M. Hara Nagoya Math. J. Vol. 75 (1979), 87-94

ON HOMEOMORPHISMS OF THE UNIT CIRCLE PRESERVING ORIENTATION

MASARU HARA

1. Introduction

Let Γ denote the unit circle in the complex plane $C, C(\Gamma)$ the set of complex valued continuous functions on Γ which is a Banach space by the sup-norm $\|\cdot\|$, A(z) the uniform closure of all polynomials in z on Γ , $H(\Gamma)$ the set of homeomorphisms of Γ , $H^+(\Gamma)$ the set of directionpreserving homeomorphisms and $H^-(\Gamma)$ the set of direction-reversing homeomorphisms. For $\psi \in H(\Gamma)$, let $A(\psi)$ denote the uniform closure of all polynomials in ψ on Γ .

Any map ψ belonging to $H^{-}(\Gamma)$ has the following property (A) (Browder and Wermer [2]):

(A) $\overline{A(z) + A(\psi)} = C(\Gamma).$

The purpose of this paper is to investigate direction-preserving homeomorphisms which have the property (A). We observe the following Lemma 1 which is, in essence, contained in Browder and Wermer [2].

LEMMA 1. Any map $\psi \in H^+(\Gamma)$ has the property (A) provided it enjoys the following property (B):

(B) $A(z) \cap A(\psi) = C$.

In view of this it is important for our purpose to classify when $\psi \in H^+(\Gamma)$ has the property (B). We will give one sufficient condition for $\psi \in H^+(\Gamma)$ to the property (B) as follows:

THEOREM 1. If, for a given map $\psi \in H^+(\Gamma)$, there exists a Blaschke product B such that $\psi \neq B$ and the linear measure of $\{z \in \Gamma | \psi(z) = B(z)\}$ is positive, then ψ has the property (B).

COROLLARY. The set of maps in $H^+(\Gamma)$ possessing the property (B) is Received July 10, 1978.

dense in the space $H^+(\Gamma)$.

We mention here an example of maps in $H^+(\Gamma)$ which do not have the property (A). Consider the linear transformation

$$U(z; a) = rac{z-a}{1-\overline{a}z} \qquad |a| < 1$$

Clearly U belongs to $H^+(\Gamma)$ and A(U) = A(z) and a fortiori U does not have the property (A). We will later give another such examples in Theorem 2, among which a typical one is following: let $B(z) = \prod_{k=1}^{n} U(z; a_k)$ be with all different a_k . Then the map $(B(z))^{1/n}$ is an example.

In connection with the welding theory of Riemann surfaces, we will give an example which has the property (B). This example will be constructed from the Jordan curve γ in the following

THEOREM 3. On any Jordan curve γ which contains a line segment, there dose not exist any nonconstant function which is bounded and continuous on the complex plane, analytic in the interior of and anti-analytic in the exterior of γ .

Finally we will prove the following theorem in no. 5:

THEOREM 4. If, for a given map $\psi \in H(\Gamma)$, there exists a nowhere constant function $f \in C(\Gamma)$ with the property $f(\psi) = f$, then there exists an integer n with the property $\psi \circ \psi \circ \cdots \circ \psi$ (n compositions) = z, where a function $f \in (\Gamma)$ is said to be nowhere constant if f is nonconstant on any open set of Γ .

2. Proof of Theorem 1

For $\alpha, \beta \in \Gamma$ $\alpha \neq \beta$, there exist two arcs of Γ whose end points are α and β . Among them we denote by (α, β) the arc starting from α and ending at β in the positive direction and $[\alpha, \beta]$ the closed arc $\{\alpha\} \cup (\alpha, \beta)$ $\cup \{\beta\}$. Although the proof of Lemma 1 is contained in the proof of Theorem of Browder and Wermer in [2] we include it here for the sake of convenience to the readers.

Proof of Lemma 1. Assuming the conclusion is false, by the Hahn-Banach theorem, there exists a non-zero measure on Γ with the following property:

88

$$\int_{|z|=1} z^n d\mu = 0 , \quad \int_{|z|=1} \psi^n d\mu = 0 \qquad (n = 0, 1, 2, \cdots) .$$

By the former condition of the above, we have the Riesz's representation

$$d\mu = h(z)dz$$
 $h \in L^1(\Gamma)$.

