DENOMINATOR SEQUENCES OF CONTINUED FRACTIONS I

R. T. WORLEY
(Received 10 June 1971; revised 4 October 1971)
Communicated by E. S. Barnes

Let α be an irrational number with simple continued fraction $\alpha=\left(a_{0}, a_{1}, a_{2}, \cdots\right)$. The problem studied is that of whether the sequence $\left(q_{n}\right)$ of denominators of the convergents p_{n} / q_{n} to α has a subsequence $\left(B_{n}\right)=\left(q_{i_{n}}\right\}$ which is the sequence of denominators of convergents A_{n} / B_{n} to a different number α^{\prime}. In other words, does there exist a subsequence $\left\{q_{i_{n}}\right\}$ which satisfies $q_{i_{0}}=1$ and

$$
\begin{equation*}
q_{i_{n+2}} \equiv q_{i_{n}}\left(\bmod q_{i_{n+1}}\right) ; n \geqq 0 ? \tag{0}
\end{equation*}
$$

For example, the sequence of denominators of convergents to $\frac{1}{2}(3-e)$ is a subsequence of the sequence of denominators of convergents to e.

In what follows we shall preserve the notation introduced above. We shall show that if the continued fraction for α satisfies a condition a little more general than periodicity then there usually exists at least one α^{\prime} for which the denominators B_{n} of convergents form, apart from an initial few, a subsequence of the sequence q_{n}. Furthermore, either $B_{n+1} \geqq \frac{1}{2} B_{n}^{2}$ infinitely often or $\alpha^{\prime}=a \alpha+b$ for rational numbers a and b.

We define, for odd integers $p \geqq 3$, the continued fraction ($a_{0}, a_{1}, a_{2}, \cdots$) as nearly periodic with period (p, r) if $r \geqq 0$ is an integer such that for each integer $n \geqq 1$ at least one of the conditions
(ii)

$$
\begin{equation*}
a_{n p+r-i}=a_{(n+1) p+r-i} \quad(0 \leqq i \leqq p-2) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a_{n p+r-i}=a_{n p+2+r+i} \quad(0 \leqq i \leqq p-2) \tag{i}
\end{equation*}
$$

holds. In other words the sequence $a_{(n-1) p+2+r,}, \cdots a_{n p+r}$ is repeated in the same or reverse order after $a_{n p+r+1}$. For example the continued fraction for e, $(2,1,2,1,1,4, \cdots)$, is nearly periodic with period $(3,1)$. Note that r is not restricted to be less than p, so the nearly periodic property is not determined by the initial elements.

Lemma 1. Let k, l and m be positive integers with $m>l$. Define P_{m}, Q_{m}, R_{m} and S_{m} by

$$
\begin{aligned}
& P_{m} / Q_{m}=\left(0, a_{m+2}, \cdots, a_{m+k}\right), \\
& R_{m} / S_{m}=\left(0, a_{m}, a_{m-1}, \cdots, a_{m-l+2}\right)
\end{aligned}
$$

where the right hand sides are to be interpreted as $0 / 1$ if $k=1$ or $l=1$. Then

$$
\begin{aligned}
q_{m+k} & =P_{m} q_{m}+Q_{m} q_{m-1}+Q_{m} a_{m+1} q_{m}, \\
q_{m-l} & =(-1)^{l-1}\left(-R_{m} q_{m}+S_{m} q_{m-1}\right),
\end{aligned}
$$

and similarly with the q_{i} replaced by p_{i}.
Proof. This is a direct consequence of the relations between the q_{i} and between the p_{i}.

Corollary. If the continued fraction for α is nearly periodic with period (p, r) then for each integer $n \geqq 1$,

$$
\begin{equation*}
q_{(n+1) p+r}=c_{n-1} q_{n p+r}+q_{(n-1) p+r}, \quad \text { and } \tag{2}
\end{equation*}
$$

(ii)

$$
p_{(n+1) p+r}=c_{n-1} p_{n p+r}+p_{(n-1) p+r,}
$$

where the c_{n} are positive integers.
Proof. Apply the lemma with $m=n p+r, k=l=p$, taking

$$
c_{n-1}=Q_{m} a_{m+1}+P_{m}+R_{m},
$$

observing that conditions (1) imply that $Q_{m}=S_{m}$ since ($0, a_{m}, \cdots, a_{m-p+2}$) and $\left(0, a_{m-p+2}, \cdots, a_{m}\right)$ have the same denominator.

