λ,
and compare it with the numerical solution of (3.5) for the case where N = 8. In addition,
we compare this analytical solution with the growth rate obtained from the linearization
of (2.2)–(2.9), i.e. where Δ is assumed to be finite. See Appendix D for the details of this
solution.

Equation (3.6) is one of the central results in this paper. Several comments are in order
regarding this solution. Firstly, note that the highest growth rate is always real and positive,
i.e. the second mode of buckling is always an unstable state of the system.

Secondly, while (3.6) depends on the parameter λ/Ly = ρ̃shh̃/(ρ̃�L̃y), this result is not
general but depends on the order of approximation. Had we solved (3.5) with N ≥ 3, the
two parameters λ and Ly would have appeared independently in the solution. Nonetheless,
comparing the lowest order solution, i.e. the solution with N = 2, with that of, say, N = 8,
we find that the growth rate remains almost unchanged (compare the solid and dashed lines
in figure 3). For this reason, we conclude that (3.6) well describes the growth rate in the
limit Δ � 1.

Thirdly, while the solution of the small-amplitude approximation is independent of the
excess length, Δ, the more general solution for finite values of Δ does depend on this
parameter. See figure 3 for a comparison. In particular, for a fixed value of λ, the growth
rate increases with an increase in Δ.

Fourthly, the analytical solution of the growth rate (3.6), exhibits two different regions as
a function of λ. When λ/Ly � 1, the growth rate is a constant, σ � √

3π2, that coincides
with the growth rate of a sheet that is uncoupled from an external fluid. However, when
λ/Ly � 1, the growth rate exhibits the scaling σ �

√
3π6/8(λ/Ly)

1/2. These asymptotic
solutions define two limiting behaviours of the system. The former scenario represents
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10.0

5.0

1.0

0.5

λ

Δ = 0.3

Δ = 0.2

Δ = 0.1

Δ = 0.01

N = 8, Δ � 1

(3.6), Δ � 1

σ

10–2 10–1 100 101 102

Figure 3. Log–log plot of the highest growth rate as a function of λ where Ly = 2. Symbols correspond to
the linear stability analysis of (2.2)–(2.9), and solid and dashed lines correspond to the growth rates obtained
from the small-amplitude approximation. When λ� 1, the growth rate converges to the constant σ � √

3π2,
whereas when λ� 1 the growth rate is given by σ �

√
3π6/8(λ/Ly)

1/2. Note that the differences between the
solid (N = 2) and dashed (N = 8) lines are almost not visible in the figure. While the growth rate is independent
of the excess length in the small-amplitude approximation, the more general solution (symbols) shows that the
growth rate increases with Δ.

a ‘solid-dominated’ region, in which the pressure difference exerted by the fluid on the
sheet is negligible compared with the inertia of the sheet. The latter scenario, where
σ ∝ (λ/Ly)

1/2, represents the opposite limit of a ‘fluid-dominated’ region, in which the
inertia of the sheet is negligible compared with the pressure difference exerted by the
fluid on the sheet. Similarly, these two regions are also reflected in the added mass
term, 8Ly/(π

2λ), in the denominator of the growth rate. When λ is large, the added
mass approaches zero and the sheet’s inertia is not affected by the fluid’s motion. In
contrast, when λ is small, the effective mass of the sheet increases, resulting in slower
dynamics. It is worth noting that since the dynamics of the system becomes very slow in
the fluid-dominated region, we would expect some aspects of this solution to align with our
earlier, quasi-static solution in the asymmetric branch, as shown in (3.1). This is because
the quasi-static solution describes a slow spontaneous relaxation of the system, where the
inertia of the sheet is negligible. This convergence to the quasi-static solution is further
demonstrated in the following analysis.

Fifthly, note that if we fix Ly, the matrices in (3.5) and (2.18) become diagonal in the
solid-dominated region. Therefore, up to small corrections of the order 1/λ, Ā1 alone is
excited at the instability. Indeed, in figure 4(a), in which we plot the eigenfunction for
the case where λ = 100 for both N = 2 and N = 8, we find that the two solutions are
almost identical. In contrast, in the fluid-dominated region, λ� 1 and the matrices in
(3.5) have non-zero off-diagonal terms. Therefore, all the odd modes become coupled
and are excited at the instability. Nonetheless, our numerical investigation indicates that
Ān/Ā1 � 1 for all n ≥ 3. Therefore, while we would expect the leading-order solution, i.e.
N = 2, to approximate the eigenfunction well, it will not coincide with the higher-order
solution. Indeed, in figure 4(b), we compare the eigenfunctions obtained from the lowest
order and the high orders of approximations and find finite differences between them. We
note that the eigenfunction in the fluid-dominated region emerges from the quasi-static
configuration (3.1a), when we expand (3.1a) in powers of pud(x, y, 0), extract the linear
order of this expansion and normalize it in accordance with our convention. The agreement
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Figure 4. Eigenfunctions of the sheet’s height function in both the solid- and fluid-dominated regions. In both
panels, Ly = 2 and open blue circles correspond to the linear stability analysis at finite Δ, i.e. derived from
(2.2)–(2.9). The eigenfunctions are normalized such that [ysh(1/2, t) − ysh(1/2, 0)]/eσ t = 1 (numerically we
choose ŷsh(1/2) = 1; see Appendix D). (a) In the solid-dominated region (λ = 100), only one mode is excited,
i.e. the low (N = 2) and the high (N = 8) mode approximations coincide. (b) In the fluid-dominated region
(λ = 0.1), all odd modes are excited. Therefore, the lowest approximation, N = 2, does not coincide with
that obtained with higher modes, N = 8. Nonetheless, since Ān/Ā1 � 1, the differences between the low and
the high orders of the approximations are still small. Open squares represent the quasi-static approximation
obtained from (3.1).

between this quasi-static profile and the eigenfunction obtained from the linear stability
analysis is shown in figure 4(b) (open squares).

Sixthly, in figure 5(a), we plot the flow field obtained from the linear stability analysis
at finite Δ. Note that the maximum velocity of the fluid is obtained at the sheet’s
centre, where the eigenfunction of the sheet’s height is maximized (see figure 4). Unlike
the growth rate, for which the small-amplitude approximation provided us with a good
estimation already at N = 2, the flow field converges at a slower pace. Convergence to the
spatially dependent solution, presented in figure 5(b), is obtained only when higher modes,
say N ≥ 3, are included. This is because each coefficient ai

m(t) in the fluid’s potential
functions (2.15) depends on all the excited modes; see (C2). In addition, in figure 5(b),
we plot the eigenfunctions of the pressure fields. Note that the sheet moves upwards
towards the higher-pressure field. This is because the sheet’s motion drives the flow, and
the pressure drop in the fluid acts to slow down the onset of the elastic instability. We note
that there are no qualitative differences in the flow fields and the pressure distributions
between the solid- and fluid-dominated regions. For this reason, the plots in figure 5 refer
only to the fluid-dominated region.

