(c) Canadian Mathematical Society 2011

Almost Everywhere Convergence of Convolution Measures

Karin Reinhold, Anna K. Savvopoulou, and Christopher M. Wedrychowicz

Abstract

Let $(X, \mathcal{B}, m, \tau)$ be a dynamical system with (X, \mathcal{B}, m) a probability space and τ an invertible, measure preserving transformation. This paper deals with the almost everywhere convergence in $\mathrm{L}^{1}(X)$ of a sequence of operators of weighted averages. Almost everywhere convergence follows once we obtain an appropriate maximal estimate and once we provide a dense class where convergence holds almost everywhere. The weights are given by convolution products of members of a sequence of probability measures $\left\{\nu_{i}\right\}$ defined on \mathbb{Z}. We then exhibit cases of such averages where convergence fails.

1 Introduction

1.1 Preliminaries

Let (X, \mathcal{B}, m) be a non-atomic, separable probability space. Let τ be an invertible, measure preserving transformation of (X, \mathcal{B}, m). Given a probability measure μ defined on \mathbb{Z}, one can define the operator $\mu f(x)=\sum_{k \in \mathbb{Z}} \mu(k) f\left(\tau^{k} x\right)$ for $x \in X$ and $f \in \mathrm{~L}^{p}(X)$ where $p \geq 1$. Note that this operator is well defined for almost every $x \in X$ and that it is a positive contraction in all $\mathrm{L}^{p}(X)$ for $p \geq 1$, i.e., $\|\mu f\|_{p} \leq\|f\|_{p}$.

Given a sequence of probability measures $\left\{\mu_{n}\right\}$ defined on \mathbb{Z}, one can subsequently define a sequence of operators as follows: $\mu_{n} f(x)=\sum_{k \in \mathbb{Z}} \mu_{n}(k) f\left(\tau^{k} x\right)$. The case where the weights are induced by the convolution powers of a single probability measure defined on \mathbb{Z} has already been studied. More specifically, given μ a probability measure on \mathbb{Z}, let μ^{n} denote the n-th convolution power of μ, which is defined inductively as $\mu^{n}=\mu^{n-1} * \mu$, where $\mu^{2}(k)=(\mu * \mu)(k)=\sum_{j \in \mathbb{Z}} \mu(k-j) \mu(j)$ for all $k \in \mathbb{Z}$. In [2] and [3] the authors studied the sufficient conditions on μ that give L^{p}, ($p \geq 1$), convergence of the sequence of operators of the form

$$
\mu_{n} f(x)=\sum_{k \in \mathbb{Z}} \mu^{n}(k) f\left(\tau^{k} x\right)
$$

The type of weighted averages that will be considered in this paper are those whose weights are induced by the convolution product of members of a sequence of probability measures $\left\{\nu_{i}\right\}$ defined on \mathbb{Z}. Given this sequence of probability measures $\left\{\nu_{i}\right\}$,

[^0]we define another sequence of probability measures $\left\{\mu_{n}\right\}$ on \mathbb{Z} in the following way:
\[

$$
\begin{aligned}
\mu_{1} & =\nu_{1} \\
\mu_{2} & =\nu_{1} * \nu_{2} \\
& \vdots \\
\mu_{n} & =\nu_{1} * \cdots * \nu_{n}
\end{aligned}
$$
\]

We then define the sequence of operators

$$
\mu_{n} f(x)=\sum_{k \in \mathbb{Z}}\left(\nu_{1} * \cdots * \nu_{n}\right)(k) f\left(\tau^{k} x\right)=\sum_{k \in \mathbb{Z}} \mu_{n}(k) f\left(\tau^{k} x\right) .
$$

Note that these operators $\mu_{n} f(x)$ are well defined for almost every $x \in X$ and that they are positive contractions in all $\mathrm{L}^{p}(X)$, for $1 \leq p \leq \infty$.

If one defines $T_{m} f(x)=\sum_{k \in \mathbb{Z}} \nu_{m}(k) f\left(\tau^{k} x\right)$, we may view $\mu_{n} f(x)=\nu_{1} * \cdots *$ $\nu_{n} f(x)$ as the composition of $T_{1}, T_{2}, \ldots, T_{n}$ i.e., $\mu_{n} f(x)=T_{n} \cdots T_{1} f(x)$. Therefore, the almost everywhere convergence of $\mu_{n} f(x)$ may be viewed as a special case of the almost everywhere convergence of the sequence $S_{n} f(x)=T_{n} \cdots T_{1} f(x)$, where the T_{i} 's are positive contractions of $L^{p} \forall p \geq 1$. If one defines