If we set

$$H(z) = \int_{[1,z]} h(\zeta) d\zeta \; ,$$

then $H \in C(\Gamma)$ and

$$\int_{|z|=1} z^n H(z) dz = \int_{|z|=1} z^n \int_{[1,z]} h(\zeta) d\zeta dz = \int_{|\zeta|=1} h(\zeta) \int_{[\zeta,1]} z^n dz d\zeta = 0 \; .$$

Therefore $H \in A(z)$. Clearly H is non-constant and

$$\begin{split} \int_{|z|=1} H(\psi^{-1}) z^n dz &= \int_{|w|=1} H(w) \psi^n(w) d\psi(w) \\ &= -\frac{1}{n+1} \int_{|w|=1} \psi^{n+1}(w) h(w) dw = 0 \end{split}$$

Hence $H(\psi^{-1}) \in A(z)$. If we set $H(\psi^{-1}) = G$, then $G(\psi) = H$ and $A(\psi) \cap A(z) \neq C$. This is a contradiction.

The proof of Theorem 1. Suppose that $A(z) \cap A(\psi) \neq C$. There exist non-constant functions $f \in A(z) \cap A(\psi)$ and $g \in A(z)$ with the property $f = g(\psi)$. Since $g(B) \in A(z)$ and $B(z) = \psi(z)$ for $z \in E$, f(z) = g(B(z)) for $z \in E$. By the Fatou theorem, f = g(B) and $g(\psi) = g(B)$. In view of $\psi(\alpha) = B(\alpha)$ and the following Lemma 2, $\psi = B$. This is a contradiction.

LEMMA 2. Let the function $\tau(t)$ be monotone increasing in $\{t \ge 0\}$ and satisfy $\tau(0) = 0$. If there exists a nowhere constant function f in $\{t \ge 0\}$ with the property $f(\tau(t)) = f(t)$ for $t \ge 0$, then $\tau(t) = t$.

Proof. We set $F = \{t \ge 0 | \tau(t) = t\}$. Since F is closed, $\{t \ge 0\} - F$ consists of countably many disjoint open intervals. Among them, we choose an arbitrary interval (a, b). Assuming $\tau(t) > t$ on (a, b), there exists t_0 such that $a < t_0 < b$, $a < \tau(t_0) < b$ and $f(\tau(t_0)) \neq f(a)$. The sequence $\{\tau(t_0), t_0, \tau^{-1}(t_0), \tau^{-1} \circ \tau^{-1}(t_0), \cdots\}$ is contained in (a, b) and monotone decreasing. We denote by c the limit point of this sequence. Since $f(c) = f(\tau(t_0)) \neq f(a)$, we conclude that $c \neq a$. On the other hand, $\tau(c) = c$, a contradiction. Similarly it does not hold that $\tau(t) < t$.

Proof of Corollary. Given $\psi \in H^+(\Gamma)$ and $\varepsilon > 0$, there exist two different points α and β belonging to Γ such that $|\psi(z_1) - \psi(z_2)| < \varepsilon/2$ for $z_1, z_2 \in (\alpha, \beta)$. Take a point c in (α, β) . We denote by ϕ a linear transformation which is a map from Γ to Γ and maps α to $\psi(\alpha), \beta$ to $\psi(\beta)$ and c to any point of $(\psi(\alpha), \psi(\beta))$. The map ϕ is a finite Blaschke product. We denote by ψ^* a map which is equal to ϕ on $[\alpha, \beta]$ and ψ on $[\beta, \alpha]$. The map ψ^* belongs to $H^+(\Gamma)$ and, by choosing $\psi^*(c)$ suitably, satisfies the conditions in Theorem 1 and $|\psi^* - \psi| < \varepsilon$.

3. Examples which do not satisfy the property (A)

For a finite Blaschke product $B(z) = \prod_{k=1}^{n} U(z; a_k) |a_k| < 1$, we set $\psi(z) = B(z)^{1/n}$. The map $\psi(z)$ belongs to $H^+(\Gamma)$ and does not satisfy the property (A) because of the following Theorem 2. We denote by $L^1(\Gamma)$ the set of integrable functions on Γ , $C^1(\Gamma)$ the set of continuously differentiable functions on Γ and $H^1(|z| < 1)$ the subset of $L^1(\Gamma)$ with the following property:

$$\int_{|z|=1} f(z) z^n dz = 0 \;, \qquad n=0,\,1,\,2,\cdots \,.$$

For a function f(z) defined on Γ we denote by $\frac{\delta f}{\delta z}$ the limit

$$\lim_{y\to z}\frac{f(y)-f(z)}{y-z},$$

if it exists. The differential operator $\frac{\delta}{\delta z}$ has the following properties:

