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1. Statement of results. The Dedekind eta-function is defined for any r in the
upper half-plane by

where x = exp(2mr) and JC1/24 = exp(2mr/24). By an eta-product we shall mean a
function

/(r) = El r,(dt)\ (1)

where N>1 and each r6eZ. In addition, we shall always assume that k = { T. rh is an

integer. Using the Legendre-Jacobi symbol (—), we define a Dirichlet character e by

when a is odd. If p is a prime for which e(/?):/:0 and if F is a function with a Fourier
series

F(T)= 2 a{m)xm,

then we define a Hecke operator Tp by

Vp, (3)
where

F\UP= 2 a(pm)xm

and

F\Vp=p"-1 2 "(wK"1.

The function/(T) is a modular form of weight k on the group r{)(N) and at any cusp
ale G Q U {°o} it has order

^ f ) ^ (4)
where d = (N, c) and
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We have d \ N and so C(d) is always an integer. We define the ramification index of /as
£ = a/c to be the positive integer e^ determined by reducing the fraction

24 e^

to lowest terms. Thus c? = C(d)/(24, C(d)) and eK = 24/(24, C(d)). In particular we
denote e^ by e and c by c. We let E denote the least common multiple of all the
ramification indices of/; since e^ depends only on d we thus have

(7)

and this is a divisor of 24.
The principal objective of this paper is the following

THEOREM. Let F(r) =f(ex) and suppose

0 < C(d) s 24 for every d \ N. (8)

Then F is a simultaneous eigenform for the family of Hecke operators

{Tp:p = 1 (mod E) and p \ N}.

This was proven for N prime by Morris Newman [12] and for N = 4 by Gordon and
Sinor [6].

2. Some background. We let Z, Q, C, H denote the integers, the rational numbers,
the complex numbers, and the complex upper half-plane, respectively, we let infinity be
represented as oo = 1/0, and we set Q* = Q U {<*>}, C* = C U {°°}, and H* = H U Q U {°o}.

For any A = I I e M^"(Z), the set of 2 x 2 integral matrices with positive determinant,
\c dl

and any function/:H*-»C* we define f°A :H*—»C* by

When n is a positive integer we use the abbreviation

(n

The stroke operator of weight k is defined for any real number k by / • - > / \A, where
/ | A : H* -»• C* is the function

/ | A{x) = (det M)+kl\cx + d)~kf°A{x).

We shall determine the power in (CT + d)~k by taking the argument of a complex number
z in the range — n < arg(z) ^ n.

Some subgroups of A/J(Z) we shall work with are the modular group,

{/U M2
+(Z): deM = 1},
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the principal congruence subgroup of level N,

the principal transform subgroup of level N

and the related subgroup

r,,(/V,, N2) = { ( " bJ) e F(l) : N, I c and

If / is a modular form on a subgroup r s F ( l ) of finite index, we define an order
function ord(/; £) at any cusp £ € Q* by

ord(/;£) = ^ - ^ O r d r ( / ; £ ) , (9)

where K(T; £) is the width of F at £ and Ordr is the standard order function of/at £ with
respect to F. This order does not depend on the group F and is sometimes useful because

for any M = I 1 e A/̂ "(Z) and any ale e Q* with (a, c) = 1 we have a formula for the
\y 6/y

order of / | M at a/c:

(10)

where m = det M and g = (aa + c/J, ay + cd). We can recognize g as the factor which
cancels when the fraction M(a/c) = (aa + c/3)/(ay + cd) is reduced to lowest terms.
When A e F(l) and v4(°°) = a/c, this becomes

*«>). (11)

The function t](r) is a modular form on F(l) and for A = I ) € F(l) its multiplier
system is given by c

/"\g2m/24|-3c-a</(c2-l)+c(a+rf)| £ Q ^ ^

(12)

\d)
e2ni/24\3d-3-bc(d2-\)+<!(b-c)\

(d\ (c\
The quantities - and -1 are equal to the Legendre-Jacobi symbol when the lower

\cl \« /*
entry is positive and are extended to negative values of the lower entry in the following
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way: we set

1, x<0,

and
/ / / \ / ri\

(13)

We shall need some properties of these extensions.
(i) Multiplicativity in the upper and lower entries separately,

(ii) Additivity in the upper entry:

(iii) Quadratic Reciprocity:

(iv) Additivity in the lower entry:

( (
+ kaJ\bJ \b-kaJ**

= (-l)"cz«™zb(b+l<«)e(a,b,k), (16)
where

{+1, if =0, a = l or A: = 0 (mod 4),
or if a = 2 and k = b + 2 (mod 4),

- 1 , otherwise.