Lemma 2. Let d_{1}, \cdots, d_{s-1} be positive integers, let $X_{0}, X_{1}, Y_{0}, Y_{1}$ be nonnegative integers and let $X_{2}, \cdots, X_{s}, Y_{2}, \cdots, Y_{s}$ be defined inductively by

$$
\begin{array}{ll}
X_{m}=d_{m-1} X_{m-1}+X_{m-2} & (2 \leqq m \leqq s) \\
Y_{m}=d_{m-1} Y_{m-1}+Y_{m-2} & (2 \leqq m \leqq s)
\end{array}
$$

Then

$$
\frac{X_{s}}{Y_{s}}=\frac{X_{1} \beta_{s}+X_{0}}{Y_{1}} \frac{\beta_{s}+Y_{0}}{}
$$

where $\beta_{s}=\left(d_{1}, d_{2}, \cdots, d_{s-1}\right)$.
Proof. The result is trivial for $s=2$. For $s>2$ the result is proved by induction in a similar manner to the particular case in simple continued fraction theory.

Theorem. Let α be such that for positive integers $c_{0}, c_{1}, c_{2}, \cdots$

$$
\begin{equation*}
q_{i_{n+1}}=c_{n-1} q_{i_{n}}+q_{i_{n-1}} \quad(n \geqq 1), \quad \text { and } \tag{3}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
p_{i_{n+1}}=c_{n-1} p_{i_{n}}+p_{i_{n-1}} \quad(n \geqq 1) \tag{i}
\end{equation*}
$$

for a subsequence $\left(q_{i_{n}}\right)$ of $\left(q_{i}\right)$. If $q_{i_{0}}$ and $q_{i_{1}}$ are relatively prime then there exists α^{\prime} of the form $a \alpha+b$ with a and b rational such that $B_{n+u}=q_{i_{n}}$ for $n \geqq 0$, where $u \geqq 0$ is integral and $u=0$ if $q_{i_{0}}=1$.

Proof. If $q_{i_{0}}=1$ then plainly the $q_{i_{n}}$ are the denominators to $\alpha^{\prime}=\left(0, q_{i_{1}}, c_{0}, c_{1}, c_{2}, \cdots\right)$. However if $q_{i_{0}}>1$, define $q_{i_{-1}}, q_{i_{-2}}, \cdots$, and c_{-1}, c_{-2}, \cdots, inductively by

$$
q_{i_{j+2}}=c_{j} q_{i_{j+1}}+q_{i_{j}} \quad\left(0 \leqq q_{i_{j}} \leqq q_{i_{j+1}}-1\right)
$$

where the process is terminated when $q_{i_{t}}=0$ is reached. Then it is easy to verify that the denominators of the convergents to $\alpha^{\prime}=\left(0, c_{t}, c_{t+1}, \cdots\right)$ are precisely $q_{i_{t+1}}, q_{i_{t+2}}, \cdots$.

To find the relation between α and α^{\prime} we observe that, by lemma 2 with $\beta=\left(c_{0}, c_{1}, \cdots\right)$

$$
\begin{equation*}
\alpha=\lim _{n \rightarrow \infty} p_{i_{n}} / q_{i_{n}}=\left(p_{i_{1}} \beta+p_{i_{0}}\right) /\left(q_{i_{1}} \beta+q_{i_{0}}\right) \tag{4}
\end{equation*}
$$

and

$$
\alpha^{\prime}=(y \beta+x) /\left(q_{i_{1}} \beta+q_{i_{0}}\right)
$$

where $y / q_{i_{1}}=\left(0, c_{t}, \cdots, c_{-1}\right)$ and $x / q_{i_{0}}=\left(0, c_{t}, \cdots, c_{-2}\right)$, these expressions being interpreted as $1 / q_{i_{1}}$ and $0 / 1$ if $q_{i_{0}}=1$. Then comparing the above formulae gives