$$\begin{array}{ll} 1^{\circ} & \text{For } z = e^{i\theta}, \ \frac{\delta f}{\delta z}(z) = -ie^{-i\theta} \ \frac{d}{d\theta}(f(e^{i\theta})) \ . \\ 2^{\circ} & \text{For } f \quad C^{1}(\Gamma), \ \int_{[1,z]} \frac{\delta f}{\delta z}(z) dz = f(z) - f(1) \ . \\ 3^{\circ} & \text{If } f \text{ is analytic at } z \in \Gamma, \ \text{then } \ \frac{\delta f}{\delta z}(z) = \frac{df}{dz}(z) \ . \\ 4^{\circ} & \text{For } f \in C^{1}(\Gamma) \text{ and } \phi \in H(\Gamma) \ \cap \ C^{1}(\Gamma), \ \text{if we set } z = \phi(\zeta), \\ & \frac{\delta}{\delta \zeta} \{f(\phi(\zeta))\} = \frac{\delta f}{\delta z}(\zeta) \ . \end{array}$$

THEOREM 2. If a map $\psi \in H^+(\Gamma)$ is conformal on some neighborhood of Γ and there exists a non-constant function f(z) on Γ with the following

90

property:

$$rac{\delta f}{\delta oldsymbol{z}}(oldsymbol{z})\in H^{\scriptscriptstyle 1}(|oldsymbol{z}|\leq 1) \quad and \quad f(\psi)\in A(oldsymbol{z}) \;,$$

then the map ψ does not have the property (A).

Proof. We set

$$d\mu = rac{\delta}{\delta z} \{f(\psi(z))\} dz$$
 .

We will show that the measure μ satisfies

$$\int_{|z|=1} z^n d\mu = 0 \;, \qquad \int_{|z|=1} \psi^n d\mu = 0 \qquad (n=0,\,1,\,2,\,\cdots) \;.$$

Since $f(\psi) \in A$, we have

$$egin{aligned} &\int_{|z|=1} z^n d\mu = \int_{|z|=1} z^n \, rac{\delta}{\delta z} \{f(\psi(z))\} dz \ &= -n \int_{|z|=1} f(\psi(z)) z^{n-1} dz = 0 \;. \end{aligned}$$

We set

$$g(z) = \int_{[1,z]} \zeta^n rac{\delta}{\delta \zeta}(\zeta) d\zeta \; .$$

By the former property of f, the function $g(\dot{z})$ belongs A(z). Therefore

$$\int_{|z|=1} z^m g(z) dz = 0$$
 and $rac{\delta g}{\delta z} = z^n rac{\delta f}{\delta z}$.

Since the map ψ is conformal on \varGamma ,

$$rac{\delta}{\delta \zeta} \{ f(\psi(\zeta)) \} = rac{\delta f}{\delta z}(\psi(\zeta)) \, rac{d \, \psi}{d z}(z)$$

and

$$egin{aligned} &rac{\delta}{\delta\zeta}g(\psi(\zeta))=rac{\delta g}{\delta z}(\psi(\zeta))rac{d\psi}{dz}(\zeta)\ &=\psi^n(\zeta)rac{\delta f}{\delta z}(\psi(\zeta))rac{d\psi}{dz}(\zeta)=\psi^n(\zeta)rac{\delta}{\delta\zeta}\{f(\psi(\zeta))\}\;. \end{aligned}$$

Therefore

$$egin{aligned} &\int_{|\zeta|=1}\psi^n(\zeta)d\mu(\zeta)=\int_{|\zeta|=1}\psi^n(\zeta)rac{\delta}{\delta\zeta}\{f(\psi(\zeta))\}d\zeta\ &=\int_{|\zeta|=1}rac{\delta}{\delta\zeta}\{g(\psi(\zeta))\}d\zeta=0\;. \end{aligned}$$