We take (12) from Knopp [7] (but note that he chooses the argument by
- ; r <argz <n and so get (0/-1) , = -1) and refer the reader to Rankin [14] or Lehner
[8] for general properties of modular forms and to Schoeneberg [15, ch. VI] for properties
of T()(N). Equation (10) is from Biagioli [3] but a more accessible reference is Berndt [1,
ch. 20 p. 333, lemma 0.1]. (Ligozat [9] has a related expression which has priority.)

3. The function g(r). We shall work in a slightly more general situation than that
described in the introduction, with an eye to the applications made in Gordon and Sinor
[6] and Gordon and Hughes [5].

Let N2:1 be an integer and let r6,s6eZ for all positive o | N be such that

k = i2r6 = U,s6 (17)
6\N 6\N
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is an integer. We then define two eta-products

<t> = Yl (r) ° d)'* and V = I I
6\N &\N

and for any d \ N we let

These are integers, and in addition to (17) we assume r6, s6 are such that

(C(rf),24) = (C'(rf),24) for all rf | N, (18)

and such that

Y\ 5r"~Sl> is a rational square. (19)
S\N

At a cusp a/c e Q* the group T(I(AO has width N/(N, d2), where d - (N, c), so (9),
(10) and (11) give us

M*)^? ( ° ) ^ - (20)
If we express these fractions in lowest terms

24 e1/rf 24

then (18) shows that eud = e'ud, i.e., 0 and i/; have the same ramification indices at every
cusp ale. We also write e and e{) for eUN = ea, and c,/,, respectively, and we can express
eUd in terms of C{d)

24
e""~(24

We define

to be the least common multiple of all the ramification indices.
Suppose

p \ NE is prime (22)

and define

* = y - (23)

As noted by Gordon and Sinor [6], a modification of the criteria of Morris Newman [10]
shows that h is a function on X{)(pNe0, e), the Riemann surface of T0(pNe(), e).

We choose M, s and / so that

M > 0 , NE\M, p\M

s,t>0, e\t, and ps — Mt=\.
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We shall later impose additional conditions on M, s and / which shall need to be
consistent with this choice. A complete set of right coset representatives for r,,(Ne{), e)
over F0(pNe(), e) is A(),. . . ,AP, where

' {MJ I ) for ; = ° ' - - ' / > - 1 '
and

We define a function g to be the trace

l
, = o

Then g is a function on X()(Ne{), e).
In order to prove our theorem we shall write g in terms of a Hecke operator and

determine conditions under which g is constant. Since g has no poles in H it will be
constant if and only if ord(g; t,) > 0 for every cusp £ 6 Q*.

4. Transferring g. We wish to get a lower bound for the order of g at an arbitrary
cusp t, = a/c e Q*.

Assuming that (a, c) = 1, we set

d = (N,c)

and we choose y, z so that

(a ^) (25)

Since p \ NE and r,,(Afe,,, e) > T(NE), then for the purpose of computing the order of g
we may replace £, if necessary, by a cusp equivalent to it modulo N so as to guarantee

a,c,y,z>0 and p \ a. (26)

The conditions (26) and similar conditions we shall impose in the future are only for
convenience in the analysis and are not inherent restrictions, i.e. one should be able to
carry through the analysis in their absence but there may be some additional difficulties.

We define

g*=g°A=g\A. (27)

Then by (11), ord(g; a/c) = ord(g*; o°). In more detail, g* is given by

g*=
8

We examine this function piecemeal, first looking at one factor of one term.
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Fix a divisor 8 of N and set

and
c + aMj

r = — • ^ - L • (29)

When j <p the product of matrices in the denominator of (28) is

I6
 °)AA = (

 6a 8y

\0 1/ ' \c + aMj z+yMj
_/8"a 8y \/8' 0

y z+yMj)\0 1
_(d"a 6y \ / l b/6"\/8' -b\
~\y z+yMj)\0 l/8")\0 8")
_/d"a
~\ y (

y z+yMj)

d"a ba + d'y \/6' -b\
(z+yMj + by)/8")\0 8")

All the entries of these matrices will be integers if we choose b e Z so that

-be" = z (mod 8"),

b>0 if<5">l, and (30)

b = 0 if 6" = 1,

which is possible because (c", 8") = 1. Thus we have

8 0\ (8' -

U )AA BU
(8 0\

where B = (a j e T(l) has entries

= 8"a fi = ba + 8'y,
= (c + aMj)/8', !; = (z+yMj + by)/8". [ '

Since b >0 all of a, )8, y, and £ are non-negative.
Still working in the case j <p we consider the product of matrices in the numerator.

