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Self adjoint operators
and matrix measures

Patrick J. Browne

Given a self adjoint operator, T , on a Hilbert space H , and
given an integer n = 1 , we produce a collection (quJ 5
N el ,of nxn positive matrix measures and a unitary map

U:H-> ) Lz[uy.] such that UTy "t , restricted to the
Nel vJ

co-ordinate space Le[uij} , is the multiplication operator

F(t) »~ tF(t) 4in that space. This is a generalization of the
spectral representation theory of Dunford and Schwartz, Lineaqr
operators, II (1966).

1.

In [7, XII.3], Dunford and Schwartz present a theory of spectral
representation for self adjoint operators on a Hilbert space. The basic
operator used for this representation can be described as follows. .
Consider a totally finite Lebesgue-Stieltjes measure U on the real line

and define an operator A on L%(u) by
(1) D(4) = {F(¢) € L2(n) | tF(t) € L2(w)} ,
(11) for F € D(4) ,

(AF)(t) = tFP(t)
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It is well known that A4 1is self adjoint. The basic theorem then states
that given a Hilbert space H and a self adjoint operator T on it, one

can produce a collection of totally finite Lebesgue-Stieltjes measures ua
and a unitary map U : H » z Lz(ua) , such that for every Borel function
a

k defined on the spectrum of T ,

E(T)) = 4F € TLPW ) | T | [k(£)F (£)|%dn (#) < =},
o o a a

o
and

(Uk(1)f) (8) = k(£)(UF) (¢) .

The unitary map U 1is then called a spectral representation of H onto

2 .
gL (v,) relative to T .

When the collection of measures H, has cardinality 1 the operator

T 1is said to have simple spectrum. In this case T may be regarded as a
unitary copy of the operator A described above. Well-known examples are
the self adjoint operators obtained from the Sturm-Liouville problem over

a finite interval or half line.

It can be seen that this representation is centred on the choice of
A as the basic operator. The purpose of this paper is to discuss a
corresponding theory when A 1is replaced by the operator B which may be
described as follows. Consider an 15 x n positive matrix measure (uij )
on the real line. For F = (Fl, F2, ey Fn) € Lz(uij) and k a Borel
function defined on the line, let k(#)F(t) = (k(t)Fl(t), cees k(t)Fn(t))

Define B by
(1) 0(8) = {F(t) € 12, ) | er(e) ¢ Lg(pij)} :

(ii) for F € D(B) ,
(BF)(t) = ¢tF(t) .

B is known to be self adjoint. Such a representation theory will cover

that discussed before - it can be obtained by taking »n = 1 in this

https://doi.org/10.1017/50004972700046657 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700046657

Operators and matrix measures 291

theory.

The theory of positive matrix measures is discussed fully in [/,
pp. 1337-1350].

2.

Let H be a Hilbert space and T : D(T) € H > H a self adjoint
operator with resolution of the identity E . For a finite set N < H ,

N=A{f,, f2, ey fh} , HN will denote the closure of the manifold in H
consisting of all vectors of the form kl(T)fl + ...+ kn(T)fn where ki

varies over all Borel measurable functions for which fé € D[ki(T))
LEMMA 1. Let the complex valued measures ”ij , 1=1, J=n,

d

matrix measure on the Borel subsets of the real line, R .

be defined by w () = (E'(-)fi, fj) . Then My is an n x n positive

Let M be a Borel subset of R . Then

w0 = (BGDF, £3) = (f

o IE E(M)fj) = u..(M)

Jgt
Thus (”ij(M)) is an Hermitian matrix. From the spectral theorem we know
that each ”ij is o0-additive. Let gl, [N En be complex numbers.

Then

(BGns;, £)8,E;

L3
=
—
2
Y
faal

1]
o~

i,4=1

n n
[E(M) —;Zl £.f; jzl g J.fj] z0,

showing that ”ij(M) is positive semi-definite. Thus (“ij) is an
n x n positive matrix measure. Note that “ij is defined on all Borel

subsets of R and
lu; ;00| = | (EG5, fj)l = WFL NP5

LEMMA 2. Let [“ij) be as above. Define u by
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u(-) = § wu..(+) . Then u 1is a totally finite measure on the Borel
=1
subsets of R and each Mg 18 continuous with respect to | . Further,

H, s a Hilbert space which is unitarily equivalent to Lg(uij)

It is obvious that U is a totally finite measure. Suppose

u(M) = 0 , then “ii(M) =0 for each © =1,2, ..., n . Further

g 01 = 1 Ef, £5)1 = IECHS NI

(E(M)f;’ f’L)”fJ” =0 .