$$
\alpha^{\prime}=\left\{p_{i_{0}} q_{i_{1}}-p_{i_{1}} q_{i_{0}}\right\}^{-1}\left\{\alpha\left\{x q_{i_{1}}-y q_{i_{0}}\right\}+y p_{i_{0}}-x p_{i_{1}}\right\}
$$

which shows α^{\prime} to be of the desired form. It remains to set $u=-(t+1)$.
It should be remarked that if $\left(q_{i_{0}}, q_{i_{1}}\right)=d>1$ then $d \mid q_{i_{n}}$ for $n \geqq 2$ as well. Replacing the $q_{i_{j}}$ by $q_{i_{j}}^{*}=q_{i_{j}} d^{-1}$ we have $3(\mathrm{i})$ holding for the $q_{i_{j}}^{*}$. Since $\left(q_{i_{j}}\right)^{2}\left|\alpha-p_{i_{j}} / q_{i_{j}}\right|<1$ implies $\left(q_{i_{j}}^{*}\right)^{2}\left|d \alpha-p_{i_{j}} / q_{i_{j}}^{*}\right|<d^{-1} \leqq \frac{1}{2}$, then $p_{i_{j}} / q_{i_{j}}^{*}$ is a convergent to $\alpha^{*}=d \alpha$. It follows that the $q_{i j}^{*}$ are denominators of convergents to some number α^{*}, i.e. that the $q_{i_{j}}$ are multiples by $d=\left(q_{i_{1}}, q_{i_{0}}\right)$ of a subsequence of denominators of convergents to α^{*}.

Corollary. If the continued fraction for α is nearly periodic with period (p, r), where $p \geqq 3$ is odd, then
(a) If $r=0$ or $r=a_{1}=1$ then $q_{r}=1$ and the theorem, with $i_{n}=p n+r$, yields the existence of α^{\prime} the denominators of convergents to which form a subsequence $\left(B_{n}\right)=\left(q_{i_{n}}\right)_{n \geqq 0}$ of the denominator sequence of convergents to α,
(b) If $\left(q_{r}, q_{p+r}\right)=1$ then the theorem, with $i_{n}=p n+r$, yields the existence of α^{\prime} the denominators of convergents to which form, apart from an initial few, a subsequence $\left(B_{n+u}\right)=\left(q_{i_{n}}\right)_{n \geqq 0}$ of the denominator sequence of convergents to α, and
(c) If $\left(q_{r}, q_{p+r}\right)=d>1$ then by the remarks above there exists α^{\prime} the denominators of convergents to which, apart from an initial few, when multi-
plied by d form a subsequence of the denominator sequence of convergents to α.

It will be observed that by lemma $1\left(q_{p+r}, q_{r}\right)=\left(Q, q_{r}\right)$ where Q is the denomnator of $\left(0, a_{r+2}, \cdots, a_{r+p}\right)$, and so Q and q_{r} are completely independent of one another.