Choose bt >0 so that

-biy^z+yMj(modp8"), (32)

and let

18,
satisfies

y

o ir<"-"'io' ;£)• <34)
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In fact, we want to be more particular about our choice of bx: First choose L to be a
multiple of M satisfying

fy (modp), (35)

which is possible because p \ a and so p \ c, and then we set

b^Ld'+psb. (36)

What we want to note about this choice is that b depends on 6, but not on j , and that L
depends on / but not on 8, so we have separated the effect of the two parameters.

When j = p we have

\0 1/ " ~ \ 0 <5"/'
and

U l P ^ " 1 ! 0 6-)'

where now B = I . ) and S, = I , . ) are both in T(l) with a, B, y and t, defined by
\y £/ \ylp t, I

(a = 6"(sa + tc), )3 = b(sa + tc) + d'(sy + tz),
\y = (Ma+pc)/d', £ = (My+pz + by)/d". ( '

Applying the transformation property of t] we get, first for j<p,

(c + aMj)T + (z + yMj) /8' ~bt\
': v ' V p V 0 pd" I'

and

r)°5°AiA = u,(fl)V(c + aM\)x + (z + yMj) t]»( Q " „ ) .

Since

\0 p6'7 \0 6"

this gives us

M° ,0 6" / / V0
_k

6"))

where ^6,y is the constant
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and when j = p,

LJ6' -P
' 0 d"

Mo WJ
where ^6p is still as in (38), but B and B, are defined by (37). Note the absence in the
second expression of the factor p~k.

Consequently we now set

(39)

and

and we let

Then we have

( ' S V ( J )̂ )/*. (41)

5. Coincidence of the coefficients. We now show that §y-= §() for y'<p and we
determine the ratio ed{p) = £p/£0. We note that when j = 0 the values of a, /?, y and ^
are

ao=6"a, pn = ab + 6'y,

yo = c\ e,, = (z-fty,,)/6". l J

We first consider a prime /? > 3; the details are different when p = 2 or p = 3. Here
we impose the additional conditions on M and t that

M = f = 0 (mod 24), (43)

and b is such that f is odd. These are consistent with the previous conditions (22)-(31).
We can write

E6j), (44)
where

and

E6J = [3Up ~ 3 - j8,y(tf/p2 - 1) + C,/P(j8, - y)]ra - [3? - 3 -
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The congruences (43) allow us to derive the following congruences modulo 24:

6, = 6, j8, = /9 = j80, Ci = C = Co, Y = y». (45)

Keeing in mind that the entries of B and B, are non-negative, we have

and

because 4y I £, - £ and 4/3 I C - Co- Now setting L. = II £ s ,, we have

6|/V

7) F =L- (46)

We also set E, = T. E6j and the congruences (45) show that, modulo 24,
Ei = En=2j (r6 ~*«)[-3 ~ ft)7o(Co-l)]+2, (Pr6 ~5a)[Co(3 + ft.- 7o)]- (47)

6\N 6\N

Together (46) and (47) give us

§y = §o for all / < p.

When j = p we use (37) to derive some helpful relations:

Sift
(48)

and we have the following congruences modulo 24

a = pan, p=pPa, Y = PYu, C=pCo- (49)

£ is odd, so we take

and

£ , , , = [3C - 3 - /3y(C2 - 1) + C(pj8 - ylp)]r6 - PC - 3 - /3y(C2 - 1) + CO - y)>«,

and let Lp = IT ^^ P
 a«d Ep= Y, E6 „. Now we have

6\N ' 6\N

and
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Hence

L" = 4 ° &Y&Y}eXP(j (P - 1} 2 *(&• - 1)) • (50)
Using the congruences (49) we get

'ZZ0 (mod 24). (51)
d\N

Hence
Sp ~ l-lpe ~ 50 • €d(P)-> \p^/

where

This proves our claim when p > 3. When p = 3 we impose a different set of
conditions than (43), namely

(j) M = f =

(ii) Choose b so that £(l is odd,
(iii) 9 | a, 9 | z, 3 | b, 3 | s,

The conditions (54i, ii) allow us to derive (46) and (50) exactly as before. However,
following the previous proofs of the congruences (47) and (51), we find that they are only
correct if we consider the congruences as being modulo 8, rather than modulo 24.