Thus “ij(M) = 0 and so each “ij is continuous with respect to u .
Note that the existence of such a measure | enables us to construct the
space L2(Uij] . Let (mij) be the matrix of densities defined by the

equations

where M 1is any Borel set.
It is clear that HN is a Hilbert space, being a closed linear

manifold in H . Let kl(T)fl + ..+ kn(T)fn ¢ HN and define

Ki(e) = k() i |k ()] =,

=0 if ]ki(t)|>m, m=1, 2, ...,

Then each kz(T) exists as a bounded everywhere defined operator on H

and

n
k. AT)f, = 1i KN)f. .

i1~ 3
)

Thus
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n 2 ] noo -
| won] - (§ o, | g
L. ¢ m m
Sum b [Godmr, )
n
. m m
= iiﬁ ; §=1 ji; ki(t)kj(t)duij(t)

00 n
= lin J § mij(t)k';l(t)k?(t)du(t)

mso oo £, =1
LA
- mg (Ve (S TET a2
- 4 =1 W z J
¢ m m
since 2 mij(t)ki(t)kj(t) is a monotone increasing sequence of
Z,J=1
n
non-negative Borel functions tending pointwise to z mij(t)ki(t)kj(t)
1,5=1
2
Thus (kl, RN kn) €L (“ij] and
n
(IRESCoTA I O ]
=1 Hy ( ij)

Using the correspondence ki(T)f% > (kl’ k2, e kn] we can now set

IS

=1
. X 2
up a norm preserving linear map of a demse subset of H, into L (uij) ,
which can therefore be extended to an isometry of HN into L2(Uij) . Now

let [k k , k ) € Lz(uij] . Then defining kz as before we see

12 T2 e n

n
from the above argument that ) k?(T)f; € HN and

IR

the existence of a point f € fl, such that U(kl, cees kn)” = Jfll . This

i
®om
z ki(T)fi“ . Taking the limit as m + » we deduce
=1

shows that the isometry produced in the first half of the proof is onto
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and so the spaces HN and Lg{uij) are unitarily equivalent.

LEMMA 3. Let n = 1 be an integer. Then there is a collection L

of finite subsets N < H , each containing n points, such that

H= J H, .
Nel
Consider the family X of collections A of finite subsets W < H

each containing » points and such that the spaces HN , N € X , are

mutually orthogonal. Order K by inclusion. Let A be a chain in K

and put E = U X . Then E is a collection of finite subsets N < H
A€

each containing » points. Further, if N,, N, € E , there exists

A € A such that N;, N, € A and so HN l-HN . We may now apply Zorn's
1 2

Lemma to deduce the existence of a maximal collection L of finite subsets
N © H each containing 7 points such that the spaces HN , Nel , are
mutually orthogonal. Thus to prove the result, it suffices to show that

no f # 0 is orthogonal to each of the spaces H N € L . If there

N b
exists f # 0 such that f l HN , N € L , then for bounded Borel

n
measurable functions k., ..., kn and any point y = ) ai(T)fé €H_,

>
1 i=1 N

we have

n n n
L;Zl G@r 1 ayisy) = [1, LI B CTAREY

n
Thus (izl ki(T)f, y] =0, for all y € HN , and so H(f,f,---,f) l-HN s
for all N € L , contradicting the maximality of L . Hence H = z HN .

Nel

For f € H we let fh be its component in H, , that is
F= 1 fy» Ty €Hy.

LEMMA 4. For every Borel function k we have
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D(k(1)) = {f gy e o0am), wens 1 ()7, 1% < m}
Ne

and  (K(T)f), = k(T)Fy .

We first assert that

(*) (D[k(T))]N = H, n D(k(T)) .

Clearly HN n D(R(T)) c [D(R(T))} c HN , and so to establish (%) it
N

suffices to show that [D(k(T)J] c D(k(T)) . Let [ € D{R(T)) 5  we must
N

show fﬁ € D(k(T)] . Now
B 1P Z Iz F I

and so [E(M)fN, fN) = (BE@n)f, f) . Thus

00

| P, 1) < | koPeansn ) <o,

- -00

showing that fh € D(k(T)) . Thus (*) is proved.

