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Abstract

The Ceratitis FARQ species complex consists of four highly destructive agricultural pests of
Africa, namely C. fasciventris, C. anonae, C. rosa, and C. quilicii. The members of the complex
are considered very closely related and the species limits among them are rather obscure.
Their economic significance and the need for developing biological methods for their control
makes species identification within the complex an important issue, which has become clear
that can only be addressed by multidisciplinary approaches. Chromosomes, both mitotic and
polytene, can provide a useful tool for species characterization and phylogenetic inference
among closely related dipteran species. In the current study, we present the mitotic karyotype
and the polytene chromosomes of C. rosa and C. quilicii together with in situ hybridization
data. We performed a comparative cytogenetic analysis among the above two species and C.
fasciventris, the only other cytogenetically studied member of the FARQ complex, by compar-
ing the mitotic complement and the banding pattern of the polytene chromosomes of each
species to the others, as well as by studying the polytene chromosomes of hybrids between
them. Our analysis revealed no detectable chromosomal rearrangements discriminating the
three FARQ members studied, confirming their close phylogenetic relationships.

Introduction

Tephritidae is a speciose family of Diptera, with a great number of species characterized as
serious agricultural pests (Bickel et al., 2009). In particular, the genera of Anastrepha,
Bactrocera, Ceratitis, Dacus, Rhagoletis, and Zeugodacus include some of the most destructive
fruit flies that cause severe economic losses due to crop damaging of commercial fruit and
vegetable and restrictions to global trade (White and Elson-Harris, 1992; De Meyer et al.,
2015b). From the genus Ceratitis, the Mediterranean fruit fly, Ceratitis capitata, is the best
studied species used as a model pest organism, because of its almost global distribution and
its enormous economic impact (Malacrida et al., 2007). In the recent years, attention has
been also drawn to the Ceratitis species of the African FARQ complex. Until 2016, the complex
was known as FAR species complex and was considered to consist of three closely related spe-
cies, C. fasciventris, C. anonae, and C. rosa (Virgilio et al., 2008). However, accumulating evi-
dence from studies on molecular genetics (Virgilio et al., 2013), morphometrics (Van Cann
et al., 2015), developmental physiology (Tanga et al., 2015), behavior and sexual compatibility
(De Meyer et al., 2015a), chemoecology (Vaníčková et al., 2015), and environmental prefer-
ences (Mwatawala et al., 2015) lead to the conclusion that C. rosa was, in fact, consisting of
two entities, one of which has been described as a new species within the complex, C. quilicii
(De Meyer et al., 2016). Microsatellite analysis indicated the existence of two genotypic groups
in C. fasciventris, as well, referred to as types F1 and F2 (Virgilio et al., 2013). This was con-
firmed also by morphological data, however, in the absence of integrative evidence, C. fasciven-
tris is still considered as one species (De Meyer et al., 2015a).

The four members of the FARQ complex are highly polyphagous attacking plants from
more than 25 different families and are considered a major threat to the agricultural produc-
tion and economy of many countries of the African continent, as well as species of quarantine
significance (White and Elson-Harris, 1992; Smith et al., 1997; De Meyer et al., 2002). C. fas-
civentris and C. anonae are distributed mainly through Western and Central Africa, found
sympatrically in several regions, while C. rosa and C. quilicii present overlapping distribution
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in Eastern and Southern Africa (De Meyer et al., 2002, 2016;
Copeland et al., 2006). It has been reported that C. rosa occupies
mainly lower altitude areas, while C. quilicii predominates in
cooler highland regions (Mwatawala et al., 2015), probably reflect-
ing differences in the developmental and survival rates of the two
species in respect to climate variation (Tanga et al., 2015). It
should be noted that C. quilicii is the only one of the two sibling
species found in the southernmost parts of Africa where the cli-
mate is more temperate (De Meyer et al., 2015a). However,
because of the recent separation into different species, the specific
distribution patterns for C. rosa and C. quilicii may need
reevaluation. Among the FARQ pests, C. rosa and C. quilicii are
the most aggressive ones causing significant destruction to a
large variety of crops and presenting high expansion potential.
Already, C. quilicii has been introduced in the Islands of
Mauritius and La Réunion (White et al., 2000; De Meyer et al.,
2016) and a great concern has arisen about their possible expan-
sion to more temperate climates outside Africa, since they can
survive in a wide temperature and altitude range (Duyck and
Quilici, 2002; Copeland et al., 2006; Geurts et al., 2012; de
Villiers et al., 2013; Tanga et al., 2018).