So we must consider the modulus 3 separately. For ; <p = 3 we find that

so that
*-'6.y Vrt — S{y)\] — 1J — /Wy^r^ — Sfy)O. W-^/

Since /? = 3 does not divide the ramification index e = eUN we must have C{N) = C'(N) =
0(mod3), and this says

2 &r6 = S &st> = ° ( m o d 3)>
6\N 6\N

which reduces (55) to

Ej= S E6J = 0 (mod 3),

and so (47) is still true modulo 24.
For j = p = 3 we use (54ii-iv) to get

E6,P^r6[-Mcy5] (mod 3)
and so

Ep = 0 = £0 (mod 3).
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Now we consider p = 2. The conditions we impose in place of (43) are

(i) M = t = yz = ac = 0 (mod 3)

(ii) M = s = -c=y = l(modS)
(iii) 16 | a, 16 | z, 8 | b, K '

. (iv) Lc = -yMj (mod 16).

For j <p, y is odd, so we must consider

Since 8 | a we get

and from 8 | a and 8 | c + 1 we get

so that Lj = II L6j is

6\N \o I \y()/

Next let

and Ej= E E6J. We again find a congruence modulo 24 by doing the moduli 3 and 8
6 \N

separately.
Modulo 3 the congruence M = 0 leads to

E6J = (s« - r)6[-3y() - a{)Url - 1)] + (2sa - rtf )[y()(a0 + £,,)]. (58)

Modulo 8 the conditions (56) imply that

bt = Ld', y2 = l, y=yn, a- = 0 and !;/w^ ^

Hence we get

Since p = 2 -f £ we must have C(N) = C'(N) = 0 (mod 8), or E 6r6 = E &6 = 0 (mod 8),
and so

Ej - S (-3y«,)(^ - r6) (mod 8). (59)

Since no quantity in (57), (58) or (59) depends on j we see that §, = §„.

https://doi.org/10.1017/S0017089500009885 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009885


ETA-PRODUCTS 319

When / = p = 2, then y is even (see (37)), and we consider

and

*.p = r<5[3£ - 3 - /3y(^ - 1) + £(2j8 - y/2)] - s6[3£ - 3 - /3y(^ - 1) + £(/3 - y)].

Since 8 | 5o» the relations (48) and the congruences (56) show that

(2\ / 2 \ / 2 \ / 2 '

\C/ \M6pJ \dd'J \6"J

We also use these relations and congruences to analyze (y/£): We have

and

=[vAfj=w w=Is7) tf) •
Therefore L,, = II L6p satisfies

6

( 4 ) T l 7 ) { J ( 6 0 )
As before, we consider the congruences for E6^ modulo 3 and modulo 8 separately.

Modulo 3 we have

s=p, a = pa{), /3=p/3(l, y=pyit, and g=p£,,,
so

E6,p - (s6 - ra)[-j8,,y0(£i5 - 1)] + (2rfl - ^)[&,(/5o - V..)]-

Modulo 8 we use the relations (48) and the congruences (56) to get

and so E2 = E E6 2 satisfies
6

" - 6 ' ) (mod 8).

Combining the congruences for E2 and Eit modulo 3 we see that

E2 = £„ + E ra(y,,f(, + l)(ar(,y0 - jS.,5,, - 1) + 2 *«(y»Co " l)(A»Co - a»y«. - 1) (mod 3).

The sums on the right are congruent to 0 (mod 3) whenever 3 \ y(t and 3 \ ,̂,. When 3 | y0
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then we impose the condition 3 | b in addition to the conditions (56). Then we have

2 2 1 ) s ~2k (mod 3),2 ( ) 2
6\N 6\N

and

(mod 3).