We next show that if fﬁ € D(k(T)) , then k(T)fN € HN . Since

Iy € HN » there exist Borel functions aﬁ(t) , 1=2=n, rz=1, suh
that
?op
fy = lim ) ai(T)f' .

. 1
ro 7=]

Defining K"(t) as before and using the fact that Xk (T) is bounded, we
see that

K'(D)fy = lim z K" (T)a (1)f,
o 1=)

€ HN
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and since km(T)fh - k(T)fh as m > o k(T)fN € HN . Again, since

¥™(T) 1is bounded,

[ - ! [ s en.

1r f € D(k(T)) , then by (*) fy € D(k(T)} and we have

1lim km(T)f = k(T)f , 1lim km(T)fh = k(T)fﬁ . Thus for any finite set
oo moo

Tcl

I sl < ksl ,

Nemw

showing that

IAR@p 2 <=
Nemw

It will next be shown that f € D(k(T))} provided fy € D(k(T)) and
1zv nk(T)an2 <. et {M}cL besuchthat fy=0 if N ¢ (] .

Thus the terms of the sequence k(T)f are orthogonal and since

M

. j:fl ”k<T>fNJ_N2 < LIz <o,

[ee]
the series ) k(T)fh converges. Now k(T) is a closed operator and

J=1 J
thus f € D(k(?)) and

Lod

kK(T)f = ) KT)fy, = ) k(T)fy -
J=1 j w

Since k(T)fﬁ € HN , Wwe also have (k(T)ij = k(T)fN . This completes the
proof of the lemma.

We shall now adopt the following notation:—-
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N = {fﬁ'{ s s fﬁ} L) = [E(-)f‘i-v, f‘;v] .

N

T N
w3 b0 = | el o)

M
LEMMA 5. H <s wnitarily equivalent to ) Le[uI‘.].]

wel L

By Lemma 3, H = Z HIV and by Lemma 2, HIV is unitarily eguivalent
Nel

to L2 [UN ] , the equivalence being described in that lemma. Combining

d

these results, H 1is equivalent to z L2[ui.ij . Let us suppose
Nel

U:H-> Z L2 {ui‘.]j] is the unitary map obtained above. Note that
Nel

2w )
(UHNI)Nz =0, Ny #Ny; =1L (“ij] , W) =N,

For F=JF ¢]J L2[uy.} let
¥ i tJ

F

By = (F Nn)

N Ny E

s e
LEMMA 6. For every Borel function k we have

D (k(1)) =
21 N 2 B —_—
{F € IZV L [uij] ) ,Z,f; [k(£) | i";:l my ) Ey ()Fy (E)duy () < w} ,

and

(Uk(1)F) () = k(£)(UF)H(E)

It is sufficient to prove the second statement since it and Lemma 4

together give the first result. Now

(k(1)f)y, = V(K(D)F), = UK(T)S .

Suppose UfIV = (OLl, Oy «ves an) € Le(ug]j] . Defining ()L;{I(t) = Oti(t) if

[cxi(t)| =m , =0 otherwise and km(t) = k() if [k(£)] =m, =0
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otherwise we have

K™(T)f, = lim ’f USAUIT
N pao 121, 1 A

Thus

vk (T) Fy

lim km(t)(xi(t), eer, km(t)ar(t)]
1o n

K'(2) (o) (£), ey o (£))

The result follows by letting m > o ,

We can now make the following definition.

DEFINITION. Let T be a self adjoint operator on a Hilbert space H
and let {[ung} be a family of finite n x n positive matrix measures

defined on the Borel subsets of the line and vanishing on the complement

of the spectrum of F . Let U “be a unitary map between H and

) Le[ugj] . The transformation U <s an n X n spectral representation
N

of H onto | Lg[ung relative to T if the following conditions are
N

satisfied:-

(a) for every Borel function k defined on the spectrum of T we

have

VZZ P (6)F. (D) (¢) < oo} .
J td ’

. o[ ” 2
- g 2] | 1w 1, o

N T,

(b)) (UR(2)f),(2) = k() (UF),(¢)

1)
Combining Lemmas 1 - 6 we can state:-

THEOREM 1. Every Hilbert space admits an n x n spectral
representation relative to an arbitrary self adjoint operator defined in

it, for any value of the integer n .