The species of the FARQ complex are extremely similar in
morphology; males are hardly identified by subtle differences in
the setal ornamentation and pigmentation of mid femur and
tibia, while females are practically indistinguishable (De Meyer
et al., 2015a, 2016). Species delimitation and phylogenetic rela-
tionships among the four taxa are not fully resolved. Several
approaches have been undertaken toward this direction including
morphometrics (Van Cann et al., 2015), interspecies hybridiza-
tion and estimation of developmental stability (Erbout et al.,
2008), biochemical characterization of pheromones and cuticular
hydrocarbons (Vaníčková et al., 2014, 2015; Břízová et al., 2015),
and molecular/genetic data of nuclear and mitochondrial
sequences (Douglas and Haymer, 2001; Barr and McPheron,
2006; Barr et al., 2006, 2012; Virgilio et al., 2008, 2012), with
the analysis of a specific microsatellite set conferring better reso-
lution among populations of the complex (Delatte et al., 2013;
Virgilio et al., 2013, 2019). Recently, a phylogenomic study
based on genome-wide SNP analysis provided consistent reso-
lution and better insights into the phylogenetic relationships of
the FARQ members (Zhang et al., 2021). A good understanding
of the evolutionary relationships and the development of accurate,
simple, and fast diagnostic tools for the sibling species of the
FARQ complex is of great importance for the implementation
of quarantine measures, as well as for biological control applica-
tions, including the sterile insect technique (SIT), against these
pests.

The number and structure of chromosomes are fundamental
genetic characteristics of species, while chromosome rearrange-
ments are considered to play a major role in speciation. In
Diptera, the occurrence of polytene nuclei in several juvenile tis-
sues has greatly facilitated the study of chromosomes due to
their enormous size and consistent banding pattern (Zhimulev
and Koryakov, 2009). Numerous cytogenetic studies in
Drosophila but also in mosquitoes have explored the evolution-
ary changes of chromosome structure among related species
and, together with modern genomic data, substantiated that
chromosome rearrangements and especially paracentric inver-
sions promote speciation, mainly through suppressing recom-
bination and, thus, preserving sets of co-adapted alleles, and
suggested that they could be used as phylogenetic markers
(Sturtevant and Dobzhansky, 1936; Coluzzi et al., 1979;

Krimbas and Powell, 1992; Noor et al., 2001; Rieseberg, 2001;
Kirkpatrick and Barton, 2006; Kulathinal et al., 2009; Faria
and Navarro, 2010; McGaugh and Noor, 2012; Lee et al.,
2013). In Tephritidae, as well, differences in the size and struc-
ture of mitotic sex chromosomes have been descripted as diag-
nostic characters among closely related species
(Hunwattanakul and Baimai, 1994; Baimai et al., 1995, 2000;
Baimai, 1998; Goday et al., 2006; Cáceres et al., 2009;
Hernández-Ortiz et al., 2012; Giardini et al., 2015).
Furthermore, comparative analyses of polytene chromosomes
have identified specific rearrangements that could distinguish
between genera, subgenera, or species (Augustinos et al., 2015;
Zacharopoulou et al., 2017; Gouvi et al., 2022). Cytogenetic
information on tephritid pests has also been proved valuable
for the development and characterization of genetic sexing
strains essential for the implementation of certain control meth-
ods, such as SIT (Augustinos et al., 2015; Zacharopoulou et al.,
2017; Gouvi et al., 2022). Even so, taking into consideration that
speciation is a complex procedure driven by variable factors one
can understand that chromosome structure and cytogenetics
could only be one of multiple tools for species delimitation.
Especially in cases of recent or ongoing speciation, pools of inde-
pendent data in the context of ‘integrative taxonomy’ (Schutze
et al., 2017a, 2017b) and modern genome-wide analyses
(Zhang et al., 2021) are necessary for clearer perception.