This, and a similar reasoning when 3 | £„, shows that

E2 = £() (mod 3)

in all cases.
Thus, modulo 24 we now have

£2 = £() + 3 £ (r6 - s6)(d" - 6') (mod 24),

which combines with (60) to give us

because £ (6 - l) /2. (r« - j a ) = 0 (mod 2).
6

Conclusion of the proof. The previous section showed that £y = £,, when j < p and
that | p = §„ • Q(p), where

W () P=2.
If / W /

Hence (41) can be rewritten as

W *. (62)

We set L = eudl, and let G* = g*°eUd, <D* = 0*°eiw, <P** = f * « e 1 H , and <D* = ip*°ei/d,
and rewrite this as

Since the width of r,,(N) at a/c is N/(N, d2), we express the functions occurring here
in terms of X = exp(2jih(N, d2)/N). From (39) we see that

n=()
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and consequently

where am = 0 except when n = cud (mod e,w). In particular, aClltl = bn ¥= 0. The same is true
for <!>**, and it will also be true for W* if we replace cyd by c'ud.

Since p \ L and L is a multiple of NE, then / is a multiple of N. Hence

(Note that this last equation is an extension of the definition (3) of the operator \Up.) We
also set <!>** | Vp = pk~l<f>*°p and (62) becomes

G* =pl-kU^* I Up + e d W I VP)W. (63)
We let m{) be the order of G* in terms of the variable X, so that /n,,=

N/(N,d2)ord(G*;<*>), and work out a lower bound for /n,,. This will give us a lower
bound on the order of g at ale because

^ ord(G*;<»)

In terms of X, V* has order c[/(l and <I>** | Vp has order pc,/d. The order of 3>* | t/,, is
the least integer m such that cyd<pm and apm=£0. The last condition necessitates that
pm = cud (mode,/,,), which is equivalent to m = pcud(modeUll), since/? \eud and eud is a
factor of 24.

If C(d)<0 then m>cUd>pcUd, so m0s:pciW-c;/ r f .
If C(d)>0 we choose j to be the least positive integer such that j=pcud (mode,w).

Then ; '<m and j^pcud, so both <t>* | Up and <&** | Vp have order at least ;. Hence
m{)>j-c\ld.

If C(d) = 0 thenm ( ) ^ -c ; w .
We now specialize to the situation of the introduction. We take (f> = ip = / , i.e., we

are taking r6=sa for all 5, we assume that p = l (mod£) , and we assume that
0 < C(d) s 24. Then / = cud = c'ud so our lower bounds on the order of G* now show that

for all cusps a/ceQ*. Since g is a modular form of degree 0 on r,,(A0 which has no
zeroes or poles in H, this shows that g is constant. Examining (63) for a/c = 1/0 = °° we

have A = I ) , d = N and e,/A, = e<» = e So if G = g°e and F =f°e then (63) becomes

G = px~ £jo - . (64)
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Since g is constant this says that F\Tp = A(p)F for some complex constant X(p) and the
theorem stated in the introduction is now proven.

7. Observations. We set

N {d, df
(N, d2) d

so that

C\d) = 2J A& dr$.
6\N

The matrix (A6d) is an invertible matrix with positive integral entries, so the number
of integral solutions (rd; 6 | N) for the system of inequalities

0 < C{d) < 24 for all d \ N (65)

is finite for any fixed N. The inverse of (A6 d) can be exhibited explicitly as (Bd 6), where

ad
(N,d2)(d,6)2

Dd,b —

d28NU
P\N

where n denotes the Mobius mu-function. (This appeared in a different form in Biagioli
[4, p. 281, Proposition 3.3]). Multiplying (65) by Bd-(5 and summing over d we see that

24 X ^ Bd,6<r6<2Ax £ Bd,6, (66)

which gives an effective bound for the possible values of r6.
As N runs over all prime numbers Morris Newman [12] found that there was only a

finite number of solutions. It should be possible to determine whether the number of
solutions remains finite when N runs over all positive integers; and whether the number of
solution is finite or not it would be good to have a more convenient way to determine
them; using (66) and checking (65) for all truples (ro;6\N) in that range seems
inefficient.

Once a specific form / has been found for which F is an eigenform of all Tp for which
p \ N and p = 1 (mod E), one can use the approach of Gordon and Sinor [6] and Gordon
and Hughes [5] to find completing forms/,,/2, . . . , / „ so that the sum Fx + F2 + . . . + Fn is
an eigenform for all Tp for which p \ N. The drawback of their approach is that it doesn't
guarantee finding the completing forms, and there is no specific guide as to how to choose
the function they refer to as an auxiliary function. It would be good to know when their
technique works and what the auxiliary function should be in the general setting.

In [12], [13], [5], and [6] some conclusions were drawn about multiplicative
properties and about the lacunarity of the Fourier series of the simultaneous eigenforms
found there. Similar conclusions can be drawn for any further eigenforms found by these
techniques.
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