Lastly, in addition to the growth rate, the flow field and the hydrodynamic pressures,
another experimentally measurable quantity is the system’s ‘compressibility’, i.e. the
change in the volume difference relative to the change in the pressure difference. Since the
pressure difference varies in space, we define the compressibility as β ≡ dvdu/dp̄ud, where
p̄ud(t) is the average pressure drop on the sheet. In the small-amplitude approximation
the average pressure drop on the sheet is given by p̄ud(t) = ∫ 1

0 [pu(x, 0, t) − pd(x, 0, t)] dx
and the volume difference in the chamber is given by vdu(t) = 2

∫ 1
0 ysh(x, t) dx (Oshri

2021). Keeping in mind that the base solution is asymmetric, and therefore does not
contribute to the above integral, we find that the leading order (N = 2) is vdu(t)/Ā1 =
(4/π) eσ t. In addition, the average pressure difference at this order is given by p̄ud(t)/Ā1 =
2Lyσ

2 eσ t/(πλ). Consequently, at the onset of the instability, the compressibility is a
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Figure 5. (a) The flow field and (b) the hydrodynamic pressures obtained from the linear stability analysis of
(2.2)–(2.9) at the highest growth rate. In both panels, Δ = 0.01, λ = 0.1 and Ly = 2. The eigenfunctions are
normalized as indicated in figure 4. This gives [Low, High] = [0.98, 2.94] in the colour bar of the flow field and
[Low, High] = [−78, 78] in the colour bar of the hydrodynamic pressures. The solid black line corresponds to
the initial configuration of the sheet, i.e. the asymmetric second mode of buckling. In (a), arrows represent the
streamlines and colours represent the relative magnitudes of the velocity.

constant, which is given by

β = 2λ
σ 2Ly

. (3.7)

In figure 6, we plot this result as a function of λ and compare the lowest-order
approximation with the solution at finite values of Δ. On the one hand, since the growth
rate is constant in the solid-dominated region, we find that the compressibility scales
linearly with λ, i.e. β → 2λ/(3π4Ly). On the other hand, since in the fluid-dominated
region the growth rate scales as (λ/Ly)

1/2, the compressibility converges to the constant
β → 16/(3π6) � 5.54 × 10−3. As expected, this result for the fluid-dominated region is
very close to the compressibility obtained in the quasi-static solution (3.1b), which gives
β = (3 + π2)/(24π4) � 5.50 × 10−3.

3.2.2. Linear stability around the first mode of buckling
This section analyses the system’s stability around the first mode of buckling. In contrast
to the second mode, which is always unstable, the first mode represents the minimum of
the elastic potential energy. Therefore, the first mode is expected to remain stable and to
yield oscillatory motion under a small dynamical perturbation. Since a purely imaginary
growth rate represents this oscillatory motion, we set σ ≡ iω, where i = √−1, and look
for the lowest frequency of oscillation at the onset of the instability.

When the initial state of the sheet is given by the first mode of buckling, we have
from (3.3) that the base solution is given by y(x, 0) = (2

√
Δ/π) sin(πx) and Fx(0) = π2.

A projection of this configuration on the normal mode expansion (2.16) gives An(0) =
(2

√
Δ/π)δ1n. This initial state, as expected, satisfies the leading order of our perturbative

expansion (3.4). Substituting this leading order in (3.5) and solving for the unknown
constants, we find that F̄x = 0 and Ān = 0 for all the odd modes (n = 1, 3, 5, . . . ).
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β
 =

 d
v d
u/

d
p– u
d

Δ = 0.3

Δ = 0.2

Δ = 0.1

Δ = 0.01

(3.7), Δ � 1

λ
10–2

10–3

10–2

10–1

100

10–1 100 101 102 103

Figure 6. Log–log plot of the compressibility as a function of λ close to the onset of the instability. Symbols
correspond to the compressibility at finite values of Δ and the solid black line corresponds to the analytical
solution obtained from the small-slope approximation. While in the solid-dominated region β ∝ λ, in the
fluid-dominated region β converges to a constant.

Consequently, (3.5) yields linear and homogeneous equations that involve only the even
modes of the height function. As in the previous case that we considered, a tractable
solution to the vanishing determinant condition is obtained when we cut the normal
mode expansion at the smallest value, N = 2. (We note that when Ly � 1, the solution
obtained from the two-mode approximation (N = 2) is pre-empted by a different branch
of solutions. The new branch emanates from a higher-order correction in the modal
expansion, and its details are beyond the scope of the present study.) This gives

ω = 2
√

3π2√
1 + 128

9π3
tanh(πLy/2)

λ

. (3.8)

In figure 7(a), we plot this solution and compare it with the solution of (3.5) for the case of
N = 8. Note that our solution, (3.8) with N = 2, approximates well the small-amplitude
limit, Δ � 1. Higher-order corrections, e.g. with N = 8, almost do not alter this solution;
compare the solid and dashed lines in figure 7(a). In addition, we compare (3.8) with
the eigenvalues obtained from the linearization of (2.2)–(2.9), where the small-amplitude
approximation is relaxed. We observe that as Δ increases, the oscillation frequency
decreases with increasing excess length. However, the overall trend of the dependence of ω

on λ remains consistent with the small-amplitude solution. We also note that the relatively
large decrease in ω when λ� 1 is a result of our chosen hinged boundary conditions. In
contrast, systems with clamped boundary conditions display a much milder dependence
on Δ, as reported in previous studies (Neukirch et al. 2012; Pandey et al. 2014).

The frequency ω exemplifies the two limiting scenarios that we encountered for
the growth rate in (3.6). On the one hand, in the solid-dominated region, where
λ� 1, the frequency converges to the constant ω � 2

√
3π2 that coincides with the

frequency of oscillation of a sheet that is uncoupled from a fluid flow. On the
other hand, in the fluid-dominated region, where λ� 1, we find the scaling ω �√

27π7/32[λ/ tanh(Lyπ/2)]1/2, i.e. ω ∝ λ1/2. Alternatively, since the added mass is given
by (128/9π3)(tanh(πLy/2)/λ), when λ� 1 the sheet’s inertia is almost unaffected by the
fluid motion, but when λ� 1, the added mass increases and slows down the dynamics.
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Δ � 1, N = 2

Δ � 1, N = 8
N = 8 (y

sh
(x

,t)
–
y s
h(
x,

0
))

/e
σ
t

xsh(x,0)

xsh(x,t)

y s
h(
x,
t)

Δ = 0.01, λ = 0.1

(b)(a)

Figure 7. The lowest oscillation frequency and the sheet’s eigenfunction obtained from the linear stability
analysis around the first buckling mode. In both panels Ly = 2. (a) Log–log plot of the oscillation frequency
as a function of the parameter λ. Solid and dashed lines correspond to the solution of (3.8) when N = 2 and
N = 8, respectively. All symbols correspond to the linear stability analysis of (2.2)–(2.9) at finite Δ. (b) The
sheet’s eigenfunctions in the solid- and fluid-dominated regions. All eigenfunctions are normalized such that
their height at x = 1/4 is equal to one (numerically we choose ŷsh(1/4) = 1; see Appendix D). Although only
one mode is excited when λ� 1 and infinite modes are excited when λ� 1, the eigenfunctions of the two
regions are almost identical. Inset: an example of the sheet’s oscillations around the base solution. Dashed
lines correspond to an illustration of the dynamic oscillations, and the solid line to the base solution.

These two scenarios are also manifested in the eigenfunction of the sheet’s height
function. In the solid-dominated region, (3.5) becomes diagonal, up to corrections of the
order of 1/λ, and essentially only the second mode, i.e. Ā2, is excited at the instability,
while in the fluid-dominated region (3.5) has non-zero off-diagonal terms, and all the even
modes are excited. Nonetheless, our numerical investigation of the solution of (3.5) in the
fluid-dominated region indicates that the ratio Ān/Ā2 remains small for all n. Therefore, in
both regions, deviations of the eigenfunction from the second mode are almost not visible
in figure 7(b).