In this study, we describe the mitotic and polytene chromo-
some of C. rosa and C. quilicii and we conduct a comparative
polytene chromosome analysis among the above species and C.
fasciventris F2 by observation of polytene nuclei of each species
as well as of F1 hybrids between them. Furthermore, we localized
the hsp70 gene on the polytene chromosomes of the above spe-
cies, since rearrangements which include the chromosome region
where the hsp70 locus resides on the 3L polytene arm seem to be
common among several tephritid species (Drosopoulou et al.,
2017; Zacharopoulou et al., 2017), some of them closely related
(Gouvi et al., 2022). Our aim is to reveal possibly existing chromo-
some rearrangements that could be informative toward the better
understanding of the phylogenetic relationships of the species and
could be used as discriminating characters for species identifica-
tion within the FARQ complex.

Materials and methods

Insects from five colonies maintained at the Insect Pest Control
Laboratory (IPCL), Seibersdorf, Austria were used in the present
study. The above colonies were established from insects originat-
ing from confirmed colonies of Ceratitis fasciventris F2 (hereafter
C. fasciventris), C. rosa and C. quilicii maintained at ICIPE, Kenya
and of C. rosa and C. quilicii maintained at CRI, South Africa.
The colonies were reared under controlled temperature, humidity,
and light conditions, as previously described (Drosopoulou et al.,
2017).

Mitotic chromosome preparations were spread from nerve
ganglia of third instar larvae following the air-drying technique
described in Mavragani-Tsipidou et al. (2014). Brain tissue was
dissected in physiological solution, treated with hypotonic solu-
tion (1% sodium citrate) for about 15 min and fixed in fresh fix-
ation solution (methanol/acetic acid 3:1) for 3 min. Samples were
macerated in a small drop of 60% acetic acid, dripped onto a clean
slide and placed on a hotplate (40–45 °C). After air-drying, pre-
parations were stained in Giemsa solution (5% Giemsa in 10
mM phosphate buffer, pH 6.8) and observed with 100×
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magnification objective lens, using a phase contrast microscope
(Leica DMR). Well spread nuclei were photographed using a
CCD camera (ProgResCFcool; JENOPTIK Jena Optical Systems,
Jena, Germany). About ten chromosome preparations from indi-
vidual larvae from each strain and at least ten well spread nuclei
per preparation were analyzed.

Polytene chromosome preparations for banding pattern ana-
lysis were made from salivary glands of third-instar larvae as
described in Mavragani-Tsipidou et al. (2014). Salivary glands
were dissected in 45% acetic acid, transferred to 3N HCL for 1
min, and fixed in fixation solution (3 parts glacial acetic acid: 2
parts water: 1 part lactic acid) for about 5 min. Staining was per-
formed in lacto-acetic-orcein for 5–7 min. After excess stain was
removed, the glands were squashed in lacto-acetic acid. About
50 chromosome slides from each strain were prepared and well
spread nuclei and/or isolated chromosomes were observed at
63× and 100× objectives in a phase contrast microscope (Leica
DMR) and photographed using a CCD camera (ProgResCFcool;
JENOPTIK Jena Optical Systems).

Polytene chromosome preparations for in situ hybridization
were made following the procedure described by
Mavragani-Tsipidou et al. (2014). A genomic fragment of the
hsp70 gene of Ceratitis capitata (Papadimitriou et al., 1998) was
used as probe. Labeling of the probe and detection of the signal

was performed using the ‘DIG-DNA Labeling and Detection
kit’ purchased by ROCHE, Mannheim, Germany and following
the protocol described in Mavragani-Tsipidou et al. (2014).
Hybridization was performed at 65 °C. Five preparations and at
least ten well spread nuclei per preparation were observed at
100× magnification with a Leica DMR phase contrast microscope
equipped with a CCD camera (ProgResCFcool, JENOPTIK Jena
Optical Systems).