4. Welding

Given a Jordan curve γ on the complex plane, we denote by Ω (Ω^* , resp.) the interior of γ (the exterior of γ , resp.), by D (D^* , resp.) the interior of Γ (the exterior of Γ^* , resp.) and by χ (χ^* , resp.) a Riemann's conformal map from D (D^* , resp.) to Ω (Ω^* , resp.) which is also a homeomorphism on the closure of the given region. From now on we assume that $\chi(1) = \chi^*(1)$. If we set

$$\psi(e^{i\theta}) = \chi^{*^{-1}} \circ \chi(e^{i\theta}) ,$$

then $\psi \in H^+(\Gamma)$. We denote by $H^+_w(\Gamma)$ all of $\psi \in H^*(\Gamma)$ with $\psi = \chi^{*^{-1}} \circ \chi$ for some Jordan curve γ . By the theorem of Oikawa [5], if we define a map ψ by z^3 on $[1, e^{2\pi i/5}]$ and \sqrt{z} on $[e^{2\pi i/5}, 1]$ whose branches are chosen in such a way that the map ψ is continuous, then $\psi \in H^+(\Gamma)$ and $\psi \notin H^+_w(\Gamma)$. For $\psi \in H^+_w(\Gamma)$, there exist infinitely many Jordan curves corresponding to ψ , and among them we choose a certain γ and γ' . Then there is a homeomorphism Φ on C which maps γ onto γ' and the interior of γ (the exterior of γ , resp.) onto the interior of γ' (the exterior of γ' , resp.) and is analytic off γ . The map Φ is not necessarily conformal on C. For example, if the area of γ is positive, the map Φ is not conformal for some γ ([5]). By the welding theory ([5]), it is sufficient for $\psi \in H^+(\Gamma)$ to belong to $H^+_w(\Gamma)$ that the map ψ has the following condition: for any $z \in \Gamma$, there exist $\varepsilon > 0$ and $\rho > 0$ (dependant on z) such that for any ζ and t with $(\zeta e^{-it}, \zeta e^{it}) \subseteq (ze^{-i\varepsilon}, ze^{i\varepsilon})$

$$rac{1}{
ho} \leq \left| rac{\psi(\zeta e^{it}) - \psi(\zeta)}{\psi(\zeta) - \psi(\zeta e^{-it})}
ight| \leq
ho \; .$$

By virtue of this theorem, if ψ belongs to $C^{1}(\Gamma)$ and satisfies $\frac{\delta \psi}{\delta z}(z) \neq 0$, or if Γ is divided into finite intervals and on each interval ψ is equal to a linear transformation, then ψ belongs to $H^{+}_{w}(\Gamma)$.

DEFINITION. If there exist no non-constant functions that are bounded and continuous on C, analytic in the interior of γ and anti-analytic in the exterior of γ , then we denote the fact by $\gamma \in 0$.

LEMMA 3. Given $\psi \in H_w^+(\Gamma)$ and choose a Jordan curve γ correspondent to ψ . Then ψ has the property (B) if and only if $\gamma \in 0$.

Proof. We suppose that $f = g(\psi)$, where f and $g \in A$. Since $f = g(\chi^{*^{-1}} \circ \chi)$ on Γ , we have $f(\chi^{-1}) = g(\chi^{*^{-1}}) = g(1/(\bar{\chi}^*)^{-1})$ on γ . Therefore, by observing that the function is equal to $f(\chi^{-1})$ in the interior of γ and $g(1/(\bar{\chi}^*)^{-1})$ in the exterior of γ , we see the validity of our lemma.

THEOREM 3. Any Jordan curve containing a line segment satisfies $\gamma \in 0$.

Proof. We suppose that the line segment is on the real axis. There exists an open disk D such that the center of D is on the real axis and D does not have common points with γ except for the line segment. We denote by Ω the interior of γ , Ω^* the exterior of γ and Ω_1^* the domain obtained from Ω^* by reflecting it with respect to the real axis. We take a function f which is bounded and continuous on C, analytic in the interior of γ and anti-analytic in the exterior of γ . The function $f(\overline{z})$ is analytic in Ω_1^* and continuous on $\overline{\Omega}_1^*$. By considering f(z) and $f(\overline{z})$ in $\Omega \cap D$, we see that f(z) and $f(\overline{z})$ satisfy $f(z) = f(\overline{z})$ on $\partial \Omega \cap D$ and are analytic in $\Omega \cap D$. By Fatou's theorem, $f(z) = f(\overline{z})$ in $\Omega \cap D$ and f(z) is analytic on $\Omega_1 \cap \Omega^*$. We denote by Ω_1 the domain obtained from Ω by reflection and by Ω' the component of $\overline{\Omega \cup \Omega_1}^c$ containing the point at infinite. The domain Ω' is a Jordan region, whose boundary will be denoted by γ' . The Jordan curve γ' is symmetric with respect to real axis. If two points z_1 and z_2 on γ' satisfy $z_2 = \overline{z}_1$, then one of them is on γ . We may suppose that $z_1 \in \gamma$. There exists a curve ℓ which connects the center of D with z_i and is contained in Ω^* except for its end points. If we denote by ℓ_1 the curve obtained from ℓ by reflection with respect to the real axis, ℓ_1 connects the center of D with z_2 and is contained in Ω_1^* except for its end points. Since $f(z) = f(\overline{z})$ in $\Omega_1^*, f(z_1) = f(z_2)$. Hence f is analytic Ω' , bounded and continuous on $\overline{\Omega}'$ and satisfies $f(z) = f(\overline{z})$ on γ' . Since Ω' is symmetric, the analytic function f(z) and the anti-analytic function $f(\bar{z})$ has the same boundary values, the function f(z) is constant.