The oscillations of the sheet induce rotational flow in the chamber, whose magnitude
decreases monotonically as y approaches the far distant walls; see figure 8(a). Indeed, the
solution for ω (3.8) becomes independent of Ly as the vertical dimension of the chamber
increases. Furthermore, the fluid’s maximum velocity is obtained close to the centre point,
x = 1/2, where the sheet’s velocity equals zero. This is because the sheet moves up and
down around this centre line and drives a net flux across it. The velocity of this flux is
maximized at the centre of the sheet. It is important to note that there is a slight asymmetry
in the flow patterns observed in the upper and lower regions of the chamber, which may
be attributed to the initial non-zero volume difference in the base solution.

The pressure fields induced by the elastic oscillations are plotted in figure 8(b) and
show an asymmetric profile in correlation with the eigenfunction of the sheet (figure 7b).
Since only even modes are excited at the instability, the average pressure difference on the
sheet, p̄ud(t), vanishes. Therefore, in this case, there is no analogue to the compressibility
calculated in § 3.2.1.

4. The evolution at moderate times

In this section, we relax the assumption that t � 1 and extend the analysis up to moderate
times. The limits of this analysis are discussed at the end of this section. In particular,
we require that the initial configuration of the sheet be close in shape to the second
mode of buckling, i.e. vdu(0) � vcr

du, where vcr
du = (2(3 + π2)/π

√
3(15 + 2π2))Δ1/2 (see
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Figure 8. (a) The flow fields and (b) the hydrodynamic pressure fields obtained from the linear stability
analysis of (2.2)–(2.9) when Δ = 0.01, λ = 0.1 and Ly = 2. The normalization of the eigenfunctions
is as in figure 7(b). This normalization implies [High, Low] = [5.3, 26.5] in the flow fields and
[High, Low] = [−560, 560] in the pressure fields. In (a), arrows represent the streamlines and colours represent
the relative magnitudes of the velocity.

§ 3.1), and we investigate the following questions: (i) What is the maximum amount
of energy that is transferred from the sheet to the fluid? (ii) How long does it take
the system to convert this maximum elastic energy into a fluid flow? (iii) What is the
time-dependent behaviour of the p̄ud(t)–vdu(t) relation. To address these questions, we
assume that the amplitude of the sheet remains small during the dynamic evolution of
the system and utilize the approximated formulation derived in § 2.1. This formulation
yields the simplified set of nonlinear equations (2.20) that describe the coupling between
the elastic and the hydrodynamic equations. As may be seen, this set of equations has
a conserved first integral, E = Tnk(dAk/dt)(dAn/dt) + VnkAkAn, that corresponds to the
total energy of the system (2.10). This conserved energy constitutes the starting point for
the discussion that follows.

When the initial configuration of the sheet is close in shape to the second mode of
buckling, we expect the system’s dynamics at moderate times to depend strongly on the
first two modes, A1(t) and A2(t). This is because the initial shape of the sheet and its
corresponding eigenfunction at the highest growth rate are described approximately by
these two modes (see figure 4). Therefore, we reduce the expression for the total energy to
the case in which N = 2 and obtain the following equation:

E = 1
4

(
1 + 8Ly

π2λ

)(
dA1

dt

)2

+ 1
4

(
1 + 128 tanh(πLy/2)

9π3λ

)(
dA2

dt

)2

+ π4

4
A2

1 + 4π4A2
2.

(4.1)
We keep in mind that A1(t) and A2(t) are related through the constraint of the excess length
(2.20b).

To obtain some insight regarding the validity of this two-mode approximation, we
solve (2.20) numerically with N = 2 and compare the results with the solution of
the nonlinear model, i.e. the numerical solution of (2.2)–(2.9). In our investigation,
we set Δ = 0.01 and Ly = 2, and consider two different values for the parameter
λ. The initial configuration is given by (3.1), where vdu(0) = 0.01vcr

du. (The initial
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Figure 9. The sheet’s midpoint as a function of time in (a) the solid-dominated (λ = 100) and (b) the
fluid-dominated (λ = 0.1) regions. In both panels, Δ = 0.01, Ly = 2 and the growth rate, σ , is approximated
by (3.6). The solid black line denotes the two-mode approximation, i.e. (2.20) with N = 2, and the open blue
circles denote the solution of the nonlinear model (2.2)–(2.9). In (b), the dashed grey line denotes the solution of
(2.20) with N = 3. The initial configuration of the sheet is given by (3.1) with vdu(0) = 0.01vcr

du. In both cases,
the approximated solution breaks down after ysh(1/2, t) reaches its first maximum. In the solid-dominated
region, the two-mode approximation holds for longer times compared with the fluid-dominated region. (c) The
configurations of the sheet along the trajectory depicted in (b); see the corresponding markers in (b). Between
1© and 3© the sheet releases potential energy as it transforms from the second mode of buckling to the first

mode of buckling. After 3©, the height of the sheet’s midpoint decreases and the sheet gains back potential
energy, as seen in 4©.

conditions are given by A1(0) = 2
∫ 1

0 ysh(x, 0) sin(πx) dx = 32vdu(0)/(3π + π3) and
A2(0) =

√
Δ/π2 − 256vdu(0)2/(3π + π3)2, such that (2.20b) is satisfied. In addition, we

keep in mind that the system starts from rest, (dA1/dt)(0) = (dA2/dt)(0) = 0.) The results
of these numerical solutions are presented in figures 9(a) and 9(b), where we follow the
time-dependent behaviour of the midpoint on the sheet, ysh(1/2, t). The configurations of
the sheet along the trajectory depicted in figure 9(b) are presented in figure 9(c). In both
cases, we find that the approximated solution breaks down slightly after ysh(1/2, t) reaches
its first maximum. In the solid-dominated region (λ = 100), the two-mode approximation
holds over one period of motion, while in the fluid-dominated region (λ = 0.1), the
approximation breaks down a little earlier. This difference is probably due to the different
number of excited modes at the instability in each region of the system (see discussion
in § 3.2.1). We conjecture that higher modes become active beyond moderate times
in the fluid-dominated region and perturb the system’s trajectory from the two-mode
approximation. Indeed, by solving (2.20) with N = 3 instead of N = 2, we observe a
convergence towards the numerical data for longer times (see the dashed grey line in
figure 9b).

Nonetheless, in both cases, i.e. the solid- and fluid-dominated regions, the agreement
between the numerical solution of (2.2)–(2.9) and the analytical approximation, (2.20)
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Fluttering-induced flow in a closed chamber

with N = 2, holds up to the first maximum. Similar results are also obtained when we
perturb the system’s parameters, Δ and Ly, and the initial configuration. Therefore, in the
following analysis, we utilize this approximation to examine the system’s behaviour up to
the point where the midpoint of the sheet reaches its first maximum. We refer to this stage
of the system as moderate times.