Results and discussion

Mitotic chromosomes

The karyotypes of C. rosa and C. quilicii (2n = 12) appear iden-
tical to each other consisting of five pairs of autosomes and one
pair of heteromorphic sex chromosomes (XX/XY) (fig. 1). The
largest metacentric (chromosome 2), as well as the only subme-
tacentric (chromosome 3) autosome pair can be easily identified
(fig. 1). The remaining three autosomes (namely 4, 5, and 6)
being all metacentric of similar size cannot be easily distin-
guished by our analysis. The two sex chromosomes differ signifi-
cantly in size: the X chromosome is submetacentric of medium
size, while Y is a small metacentric chromosome (fig. 1b, d). The
karyotypes of C. rosa and C. quilicii, presented after Giemsa

Figure 1. Mitotic karyotypes of C. rosa (a and b) and C. quilicii (c and d). (a, c) Female; (b, d) male. The sex chromosomes, X and Y, as well as the autosomes 2 and 3
are shown.
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staining, are in agreement with the C. rosa karyotype described
by Willhoeft and Franz (1996). They also appear very similar to
the mitotic karyotype of the closely related member of the FARQ
complex, C. fasciventris (Drosopoulou et al., 2017), in which the
X chromosome seems to be of slightly smaller size (relatively to
the autosomes). Similarly, the main difference of all FARQ kar-
yotypes to C. capitata is the considerably shorter X and Y chro-
mosomes. Such variation in the size of the sex chromosomes,
reflecting differences of the amount of heterochromatin, can
be commonly observed among very closely related, e.g. within
a complex (Baimai et al., 1995, 2000; Selivon et al., 2005a;
Cáceres et al., 2009) or a bit more distantly related, e.g. within
a genus, (Hunwattanakul and Baimai, 1994; Frias, 2004;
Selivon et al., 2005b; Zacharopoulou et al., 2017) species of
tephritids.

Polytene chromosomes

The salivary gland polytene nuclei of two C. rosa colonies and
two C. quilicii colonies have been studied. Analysis showed that
the polytene complement of the above species consists of ten
long polytene arms with distinct banding pattern, corresponding
to the five autosomes, while a dispersed heterochromatic
network represents the under-replicated sex chromosomes
(Supplementary figs 1 and 2), similarly to other Tephritidae spe-
cies (Zacharopoulou et al., 2017; Gouvi et al., 2022). Although no
typical chromocenter was observed, the centromeric region of dif-
ferent chromosomes could be found loosely connected
(Supplementary fig. 1a). Chromosomes were numbered from 2
to 6, chromosome arms were designated as L or R
(Supplementary figs 1 and 2) based on the similarities to C. fas-
civentris polytene chromosome maps (Drosopoulou et al., 2017)
and following the numbering system proposed for the polytene
chromosomes of the medfly, the first tephritid species analyzed
cytogenetically (Zacharopoulou et al., 2017).

Detailed comparison of the polytene chromosome banding
pattern failed to reveal differences either among the analyzed
strains of C. rosa and C. quilicii nor between each analyzed strain
and C. fasciventris (Supplementary figs 3 and 4). Aiming to con-
firm the identical banding pattern of the analyzed species, the
polytene chromosomes of F1 hybrids between C. rosa and C.

quilicii, as well as between C. rosa and C. fasciventris and C. qui-
licii and C. fasciventris were also examined. The analysis of the
polytene nuclei of the hybrids did not reveal any chromosome
rearrangements between the parental strains. Synapsis of the
homologous chromosomes was almost perfect in the hybrids
between C. rosa and C. quilicii (fig. 2), while in the hybrids
with C. fasciventris minor polymorphic asynapses were observed
(Supplementary figs 5 and 6). Asynapses were mainly located at
or close to the telomeric and the centromeric regions of the poly-
tene arms and their extent was limited although it could vary
among different nuclei (figs 3 and 4). The number and frequency
of minor asynaptic sites were higher in the hybrids between C.
rosa and C. fasciventris compared to the ones between C. quilicii
and C. fasciventris. The most evident asynapses were the ones at
the tips of chromosome arms 2L, 2R, 3L, 4R, and 6R (figs 3
and 4).

The above observations indicate that the chromosomes of C.
rosa and C. quilicii, at least at the banding pattern level, can be
considered as homosequential to each other and to C. fasciventris
and the available polytene chromosome maps of C. fasciventris
(Drosopoulou et al., 2017) is suggested to be used as reference
map for the three FARQ species.