Remarks. (i) If we take $\frac{1}{2}(\sqrt{ } 5-1)$ as our α, so that the q_{n} are the Fibonacci numbers, then the continued fraction for α is nearly periodic with periods ($p, 0$) and ($p, 1$) for any odd number p. Thus there are infinitely many α^{\prime} for this choice of α.
(ii) If α has an ultimately periodic continued fraction then by the result of Schmidt [1] it follows that any α^{\prime} must be of the form $a \alpha+b$ for rationals a and b unless it is transcendental.
(iii) If we take $e-1=(1,1,2,1,1,4,1,1,6, \cdots)$ as α then the continued fraction is nearly periodic with period $(3,1)$, and we find $x=0, y=1, c_{j}=10+4 j$ and $\beta=(10,14,18,22, \cdots)$. Hence using (4) we obtain a proof that $e-1=$ $(1,1,2,1, \cdots)$ given that $(0,2,6,10, \cdots)=(e-1) /(e+1)$.
(iv) If some terms are dropped from the beginning of the sequence $\left(q_{i_{n}}\right)$, α^{\prime} as defined in the proof of the theorem is unaffected. Hence if an α^{\prime} exists which is not of the form $a \alpha+b$ for rational a and b then the sequence i_{n} defined by $B_{n+u}=q_{i_{n}}$ must violate 3 (ii) infinitely often where c_{n-1} is defined by 3(i). If $Q_{i_{n}}$ and $S_{i_{n}}$ are obtained by setting $m=i_{n}, k=i_{n+1}-i_{n}, l=i_{n}-i_{n-1}$ in the formulae of lemma 1, then plainly $Q_{i .-}-(-1)^{t-1} S_{i .-}=Q_{i_{n}} \pm S_{i}$ must be nonzero infinitely often, for when it is zero 3(i) and 3(ii) hold. But $q_{i_{-1}}$ divides $q_{i_{n+1}}-q_{i_{n-1}}$ and is relatively prime to $q_{i_{n-1}}$. Hence, irfinitely often, $\left|Q_{i_{n}} \pm S_{i_{n}}\right| \geqq q_{i_{n}}$. But $Q_{i_{n}} \geqq \frac{1}{2} q_{i_{n}}$ implies that $q_{i_{n+1}} \geqq \frac{1}{2} q_{i_{n}}^{2}$, and $S_{i_{-}} \geqq \frac{1}{2} q_{i_{1}}$ implies $Q_{i_{n-}-1} \geqq \frac{1}{2} q_{i_{n-1}}\left(S_{i_{n}}=Q_{i_{n-1}}\right)$ which in turn yields $q_{i_{n}} \geqq \frac{1}{2} q_{i_{n-1}}^{2}$. Thus we may conclude that if α^{\prime} is not of the form $a \alpha+b$ for rational a and b then $B_{n+1} \geqq \frac{1}{2} B_{n}^{2}$ infinitely often.
(v) If α is a quadratic irrational it is easy to construct an α^{\prime} not of the form $a \alpha+b$ for rational a and b since we only need to ensure $q_{i_{n+1}} \equiv q_{i_{n-1}} \bmod q_{i_{n}}$ and that $q_{i_{n+1}} \geqq \frac{1}{2} q_{i_{n}}^{2}$ (or, indeed, any sufficiently rapidly increasing function of $q_{i_{n}}$). The α^{\prime} defined by such a sequence cannot be a quadratic irrational and so certainly cannot be of the form $a \alpha+b$. Such a sequence ($q_{i_{n}}$) can be chosen since the congruence classes $\bmod q_{i_{n}}$ of the q_{j} recur in cyclic pattern.
(vi) It is possible to construct an α, not a quadratic irrational, having an α^{\prime} for which $B_{n} \geqq \frac{1}{2} B_{n+1}^{2}$ infinitely often, but in this case the transcendence of α^{\prime} does not guarantee the non-existence of a relation of the type $\alpha^{\prime}=a \alpha+b$ for a and b rational.
(vii) It can be deduced that if α and α_{1} are such that they have a common subsequence (B_{n}) of the sequence of denominators of convergents satisfying
$B_{n}<\frac{1}{2} B_{n+1}^{2}$ for all but finitely many n, then $\alpha_{1}=a \alpha+b$ for rational a and b. This raises the problem of how dense a common subsequence of denominators, with or without extra conditions, must be in order to guarantee $\alpha_{1}=a \alpha+b$ for rationals a and b. Of course it may be assumed that one of α and α_{1} is transcendental, as the result of Schmidt shows that if α, α_{1} are both algebraic with an infinite number of common denominators then $\alpha_{1}=a \alpha+b$ with a and b rational.
(viii) It should be noted that the sequence of fractional parts $\left\{B_{n} \alpha\right\}$ converges to $0 \bmod 1$. Thus if α and α^{\prime} are as in (v) then $1, \alpha, \alpha^{\prime}$ are independent over the rationals and the sequence $\left\{B_{n} \alpha\right\}$ is not dense in $[0,1]$. This result sheds little light on the unsolved problem of whether or not the sequence $\left\{F_{n} \sqrt{ } 3\right\}$ is dense in $[0,1]$, where the Fibonacci numbers F_{n} are the denominators of the convergents to $\frac{1}{2}(\sqrt{5}-1)$, since though $1, \frac{1}{2}(\sqrt{5}-1), \sqrt{3}$ are independent over the rationals, the second of these is a quadratic irrational whereas α^{\prime} from (v) is transcendental.

Reference

[1] W. M. Schmidt, 'On simultaneous approximations of two algebraic numbers by rationals' Acta Math. 119 (1967), 27-50.

Monash University
Clayton, Vic. 3168
Australia