4.1. The elastohydrodynamic energetic interplay
Since the initial configuration of the sheet is close in shape to the second mode of
buckling and the total energy of the system is conserved, the total energy at any t > 0
is given by (3.2). In the limit vdu(0) � vcr

du, this energy is approximated as Eas � 4π2Δ,
i.e. the energy of the second mode of buckling. In addition, since the first mode of
buckling is the global minimizer of the elastic sheet’s potential energy, the potential
energy of the sheet cannot fall below Es = π2Δ. Therefore, at most, our system can
convert δE = Eas − Es � 3π2Δ of the initial potential energy either into kinetic energy
of the sheet or into hydrodynamic energy of the fluid. We remind the reader that the
kinetic and potential energies of the sheet, Ek

sh(t) and Ep
sh(t), and the energy of the

fluid, Ef (t), are given by the first, second and third terms, respectively, on the right-hand
side of (2.10). In the small-amplitude approximation, these energies reduce to Ek

sh(t) =
(limλ→∞ Tkn)(dAk/dt)(dAn/dt), Ep

sh(t) = VknAkAn and Ef (t) = Tkn(dAk/dt)(dAn/dt) −
Ek

sh.
The typical evolution of the three components of the energy, i.e. the kinetic energy

of the sheet, the potential energy of the sheet and the energy of the fluid, is plotted in
figures 10(a) and 10(b). These plots are obtained from the solution of (2.20) with N = 2
in the solid- and the fluid-dominated regions, λ = 10 and λ = 0.1 respectively, where the
initial configuration is given by (3.1) with vdu(0) = 0.01vcr

du. In both cases, we find that,
after some initial delay, the potential energy of the sheet drops from E � 4π2Δ, i.e. the
energy of the second mode of buckling (3.2), to E � π2Δ, i.e. the energy of the first mode
of buckling. The energy released in this process, δE � 3π2Δ, is converted to the kinetic
energy of the sheet and the energy of the fluid, while the total energy remains fixed. In
the solid-dominated region (figure 10a) the kinetic energy of the sheet becomes much
larger than the energy of the fluid, while as λ decreases, the opposite picture emerges,
i.e. the energy of the fluid becomes much larger than the kinetic energy of the sheet
(figure 10b). In both scenarios, shortly after the initial peak, a portion of the kinetic energy
is converted back into potential energy of the sheet. As a result, the sheet tends to return to
its configuration of the second buckling mode, thereby decreasing the height of the sheet’s
midpoint, as shown in figure 9(c).

Our two-mode approximation allows us to quantify these findings and to further estimate
the maximum values of Ek

sh(tp) and Ef (tp) as a function of λ, where tp denotes the
time at which the potential energy of the sheet reaches its minimum value. Indeed, at
Ep

sh(tp) = π2Δ, the sheet is close in shape to the first mode of buckling, i.e. A1(tp) �
2
√

Δ/π. The constraint on the excess length (2.20b) then implies that A2(tp) � 0 and
that (dA1/dt)(tp) � 0. In addition, the derivative of the second mode at that moment,
(dA2/dt)(tp), is obtained from (4.1) when we substitute E = 4π2Δ for the total energy.
Taken together, these approximations yield the following maximum energies at t = tp:

Ek
sh(tp)

3π2Δ
= 1

1 + 128 tanh(πLy/2)

9π3λ

, (4.2a)
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Figure 10. The energetic interplay between the three components of the total energy in (a) the solid-dominated
(λ = 10) and (b) the fluid-dominated (λ = 0.1) regions of the system. In these two panels, we solve (2.20)
for the case where N = 2, Δ = 0.01, Ly = 2, and σ is given by (3.6). The initial configuration of the sheet
is given by (3.1), where vdu(0) = 0.01vcr

du. After some initial delay, the potential energy of the sheet drops
from Ep

sh(t � 1) � 4π2Δ to Ep
sh(tp) � π2Δ. Open blue circles represent the potential energy obtained from

the solution of the nonlinear equations (2.2)–(2.9). The energy released from the sheet is divided between the
kinetic energy of the sheet, Ek

sh(t), and the hydrodynamic energy of the fluid, Ef (t), such that the total energy, E,
remains constant. In the solid-dominated region, Ek

sh(tp) � Ef (tp), while in the fluid-dominated region we find
the opposite relation, Ek

sh(tp) � Ef (tp). (c) The kinetic energy of the sheet and the fluid at t = tp as a function of
λ, i.e. Ei(tp) = Ek

sh(tp), Ef (tp). A logarithmic scale is used on the x axis. The dotted and the dashed-dotted lines
correspond to our analytical solution from the two-mode approximation, and the colour symbols correspond to
the numerical solution of (2.2)–(2.9), where the initial conditions are similar to those used in (a,b).

Ef (tp)
3π2Δ

= 1

1 + 9π3λ

128 tanh(πLy/2)

. (4.2b)

In figure 10(c), we compare these maximum energies with the numerical solution of
(2.2)–(2.9). Overall, we find a good fit between the analytical approximation and the
numerical solution over the entire range of λ.

Using (4.2), we find that in the solid-dominated region, λ� 1, most of the initial
energy is converted into the kinetic energy of the sheet, i.e. Ek

sh(tp) � 3π2Δ − δ1 and
Ef (tp) � δ1, where δ1 = 128Δ tanh(πLy/2)/(3πλ), while in the fluid-dominated region,
λ� 1, most of the energy is converted into the energy of the fluid, i.e. Ek

sh(tp) � δ2

and Ef (tp) � 3π2Δ − δ2, where δ2 = 27π5Δλ/[128 tanh(πLy/2)]. Furthermore, if we
estimate the average instantaneous velocity of the fluid, v̄(tp), by using Ef (tp) ∝ v̄(tp)2�/λ,
we find that in the solid-dominated region the average velocity is proportional to v̄(tp) ∝
(Δ/�)1/2, while in the fluid-dominated region it is proportional to v̄(tp) ∝ (λΔ/�)1/2;
namely, while Ef (tp, λ� 1) � Ef (tp, λ� 1), their corresponding velocities present the
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Fluttering-induced flow in a closed chamber

opposite relationship, i.e. v̄(tp, λ� 1) � v̄(tp, λ� 1). This is because the momentum of
the fluid pf ∝ v̄(tp)/λ – but not its velocity – increases in the fluid-dominated region.

4.2. The peak time
In the previous section, we demonstrated through energetic considerations that the sheet
tends to release most of its stored potential energy. In this section, we investigate the time
it takes for the system to release this energy. Given an initial configuration of the sheet that
is close in shape to the second mode of buckling, i.e. (3.1) with vdu(0) � vcr

du, we aim to
find the time t = tp at which the potential energy of the sheet first drops to the minimum
value, Ep

sh(tp) � π2Δ. To do so, we first use (2.20b) and (3.6) to eliminate A2(t) and λ in
favour of A1(t) and σ , respectively, in (4.1). Then, we substitute the energy of the initial
configuration (3.2) into (4.1) and integrate it between t ∈ [0, tp]. This gives

σ tp =
∫ A1(tp)

A1(0)

√√√√432π3Δ +
[

9π
(−12π4 + σ 2

)+ 16
(
3π4 − σ 2)

Ly coth(πLy/2)

]
A2

1

6
√

3π3/2

√(
A2

1 − 8vdu(0)2

3 + π2

) (
4Δ − π2A2

1
) dA1, (4.3)

where A1(tp) � 2Δ1/2/π is approximately the amplitude of the sheet at time tp and
A1(0) = 2

∫ 1
0 ysh(x, 0) sin(πx) dx = 32vdu(0)/(3π + π3) is the projection of the initial

configuration (3.1) on the first mode of the sheet.
In figure 11(a), we fix the excess length and the vertical dimension of the chamber at

Δ = 0.01 and Ly = 2, respectively, and plot σ tp for λ ∈ [10−3, 103] (σ ∈ [0.4,
√