The lack of detectable differences in the mitotic and polytene
chromosomes of the three FARQ species indicates that they are
very close genetically. This is also supported by previous molecu-
lar genetic studies, including analysis of nuclear and mitochon-
drial fragments, DNA barcoding and analysis of complete
mitogenomes, that couldn’t resolve phylogeny or provide robust
discriminating tools for the members of the complex (Virgilio
et al., 2008, 2012; Barr et al., 2012; Drosopoulou et al., 2017,
2021). The limitations of the above approaches seem to be over-
come only by genome-wide sequencing data succeeding to pro-
vide a robust phylogenetic inference within the complex (Zhang
et al., 2021). Absence of chromosomal rearrangements has also
been observed between the two members of the B. dorsalis com-
plex, namely B. dorsalis and B. carambolae (Augustinos et al.,
2015), however, within other species complexes of Tephritidae
chromosome differences have been used as differentiating charac-
ters and revealed incipient speciation (Selivon et al., 2005b, 2005a;
Goday et al., 2006; Cáceres et al., 2009; Hernández-Ortiz et al.,
2012).

Figure 2. Polytene nuclei of F1 hybrids between C. rosa and C. quilicii. The telomeres of the polytene elements are indicated. 5LC indicates the 5L centromere. No
asynapses are observed.
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Chromosome localization of the hsp70 gene

The hsp70 gene has been localized on the polytene chromosome
of C. rosa and C. quilicii. A unique hybridization signal has been
identified on the same chromosomal position (3L polytene
chromosome arm, region 27) in all strains tested (fig. 5). The
localization site of the hsp70 gene on C. rosa and C. quilicii is
identical to the one observed in C. fasciventris (Drosopoulou
et al., 2017) (fig. 5), supporting the homosequentiality of the

chromosomes of the three members of the FARQ complex.
Nevertheless, it is acknowledged that the localization of a much
greater number of probes is required to draw conclusions about
genomic synteny among the studied species.

In comparison to C. capitata, the site of the hsp 70 gene is dif-
ferent in the FARQ complex species indicating intrachromosomal
rearrangements (Drosopoulou et al., 2017) that have differentiated
the structure of the 3L chromosome arm of the above species. The
presence of rearrangements, such as translocations and inversions,

Figure 3. Asynapses frequently observed in the nuclei of F1 hybrids between C. rosa and C. fasciventris. The asynaptic telomeres of the polytene elements are
indicated. Variable extent of asynapsis observed for 4R and 6R telomeres is presented in (f) and (i), respectively. Arrows indicate asynapses in the inner parts
of the polytene elements. 5LC indicates the 5L centromere.
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in the 3L polytene arm has also been revealed by previous com-
parative analyses among species of several Tephritidae genera
(Zacharopoulou et al., 2017; Gouvi et al., 2022), supporting the

role of chromosome rearrangements in speciation (Noor et al.,
2001; Rieseberg, 2001; Kirkpatrick and Barton, 2006; Faria and
Navarro, 2010; McGaugh and Noor, 2012; Lee et al., 2013) and

Figure 4. Asynapses frequently observed in the nuclei of F1 hybrids between C. quilicii and C. fasciventris. The asynaptic telomeres of the polytene elements are
indicated. Variable extent of asynapsis observed for 3L telomere is presented in (d–f ). Arrows indicate asynapses in the inner parts of the polytene elements.

Figure 5. In situ hybridization of the hsp70 gene probe on the salivary gland polytene chromosomes of C. rosa and C. quilicii. Arrows indicate the hybridization
signals. The telomere of the 3L polytene arm is indicated. Numbered divisions are shown, separated by lines. The reference map of the 3L arm and the hybrid-
ization locus of the hsp70 gene of C. fasciventris (Drosopoulou et al., 2017) are presented on the top.
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their potential informativeness for phylogenetic inference among
related tephritid species (Mavragani-Tsipidou et al., 2014;
Zacharopoulou et al., 2017; Gouvi et al., 2022).

Conclusions

Our comparative mitotic and polytene chromosome analysis of
the colonized material of C. rosa and C. quilicii from two different
African locations (Kenya and South Africa) and of C. fasciventris
from Kenya did not unravel any detectable fixed chromosome
rearrangements among the three members of the FARQ complex.
The above emphasizes the need for multidisciplinary modern
approaches when addressing sensitive issues of species designa-
tion within complexes of important insect pests, as only by the
accumulation and evaluation of data coming from different
aspects of the insect biology we can be led toward a more solid
phylogenetic resolution and reliable species identification.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0007485323000214.
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