We conclude this section by showing that any #n X n spectral

representation may be realized in the fashion described in the lemmas.
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THEOREM 2. Let U be an n x n spectral representation of H

onto |} Le[pfj] relative to a self adjoint operator T . Then to each K
X

N

corresponds a finite set N < H such that {pK ] = [uij] , H isa

iJ

. 2|, N
direct sum of subspaces HN and U maps HN onto L uij
We first note that given an 7 x n spectral representation, the

resolution of the identity £ for T is given by

(UB(N) () = %, (£)(UF) (2) € Lz[ng ]

J

For each X let EKl be that element of Z L2[pfj] defined by
K

[EKI)J(t) (0, 0, ..., 0) , J#K,
=(1,0, ..., 0), J=K.

Let EK2 be that element of z Lg[pg.] defined by

(€K2)J(t) = (0,0, ..., 0) , J# K,

Continuing in this way, we finally let EKn be that element of Z Lz[pfg]
X

defined by

[EMJJ(t):(o, 0, vvny 0) , JEK,
= (0,0, ..., 0,1), J=K.

Note that the EKL are elements of z Lg[pfj] since we assumed the
):¢

X - ; X
measures Oii to be finite. DMNow define fg =U lEKl , T =1,2, ..., n

and set N = {fq, PN fﬁ} . Then for any Borel set Y CR ,
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X X " i ; X
< () = f & (£) =] 1) () (E9), (£)aok (#)
. R M §=1 (67 (80 (€7 g (010

b

{UE(M)fg, Ufg] = [E(M)fg, fg}

= uﬁQ(M)

The remaining statements follow from the earlier lemmas.

3.

As in [1] we now give an analytic representation of the unitary map
U . We shall assume that T is a self adjoint operator in the space
L2(S, £, v) where (S, £, V) 1is a positive measure space. We also

assume that there exists an expanding sequence {Sn} covering S , each

element of which has finite measure, and that for bounded sets M the
range of E(M) contains only functions which are v-essentially bounded

on each of the sets Sn , {ef. [1], p. 1210). We shall use the 1 x 1

representation theory ({7], Theorem 11, p. 1213) to develop corresponding

results for the general case.

We shall require some results from the theory of positive matrix
measures and we state them here without proof. Full details may be found
in [7, pp. 1341-13k2].

LEMMA 7. Let (uij} be an n x n positive matrix measure whose
elements are continuous with respect to a positive o-finite measure y .
If Gnij] 18 the matrix of densities of “ij with respect to W , then
there exist non-negative u-measurable functions ¢i , 11 =n,

u-integrable over each bounded interval, and u-measurable functions aij R

n , such that for u-almost all ¢t

1A

152, ¢

n
(a) jgl aij(t)ajk(t) =8,y » ad

n
(b) jzl ¢j(t)aji(t)ajk(t) =m () .
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j) B ¢i s @i M be as above. For

each 1 =1, 2, ..., n let v, be the positive measure defined by

LEMMA 8. Let (”ij] R Oni

v = | o (0)ute) .
M

7z

n
Then there exists a unitary map T : Lg(uij] ) Lg(vi) . T ig given
=1

by

Rl (A

10 Gps ++es G ) = [
J

THEOREM 3. Let (8, I, V) be a positive measure space and let
{Sn} be an expanding sequence of sets of finite measure covering S . Let
U be an n *n speetral representation of L%(S, I, v) onto
¥ L2[u¥j] relative to the self adjoint operator T in L2(5, I, v) .
Nel
Let E be the resolution of the identity for T and suppose that for each
bounded Borel set M the range of the projection E(M) contains only
functions which are v-essentially bounded on each of the sets Sn . Then
for each N € L there are functions w; , 1 =1 =n, defined on the
cartesian product of S with the real line and having the properties:

(a) W; is measurable with respect to the product measure V x My s

(b) for each bounded Borel set M < R we have

n . -
V-ess sup J ) mg.(t)wz(s, t)W%(s, t)}duN(t) <w, n=>1;
seS, MY, ¥

. n
@ (nye) = ([ e, tavs)] 5 esis, 5,
. .