3π2]).
We find that at a given initial volume difference, vdu(0), the peak time, σ tp, changes by
less than 5 % over more than six orders of magnitude in λ. While σ tp is almost independent
of λ, it does depend strongly on the initial configuration of the sheet, vdu(0), and the excess
length, Δ. An analytical approximation of this dependence can be extracted from (4.3), if
we assume that the system is in the solid-dominated region, where σ � √

3π2. Under
this assumption, we can integrate the right-hand side of this equation and take the limit
vdu(0) � 1 of the resulting expression. (We use Mathematica (Wolfram Research 2018)
for the symbolic integration.) This gives

σ tp � ln
(

c
Δ1/2

vdu(0)

)
, (4.4)

where c � 2.9. While the scaling in (4.4) agrees well with our numerical solution of the
nonlinear model, there is a small deviation in the numerical prefactor. The best fit to the
nonlinear model gives c � 2.0 (see figure 11b). We note that the independence of Ly on
the right-hand side of (4.4) is a result of our assumption that λ� 1. Had we derived
this scaling using the fluid-dominated region, we would have found that the integral in
(4.3) does depend on the vertical dimension of the chamber. However, this dependence
diminishes to zero when Ly � 1, as is required by our fourth assumption in § 2.

We also note that the logarithmic divergence of σ tp in the limit vdu(0) → 0 is similar to
the divergence of the period of a pendulum near the separatrix (Butikov 1999). Within this
analogy between the two problems, the small initial deviation of the pendulum from the
unstable vertical position is analogous to the small initial volume difference vdu(0). The
separatrix of the pendulum is analogous to the trajectory vdu(0) = 0 in the phase space of
our system.

976 A15-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

90
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.901


K. Goncharuk, Y. Feldman and O. Oshri

10

8

6

4

2

0
Δ = 0.01, Ly = 2

Ly = 2, Δ = 0.01, λ = 10

Ly = 5, Δ = 0.001, λ = 0.1

σ tp

vdu(0) = 0.001vcr

102101

�Δ/vdu(0)

103

(4.4)

104

10

12

8

6

4

2

0

λ

du

vdu(0) = 0.01vcrdu
vdu(0) = 0.1vcrdu

(b)(a)

10–3 10–1 101 103

Figure 11. The peak time, σ tp, as a function of the system’s parameters. (a) The peak time as a function of λ,
where Δ = 0.01 and Ly = 2, for two different values of the initial volume difference. Dashed lines correspond
to the numerical integration of (4.3) and symbols with corresponding colours represent the numerical solution
of (2.2)–(2.9). For a given vdu(0), the time σ tp changes by less than 5 % over six orders of magnitude of the
parameter λ. (b) Comparison between the analytical scaling (4.4) and the solution obtained from the nonlinear
model. A logarithmic scale is used on the x axis. Symbols correspond to the numerical solution of the nonlinear
model. While the scaling of the analytical solution agrees well with the numerical data, the prefactor c � 2.9
slightly overestimates the numerical prediction.

4.3. The p̄ud–vdu relation
In this section, we investigate the behaviour of the p̄ud–vdu relation at moderate times. To
this end, we first use the two-mode approximation to calculate the pressure difference
in the chamber. From Bernoulli’s equation (2.13a), and the normal mode expansion
(2.15) and (C2), we have that the average pressure difference on the sheet is given by
p̄ud(t) = (2Ly/πλ)(d2A1/dt2). In addition, using (2.16), we find the volume difference
as a function of time, vdu(t) = 2

∫ 1
0 ysh(x, t) dx = 4A1(t)/π. Thereafter, we solve (2.20)

numerically with N = 2 and plot the parametric solution (p̄ud(t), vdu(t)) in the range
t ∈ [0, tp].

The results of these solutions are plotted in figures 12(a) and 12(b) for
the solid-dominated (λ = 100) and fluid-dominated (λ = 0.01) regions, respectively.
Qualitatively, the two regions exhibit similar behaviour. The pressure difference in the
chamber increases from almost zero up to a maximum positive value, from which it
rapidly decreases and becomes negative. The backward pressure is maximized at the
peak time tp; see the time-dependent behaviour of p̄ud(t) in the insets of these figures.
Quantitatively, however, the two profiles are considerably different, because the maximum
backward pressure is much larger in the fluid-dominated region (figure 12b) than in the
solid-dominated region (figure 12a).

The transition from positive to negative pressure differences can be explained as follows.
Initially, the system exhibits a ‘negative feedback’ between the sheet and the fluid,
meaning that the sheet’s motion drives the fluid’s dynamics, which, in turn applies a
positive pressure difference and resists the sheet’s motion. As the system evolves, the
fluid continuously gains kinetic energy and reduces its resistance to the sheet’s motion.
Then, at some instant, the pressure difference vanishes, p̄ud = 0, and the resistance of the
fluid is almost eliminated. Beyond this moment, the pressure difference becomes negative,
and the system exhibits a ‘positive feedback’, meaning that the sheet transfers energy to
the fluid, which, in turn, enhances the sheet’s motion. This positive feedback accelerates
the system’s dynamics and creates a spike of pressure drop in the chamber. The process
terminates when the system meets the constraint on the maximum volume difference.
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λ
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(c)

Figure 12. The p̄ud–vdu relation and the maximum backward pressure. In all three panels, open green triangles
correspond to the numerical solution of (2.2)–(2.9) and solid lines correspond to the solution of the two-mode
approximation. The volume difference as a function of the average pressure difference on the sheet is plotted
in (a) the solid-dominated (λ = 100) and (b) the fluid-dominated (λ = 0.01) regions. In both panels, the solid
black line corresponds to the solution of (2.20) with N = 2, Δ = 0.01, Ly = 2 and vdu(0) = 0.01vcr

du. The blue
points correspond to times t = 0 and t = tp. The dashed grey lines correspond to the static solution (3.1b) and
(3.3b). The insets show p̄ud(t) as a function of time, where σ is given by (3.6). In the fluid-dominated region,
the maximum backward pressure (p̄ud(tp) � −200) is much larger than that in the solid-dominated region
(p̄ud(tp) � −1). In addition, the evolution of the p̄ud–vdu relation in the fluid-dominated region follows the
static solution, except for some deviations close to the asymmetric-to-symmetric transition. (c) The absolute
value of the maximum average pressure difference on the sheet.

To estimate the magnitude of the pressure spike, p̄ud(tp), we use the two-mode
approximation. Recalling that near the peak time when the sheet is close in shape to the
first mode of buckling, i.e. A1(tp) � 2Δ1/2/π and A2(tp) � 0, and that E � 4π2Δ, we
find from (2.20b) and (4.1) an expression for (d2A1/dt2)(tp) as a function of the system’s
parameters. This gives the maximum backward pressure:

p̄ud(tp) � − 432π5LyΔ
1/2

9π3λ+ 128 tanh(πLy/2)
. (4.5)

This analytical approximation compares well with the numerical solution of
(2.2)–(2.9) (see figure 12c). Therefore, in the solid-dominated region, the maximum
backward pressure decays to zero as p̄ud(tp, λ� 1) � −48π2LyΔ

1/2/λ, whereas
in the fluid-dominated region it is independent of λ, i.e. p̄ud(tp, λ� 1) �
−(27π5/8)LyΔ

1/2/ tanh(πLy/2).
Note also that the p̄ud–vdu relation approximately follows the static solution (3.1b) and

(3.3b) in the fluid-dominated region (see the dashed lines in figure 12b). This is because the
dynamics of the fluid in this region is much slower than that in the solid-dominated region.
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Nonetheless, deviations between the two solutions, static and dynamic, are observed close
to the asymmetric-to-symmetric transition. These deviations may be attributed to inertial
effects in the dynamics solution.