5. Proof of Theorem 4

Since $\psi \circ \psi \in H^+(\Gamma)$ for $\psi \in H^-(\Gamma)$, we will show the theorem in the case of $\psi \in H^+(\Gamma)$. For simplicity we denote by ψ^n an *n*-iterated map $\psi \circ \psi \circ$

 $\cdots \circ \psi$.

LEMMA 4. Under the assumption of Theorem 4, if $\psi \neq z$, then $f([x, \psi(x)]) = f(\Gamma)$.

Proof. We will show that $f([x, \psi(x)]) \subset f([\psi(x), x])$ for any x and any $\psi \in H^+(\Gamma)$ with $f(\psi) = f$. Then from $\psi^{-1} \in H^+(\Gamma)$ and $f = f(\psi^{-1})$, it follows that the reverse inclusion holds if we take $\psi(x)$ in place of x. We suppose that $\alpha \in f([x, \psi(x)])$ and $\alpha \in f([\psi(x), x])$. When three points α, β and x satisfy $[x, \alpha] \subset [x, \beta]$, we say that α is closer to x than β . We denote by t_0 the closest point to x among $\{t \in [x, \psi(x)] | f(t) = \alpha\}$. The map ψ sends (x, t_0) to $(\psi(x), (t_0))$ preserving direction. Since $f(\psi(t_0)) = f(t_0) = \alpha$ and $\alpha \in f([\psi(x), x], \psi(t_0) \in [\psi(x), x]$ and $\psi(t_0) \in [x, \psi(x)]$. If $t_0 = \psi(t_0)$, then from Lemma 2 it follows that $\psi = z$. We may assume that $\psi(t_0) \in (t_0, \psi(x))$. It follows that $t_0 \in (\psi(x), \psi(t_0))$ and $\psi^{-1}(t_0) \in (x, t_0)$. Since $f(\psi^{-1}(t_0)) = \alpha$, this contradicts that t_0 is the closest to x.

Proof of Theorem 4. If there exist a point $x \in \Gamma$ and an integer nwith $\psi^n(x) = x$, then $\psi^n = z$ because of $\psi^n \in H^+(\Gamma)$ and Lemma 2. We now discuss the rest. Given $x_0 \in \Gamma$, we may assume that $f(x_0) = 0$. From $f \in c(\Gamma)$, it follows that there exists a positive number δ such that |f(x) - f(y)| < 1/2 ||f|| for $|x - y| < \delta$. The sequence $\{\psi^n(x_0)\}$ has the following property: (1) if $m \neq n, \psi^m(x_0) \neq \psi^n(x_0)$, (2) $f(\psi^n(x_0)) = f(x_0) = 0$. If we take m and n with $|\psi^m(x_0) - \psi^n(x_0)| < \delta$, then any $y \in (\psi^m(x_0), \psi^n(x_0))$ satisfies |f(y)| < 1/2 ||f||. But from $\psi^{n-m} \in H^+(\Gamma)$ and Lemma 4 it follows that $f([\psi^m(x_0), \psi^n(x_0)]) = f(\Gamma)$, this is a contradiction.

References

- [1] L. Ahlfors, Lectures on quasiconformal mappings. Van Nostrand, 1966.
- [2] A. Browder and J. Wermer, A method for constructing Dirichlet algebras, Proc. Amer. Math. Soc., 15 (1964), 546-552.
- [3] N. Dunford and J. Schwartz, Linear operater, Part 1, Interscience, 1958.
- [4] J. Garnett and A. O'Farrell, Sobolev approximation by a sum of subalgebras on the circle, Pacific J. Math., 65 (1976), 55-63.
- [5] K. Oikawa, Welding of polygons and the type of Riemann surfaces, Ködai Math. Sem., 13 (1951), 37-52.

Mathematical Institute Division of General Education at Faculty of Science and Engineering Meijô University

94