1=l
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the integrals existing in the mean square sense in Lz[ung

[See [7], p. 1350 for a discussion of mean square existence of

integrals in Lz[ug.] .]

N N N N
Let ¢i’ aij’ Vi I'' be those functions, measures and unitary maps

as described in Lemmas 7 and 8 corresponding to [ugj] . Thus we have

n
2(m )T o(
I} el 4=1

LA
[

L2(S, I, V)

. . N . .
where @' is a unitary map constructed from the T in an obvious manner.

n
Hence TIU 1is a unitary map between LZ(S, I, v) and Z Z Lz[vg]
Nel =1

Further, for any Borel function k defined on the spectrum of T ,

o) = rfe = 15, | 1 kR @1° < o}
N

{a = % g G; % g fi; }k(t)G}(t}{gdvﬁ(t) < «} .

N
This result follows readily from the representations of the maps T as

given in Lemma 8. That lemma also shows that
7 1
(TUR(2)£) (8) = k(&) (TUF) (2)
Thus TIU is a spectral representation of L2(S, I, v) onto

n
z ) L2(vy] in the sense of [1, p. 1208], ( - a 1 x 1 spectral
NeL i=1 t

representation in terms of our definition). Applying [!, Theorem 11,

p. 1213], we see that there exist measurable functions WW (s, t) defined

on S x R such that for each bounded Borel set M C K

2
V-ess sup f .WN (s, t)‘ dvy(t) <o =21,
sesn M 1 i
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and
(o) = [ £y Tor Bavs) 7 € 135, 5, V) 5
S 7
. R . . 2| N
the integral existing in the mean square sense in I [vi] . Now for

Ne€Ll, 1<i<n, define W; by

. n
A
WN(s, t) = 'Zl aij(t)w

Clearly each h% is measurable, and for n = 1

n
V-ess sup J X m.k s, t)Wk(s duN t)
sESn M g, k=1 J

n N . —_—
V-ess sup J ) ¢.a..(t)aik(t)h%(s, t)W;(s, t)duy(t)
M

ses i,k © Y
n
) )

= v-ess sup J a. . (t)a., (tla. (t)a, ()W (s, t)

seS i=1 ‘M j,k,p,q=1 & ik JP kq p

N
WNq(s, t)dvi(t)

= V-ess sup Z j l | dv (¢)

ses i=1 ‘M

v 2.0
) v-ess sup J IWNi(S’ t)| dv, (t) < = .
=1 s€S M

A

Finally, for f € L2(S, £, v) ,

(FUf)f(t) = lim J F(8)7, (5, £)dv(s)
>0 Sr

2 -
the 1limit being taken in the topology of L [vg] . Applying T 1 we have
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n
((wF),(#) = 1im [ o) J Flo ) Toy Blau(e)
oo \j=1 S, =1
. n
= lim U Fle)Wy(s, t)dv(s)
e Sr =1

This completes the proof of the theorem.
THEOREM 4. With the notation of the previous theorem we have
00 n ———
fls) = f L om () (Ufy) 75)W‘7 (s, t)du,(t) ,
Nel ‘- ¢ 4=1
f € L2(8, L, v) , the integrals existing mean square in L2(S, L, v) and

the series converging in the norm of L2(5, £, v) .

For f € L3(S, T, v) , f=2fN=§2f; where fy is the
N N1

- N
component of f in (TV) lLe[\)i} . Further by [!, Corollary to Theorem

11, p. 12131,

-5 jr (rupYiem, (s, B)af(e)
= im T {8, V.
1 N i1 poe dop N Nz 7

it
e~

Tu

r n
= iiﬁ f_r i’§=l (Ury) ;(B)a; ()0 (s )8, (£)duy(2)

r n n
= lim Y (UJN) (t)a t)9,(t) Z (s ) Zai (t)a, (¢)du,(¢)
J,,J pe1 PP

~r 7,j=1

r n n n
= iiﬂj_r j’gzl(UfN)j(t>iZl¢i(t)aij(t)aipK%S%Zlapk(t>ka(s, t)du, (£)

r n ———
= iil‘i, f_r ; g . Jp(t)(UfN) )w;’;(s, t)duy(t) .

From this, the result follows immediately.
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