5. Discussion on experimental consequences

To fully define the system, eight physical parameters are needed: four parameters specify
the properties of the sheet {L̃, ρ̃sh, B̃, h̃}, three parameters define the dimensions of the
chamber {L̃x, L̃y, W̃} and an additional parameter characterizes the fluid ρ̃�. The control
parameter is the initial volume difference in the chamber ṽdu(0) = ṽd(0) − ṽu(0).

To facilitate comparisons between our theory and experimental observations, we present
two of our central predictions in dimensional form. The first prediction relates to the
scenario where the initial configuration of the sheet is close in shape to the second buckling
mode. In this case, the experimentally measurable quantities are the growth rate σ , which
is defined in (3.6) and characterizes the early stage of the evolution, and the time tp, which
is given in (4.4) and characterizes the behaviour at moderate times. In dimensional form,
these quantities are given by

Δ̃/L̃ � 1 and ṽdu(0)/ṽcr
du � 1 : σ̃ =

√
3π2√

1 + 8
π2

ρ̃�L̃y

ρ̃shh̃

(
B̃

ρ̃shh̃L̃4

)1/2

, (5.1a)

σ̃ t̃p � ln

(
π
√

3(15 + 2π2)

(3 + π2)

ṽcr
du

ṽdu(0)

)
, (5.1b)

where ṽcr
du = (2(3 + π2)/π

√
3(15 + 2π2))Δ̃1/2L̃3/2W̃ is the volume difference at the

asymmetric-to-symmetric transition in the quasi-static solution (§ 3.1), and we keep in
mind that the normalized excess length is assumed small in our analysis, i.e. Δ̃/L̃ =
(L̃ − L̃x)/L̃ � 1.

The second prediction of our theory corresponds to the frequency of oscillations ω

around the first buckling mode (3.8). In dimensional form the frequency is given by

ω̃ = 2
√

3π2√√√√1 + 128
9π3 tanh

(
πL̃y

2L̃

)
ρ̃�L̃

ρ̃shh̃

(
B̃

ρ̃shh̃L̃4

)1/2

, (5.2)

where in the small-amplitude approximation the first buckling mode is obtained when
ṽdu(0) = (8/π2)Δ̃1/2L̃3/2W̃. It is important to note that this analytical prediction is valid
only for very small excess lengths Δ̃/L̃ � 0.01. Larger excess lengths will probably result
in significant quantitative deviations from this solution.

To obtain a sense of the physical time and pressure scales that can potentially be induced
in the system, let us consider a chamber, with dimensions L̃x = L̃y = W̃ = 5 mm, that is
filled with water (ρ̃� � 103 kg m−3). In addition, let us assume that the sheet is made of
polyethylene terephthalate with Young’s modulus Ẽ � 1 GPa, Poisson’s ratio ν � 0.3 and
thickness h̃ � 0.1 mm, such that the bending modulus is B̃ = Ẽh̃3/[12(1 − ν2)] � 9 ×
10−5 J (Gomez et al. 2017). The density of the sheet is approximately ρ̃sh � 1500 kg m−3,
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and its total length is L̃ = 5.5 mm (Δ̃/L̃ = 0.09). Under these conditions, the inertial time
scale of the sheet is t̃� = (ρ̃shh̃L̃4/B̃)1/2 � 10−3 s, and the structure-to-fluid mass ratio is
given by λ � 0.03, i.e. the system is in the fluid-dominated region. Since our theory is
limited to inviscid fluids, it is reasonable to assume that the theory should agree with the
solution of the more general, viscous equations, in the limit of high Reynolds numbers,
where energy dissipation is rather small. Estimating the Reynolds number as Re ∼
ρ̃�

˜̄v(t̃p)L̃/μ̃, where μ̃ � 10−3 Pa s is the dynamic viscosity and ˜̄v(t̃p) ∼ (λΔ̃/L̃y)
1/2(L̃/t̃�)

is our scaling for the fluid’s velocity at time t̃p in the fluid-dominated region (see § 4.1),
we find that Re ∼ 103, i.e. it is relatively high. Yet, we are aware that higher Reynolds
numbers should possibly be considered to reveal a convergence to the inviscid limit. Using
these parameters, we have from (5.1a) and (5.2) that the growth rate and the frequency
of the oscillations are σ̃ � 3.2/t̃� and ω̃ � 8.5/t̃�, respectively. In addition, given an
initial volume difference, the peak time is obtained from (5.1b). This gives t̃p � 3.1t̃�
if ṽdu(0)/ṽcr

du = 10−4, and t̃p � 1.7t̃� if ṽdu(0)/ṽcr
du = 10−2. At that moment, the average

backward pressure difference on the sheet is given by ˜̄pud(tp) � −160 kPa; see (4.5).
However, when attempting to predict the behaviour of an experimental system using our

solution, it is important to keep in mind the assumptions made in the formulation. For
example, we assumed that the fluid exchange between the two parts of the chamber occurs
through the upper and lower walls, y = ±Ly/2, but, in practice, this fluid exchange is likely
to occur through a connecting channel, as shown in figure 1. In this case, the analytical
analysis must take into account the geometry of the transition region and its associated
pressure drop. For example, we anticipate that a narrow transition channel will slow down
the dynamics and decrease the growth rate of the instability. Additionally, we expect that
if the pressure drop in the channel is much smaller than p̄ud(tp), it will have a negligible
effect on the dynamics.

6. Concluding remarks

We investigated the dynamic interaction between a thin sheet and an inviscid fluid that
are confined in a closed rectangular chamber. Our investigation focused on two different
regions of the system: the early time evolution, where nonlinear effects are negligible, and
the evolution at moderate times, where nonlinearity plays a crucial role in the solution.
To analyse the dynamics at t � 1, we employed a linear stability analysis around the
second and first buckling modes. While the second mode is always an unstable state whose
highest growth rate is a positive number, the first mode is always stable and yields an
imaginary growth rate, i.e. periodic oscillations. In the small-amplitude approximation,
Δ � 1, we obtained analytical solutions for the highest growth rate and the smallest
oscillation frequency (3.6) and (3.8) respectively, which agree well with the numerical
solutions. Yet, experimental data are needed to validate these central analytical predictions.
To facilitate comparisons with experiments, we repeated these results in dimensional form
in § 5.

Given the chamber’s dimensions, we showed that both σ and ω converge to constants
in the solid-dominated region and exhibit λ1/2 scaling in the fluid-dominated region. This
scaling highlights the effect of the fluid on the sheet’s motion. When λ� 1, the elastic
forces are primarily balanced by the inertia of the sheet, and the fluid has minimal effect
on the dynamics. On the other hand, when λ� 1, the elastic forces are mainly balanced
by the hydrodynamic pressure difference, and the sheet’s inertia has a limited effect on
the dynamics. The differences between these two regions are further manifested in the
eigenfunctions of the linear stability solution. In the solid-dominated region only one
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mode of the sheet is excited, i.e. the other modes fall to zero as 1/λ, while an infinite
number of modes are excited in the fluid-dominated region. While this difference did not
affect the system’s behaviour at moderate times, since in the leading order the dynamics is
governed by the first two modes, we conjecture that it can influence the system’s behaviour
at t � 1; namely, beyond moderate times when higher modes have an increasing effect on
the dynamics, we would expect the fluid-dominated solution to be less ordered than the
solution in the solid-dominated region.

In addition, we focused on how the sheet escapes from the second buckling mode at
moderate times. Key to this analysis is the two-mode approximation that allowed us to
analytically analyse the energetic interplay between the sheet and the fluid; see (4.2) and
figure 10. This energetic interplay is based on the fact that our model incorporates an
elastic sheet and an inviscid fluid, which ensures that the system’s total energy is always
conserved. At each moment in time, the total energy is distributed between the kinetic
energy of the sheet, the potential energy of the sheet and the energy of the fluid, in different
proportions. In the solid-dominated region, the sheet’s initial potential energy is converted
to the sheet’s kinetic energy, and only a small fraction, of order λ−1, is converted to the
energy of the fluid. However, the picture is reversed in the fluid-dominated region, where
most energy is used to displace the fluid.

The time at which the potential energy of the sheet reaches a minimum (4.4) constitutes
another central result of our theory, which can be verified experimentally. In particular, we
showed that σ tp is almost independent of the parameter λ, and in the limit vdu(0) � 1 it
diverges logarithmically.

During the dynamic evolution at moderate times, we observed that the sheet–fluid
interplay experiences a transition from negative to positive feedback. Initially, the fluid
resists the sheet’s motion, but at later times, the hydrodynamic pressure difference acts
in the direction of the sheet’s motion and promotes the sheet’s dynamics. The positive
feedback ends at t = tp, when the volume difference reaches its maximum value, dictated
by the inextensibility of the sheet. At that moment, the pressure difference on the sheet,
p̄ud, reaches its peak value.

An important extension of the present theory is the inclusion of viscosity in the
mathematical formulation of the fluid. This extension will allow us to investigate the
behaviour of the sheet at both high and low Reynolds numbers and thus look for
the elastohydrodynamic instabilities caused by viscous effects. It will also allow us to
investigate the formation of boundary layers and examine their impact on the dynamics of
the system. We will pursue this extension in a future study.

Acknowledgements. We thank O. Shoshani and Y. Green for helpful discussions.

Funding. This research was partially supported by the Israel Science Foundation (grant no. 950/22).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Kirill Goncharuk https://orcid.org/0000-0002-3857-8444;
Yuri Feldman https://orcid.org/0000-0001-9143-9382;
Oz Oshri https://orcid.org/0000-0003-1782-4105.

Appendix A. Derivation of (2.10)

Equations (2.2)–(2.9) have a conserved first integral that corresponds to the total energy in
the system. To derive this conserved quantity, we multiply (2.8a) by ∂θ/∂t and (2.8b) by
∂xsh/∂t, and subtract the second equation from the first. Then, we integrate the resulting
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equation between s ∈ [0, 1], and use integration by parts and the geometric constraints
(2.6) to simplify the result. This gives

d
dt

[
Ek

sh(t) + Ep
sh(t)

]
= −

∫ 1

0

∂

∂s

(
∂xsh

∂t
· F − ∂θ

∂t
∂θ

∂s

)
ds −

∫ 1

0
( pu − pd)

∂xsh

∂t
· n̂d ds,

(A1)
where Ek

sh(t) = 1
2

∫ 1
0 |∂xsh/∂t|2 ds and Ep

sh(t) = 1
2

∫ 1
0 (∂θ/∂s)2 ds are readily identified as

the kinetic and potential energies of the sheet, respectively. Given the boundary conditions
on the sheet’s edges (2.9), the first term on the right-hand side of (A1) vanishes. Therefore,
to complete the derivation, it remains to show that the second term on the right-hand side
of (A1) equals −dEf (t)/dt.

Following Lamb (1945), the kinetic energy of an incompressible fluid is given by

d
dt

(
1

2λ

∫∫
vi(t)

|∇φi|2 dx dy
)

= −
∮

δvi(t)
pi∇φi · n̂i ds̃, (A2)

where δvi(t) are the perimeters of the upper or the lower parts of the chamber, ds̃ is an
infinitesimal element on δvi(t) (on the sheet ds̃ = ds) and n̂i(s̃, t) are the corresponding
local unit normal vectors on δvi(t). Since (∇φi · n̂i)x=0,1 = 0 on the sidewalls of the
chamber, in accordance with (2.4b), and since we have periodic boundary conditions on
the upper and lower walls, the right-hand side of (A2) reduces to an integral over the
configuration of the sheet. When summed over the two parts of the chamber this gives

dEf (t)
dt

= −
∑

i=u,d

∫ 1

0
pi∇φi · n̂i ds = −

∑
i=u,d

∫ 1

0
pi

∂xsh

∂t
· n̂i ds. (A3)

Here, Ef (t) = ∑
i=u,d(1/2λ)

∫∫
vi(t)

|∇φi|2 dx dy is the energy of the fluid, and in the
second equality we used the kinematic boundary condition (2.7a,b), to replace the normal
velocity of the fluid with the normal velocity of the sheet. Finally, note that on the sheet
the normal vectors are related by n̂u(s, t) = −n̂d(s, t). Using this relation and (A3), we
obtain that

dEf (t)
dt

=
∫ 1

0
( pu − pd)

∂xsh

∂t
· n̂d ds. (A4)

Substituting (A4) into (A1) and integrating once with respect to time completes the
derivation.

Appendix B. Minimization of the action

In this appendix, we show that the minimization of the action S = ∫ T
0 L dt, where L is

given by (2.14), yields the complete set of equilibrium equations in the small-amplitude
approximation (2.11)–(2.13). To do so, we minimize the action with respect to the elastic
fields, ysh(x, t) and Fx(t), and the hydrodynamic fields, φu(x, y, t) and φd(x, y, t), in the
standard way. We consider a small perturbation in each of these variables, for example,
ysh → ysh + δysh, and then expand the action to linear order in the perturbation, δysh(x, t).
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This procedure gives, after integration by parts, the variation

δS =
∫ 1

0

[(
∂ysh

∂t
+ φd(x, 0, t) − φu(x, 0, t)

λ

)
δysh

]T

t=0
dx

+
∫ T

0

[
−∂2ysh

∂x2
∂δysh

∂x
+
(

∂3ysh

∂x3 + Fx
∂ysh

∂x

)
δysh

]x=1

x=0
dt

−
∫ T

0

∫ 1

0

(
∂2ysh

∂t2
+ ∂4ysh

∂x4 + Fx(t)
∂2ysh

∂x2 + [pu(x, 0, t) − pd(x, 0, t)]
)

δysh dx dt

+
∫ T

0

∫ 1

0

(
1
2

(
∂ysh

∂x

)2

− Δ

)
δFx dx dt

+ 1
λ

∫ T

0

∫ 1

0
[δφd(x, 0, t) − δφu(x, 0, t)]

∂ysh

∂t
dx dt

− 1
λ

∑
i=u,d

(∫ T

0

∮
δvi

∇φi · n̂iδφi ds̃ dt −
∫ T

0

∫
vi

∇2φiδφi dx dy dt
)

, (B1)

where vi are the volumes of the chamber above and below the sheet in the small-amplitude
approximation, δvi are the perimeters of the upper and lower volumes, n̂i are the unit
normal vectors on δvi and ds̃ is an infinitesimal line element on δvi (on the sheet ds̃ = ds).

The initial conditions of the system and the boundary conditions that we imposed
(2.9b) and (2.9c) imply that the first and second lines in (B1) vanish altogether. The third
and fourth lines in (B1) vanish if the force balance equation (2.12) and (2.13a), and the
geometric constraint (2.11), are both satisfied. In the last line, the two integrals over the
upper and lower volumes of the chamber, vi, vanish if the continuity equations (2.2a) are
satisfied. Therefore, it remains to show that the fifth line and the penultimate term in the
last line of (B1) are equal to zero. To do so, we note that (∇φi · n̂i)x=0,1 = 0, and that
we assumed periodic boundary conditions at y = ±Ly/2 (2.4a). As a result, the integrals
over the perimeters δvi reduce to integrals over the sheet–fluid interfaces. In that case, the
remaining part of the variation of δS reads

δS = 1
λ

∫ T

0

∫ 1

0
[δφd(x, 0, t) − δφu(x, 0, t)]

∂ysh

∂t
dx dt

− 1
λ

∫ T

0

∫ 1

0

[(
∂φd

∂y
δφd

)
y=0

−
(

∂φu

∂y
δφu

)
y=0

]
dx dt. (B2)

Collecting the terms that are proportional to δφi(x, 0, t), we find that the integrands in (B2)
vanish when the kinematic boundary conditions (2.13b) are satisfied.

This completes the proof that the force balance equations and their corresponding
boundary conditions in the small-amplitude approximation both emanate from the
minimization of the action.

Appendix C. Derivation of (2.17) and (2.18)

In this appendix, we derive (2.17) and (2.18) in the main text. To do so, we first express the
Lagrangian (2.14) in terms of the unknown time-dependent coefficients An(t), am(t) and
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cm(t). Substituting the normal mode expansion of the sheet’s height function (2.16) and
the potential functions (2.15) into the Lagrangian (2.14) and integrating over the spatial
coordinates gives

L =
N∑

n=1

1
4

[(
dAn

dt

)2

+ π2n2
(

Fx(t) − π2n2
)

A2
n

]
− Fx(t)Δ

+ Ly

λ
a0

N∑
n=1

W(n, 0)
dAn

dt
+

N∑
n=1

N−1∑
m=1

2
λ

W(n, m) sinh
(

πmLy

2

)
(am − cm)

dAn

dt

− Ly

2λ
a2

0 −
N−1∑
m=1

πm
2λ

sinh(πmLy)
(

a2
m + c2

m

)
. (C1)

While the first line in this equation describes the kinetic and the potential energies of the
sheet and the geometric constraint, the second and third lines emanate, respectively, from
the mixed term, φi(x, 0, t)∂ysh/∂t, and the kinetic energies of the fluid.

The next step is to express the coefficients of the hydrodynamic potentials, am(t) and
cm(t), in terms of the elastic coefficients, An(t). Minimizing (C1) with respect to am(t) and
cm(t), we obtain

a0(t) =
N∑

k=1

W(k, 0)
dAk

dt
, (C2a)

am(t) = −cm(t) =
N∑

k=1

2
πm

sinh(πmLy/2)

sinh(πmLy)
W(k, m)

dAk

dt
(m = 1, 2, . . . , N − 1), (C2b)

where W(n, m) = (n/π)((1 − (−1)n+m)/(n2 − m2)) for n /= m and zero otherwise, as is
defined immediately following (2.18). Finally, we substitute (C2) back into the Lagrangian
(C1), and collect together terms that are proportional to (dAn/dt)(dAk/dt), the lateral
compression Fx(t) and AnAk. This yields (2.17) and (2.18) in the main text.

Appendix D. Linear stability analysis at a finite excess length

When the excess length of the sheet compared with the lateral dimension of the chamber
is finite, rather than Δ � 1, as assumed in § 2.1, the linear stability analysis is obtained
from the linearization of (2.2)–(2.9). In this appendix, we obtain a closed set of equations
for the linearization of the system in this, more general, case and explain the direction we
take to obtain the numerical solution.

To linearize (2.2)–(2.9), we first expand the elastic and the hydrodynamic fields around
their base solutions; for example, ysh(s, t) = ysh(s, 0) + ε eσ tŷsh(s), where ŷsh(s) is a
yet-to-be-determined eigenfunction and ε is an arbitrary small parameter. Similarly,
we define the eigenfunctions {x̂sh(s), θ̂ (s), F̂x(s), F̂y(s)} for the elastic sheet and
{φ̂i(x, y), p̂i(x, y)} for the fluid. We keep in mind that the fluid starts from rest, and therefore
the base solutions for the hydrodynamic fields are equal to zero. Thereafter, we substitute
these expansions in the continuity and Bernoulli equations (2.2), and expand them to a

976 A15-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

90
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.901


K. Goncharuk, Y. Feldman and O. Oshri

linear order in ε. This expansion reads

∇2φ̂i = 0, (D1a)

p̂i(x, y) = −σ

λ

[
φ̂i(x, y) − φ̂d

(
1 − Δ

2
, −Ly

2

)]
, (D1b)

where in the last equation we determine the constant ci(t) such that (2.5) is satisfied.
Similarly, an expansion of the geometric constrains (2.6), and the force balance equations
on the sheet (2.8), gives

dx̂sh

ds
= −θ̂ sin θ(s, 0), (D2a)

dŷsh

ds
= θ̂ cos θ(s, 0), (D2b)

d2θ̂

ds2 =
[
−Fx(s, 0)θ̂ + F̂y

]
cos θ(s, 0) −

[
F̂x + Fy(s, 0)θ̂

]
sin θ(s, 0), (D2c)

σ 2x̂sh = −dF̂x

ds
+ [

p̂u(xsh(s, 0), ysh(s, 0)) − p̂d(xsh(s, 0), ysh(s, 0))
]

sin θ(s, 0), (D2d)

σ 2ŷsh = −dF̂y

ds
− [

p̂u(xsh(s, 0), ysh(s, 0)) − p̂d(xsh(s, 0), ysh(s, 0))
]

cos θ(s, 0). (D2e)

Equations (D1) and (D2) form a closed system of equations once they are supplemented
with the linearized form of the boundary conditions (2.4), (2.7a,b) and (2.9). While at the
fluid–chamber and the fluid–sheet interfaces we have

∂φ̂i

∂x
(0, y) = ∂φ̂i

∂x
(1 − Δ, y) = 0, (D3a)

φ̂d(x, −Ly/2) = φ̂u(x, Ly/2), (D3b)

∂φ̂d

∂y
(x, −Ly/2) = ∂φ̂u

∂y
(x, Ly/2), (D3c)

σ ŷsh + ∂φ̂i

∂x

[
∂ysh

∂x
(s, 0)

]
= ∂φ̂i

∂y
, (D3d)

at the edges of the sheet, the boundary conditions are

x̂sh(0) = 0, x̂sh(1) = 0, (D4a)

ŷsh(0) = 0, ŷsh(1) = 0, (D4b)

dθ̂

ds
(0) = 0,

dθ̂

ds
(1) = 0. (D4c)

This completes the linearization of (2.2)–(2.9). The linearized equations (D1)–(D4)
always admit the trivial solution, where the eigenfunctions vanish altogether, unless their
determinant is equal to zero.

To solve this set of equations for given Ly, Δ and λ, we first obtain numerically the
base solution for the position of the sheet, i.e. xsh(s, 0) and θ(s, 0). Then, we substitute
this solution into the linearized equations and discretize them. The discrete equations are
solved using a finite-difference scheme for the elastic sheet and a finite-element scheme
for the solution of (D1) in the bulk of the fluid.
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