$$
S_{n} f(x)=T_{1}^{*} \cdots T_{n}^{*} T_{n} \cdots T_{1} f(x)
$$

where T_{i}^{*} denotes the adjoint of T_{i}, one encounters a much studied situation. In our case this would correspond to successive convolution of ν_{i} and $\tilde{\nu}_{i}$, where $\tilde{\nu}_{i}$ is defined by $\tilde{\nu}_{i}(k)=\nu_{i}(-k)$. When $f \in L^{p}$ for $1<p<\infty$ and the T_{i} 's are positive contractions and $T_{n} 1=T_{n}^{*} 1=1$, Rota established the almost everywhere convergence [11]. Akcoglu extended this result to the situation where the T_{i} 's are not necessarily positive [1]. Concerning $p=1$, Ornstein constructed an example of a self-adjoint operator T satisfying the above for which $T \cdots T f(x)=T^{n} f(x)$ fails to converge almost everywhere [7].

The above failure when $p=1$ is in contrast to the almost everywhere convergence of the Cesaro averages $\frac{1}{n} \sum_{k=1}^{n} T^{k} f(x)$ (see [8]).

1.2 Definitions and Past Results

Before we mention a few of the results regarding weighted averages with convolution powers, some definitions are essential.

Definition 1.1 A probability measure μ defined on a group G is called strictly aperiodic if and only if the support of μ cannot be contained in a proper left coset of G.

A key theorem by Foguel that we will use repeatedly is the following.
Theorem 1.2 ([4]) If G is an abelian group and \hat{G} denotes the character group of the group G, then the following are equivalent for a probability measure μ :
(i) μ is strictly aperiodic;
(ii) if $\gamma \neq 1, \gamma \in \hat{G}$, then $|\hat{\mu}(\gamma)|<1$.

Definition 1.3 If $p>0$, the p-th moment of μ is given by $\sum_{k \in \mathbb{Z}}|k|^{p} \mu(k)$ and is denoted by $m_{p}(\mu)$. The expectation of μ is $\sum_{k \in \mathbb{Z}} k \mu(k)$ and is denoted by $E(\mu)$.

In [2] Bellow and Calderón proved the following theorem.
Theorem 1.4 Let μ be a strictly aperiodic probability measure defined on \mathbb{Z} that has expectation 0 and finite second moment. The sequence of operators

$$
\mu_{n} f(x)=\sum_{k \in \mathbb{Z}} \mu^{n}(k) f\left(\tau^{k} x\right)
$$

converges almost everywhere for $f \in L^{1}(X)$.
The proof of this theorem involves translating properties of the measure into equivalent conditions on the Fourier transform of the measure.

2 Convolution Measures

In this section we discuss sufficient conditions on the sequence of probability measures $\left\{\nu_{i}\right\}$ so that the operators

$$
\mu_{n} f(x)=\sum_{k \in \mathbb{Z}} \mu_{n}(k) f\left(\tau^{k} x\right)=\sum_{k \in \mathbb{Z}}\left(\nu_{1} * \cdots * \nu_{n}\right)(k) f\left(\tau^{k} x\right)
$$

converge a.e. for $f \in \mathrm{~L}^{1}(X)$. We will show that the maximal operator of this sequence is of weak-type $(1,1)$, and then we establish a dense class where a.e. convergence holds. Almost everywhere convergence will follow from Banach's Principle.

2.1 Maximal Inequality

To establish a maximal inequality we will use the following theorems.
Theorem $2.1([2]) \quad$ Let $\left(\mu_{n}\right)$ be a sequence of probability measures on \mathbb{Z}, $f: X \rightarrow \mathbb{R}$ and the operators

$$
\left(\mu_{n} f\right)(x)=\sum_{k \in \mathbb{Z}} \mu_{n}(k) f\left(\tau^{k} x\right)
$$

Let $M f(x)=\sup _{n}\left|\mu_{n} f(x)\right|$ denote the maximal operator. Assume that there is $0<$ $\alpha \leq 1$ and $C>0$ such that for $n \geq 1$,

$$
\left|\mu_{n}(x+y)-\mu_{n}(x)\right| \leq C \frac{|y|^{\alpha}}{|x|^{1+\alpha}} \quad \text { for } x, y \in \mathbb{Z}, 2|y| \leq|x|
$$

Then the maximal operator M satisfies a weak-type $(1,1)$ inequality; namely, there exists C such that for any $\lambda>0$

$$
m\{x \in X:(M f)(x)>\lambda\} \leq \frac{C}{\lambda}\|f\|_{1} \quad \text { for all } f \in L^{1}(X)
$$

A sufficient condition to obtain the assumption of Theorem 2.1 is given by the following corollary.

Corollary $2.2([2]) \quad$ Let μ_{n} be a sequence of probability measures defined on \mathbb{Z} and let $\hat{\mu}_{n}(t)$ denote its Fourier transform for $t \in[-1 / 2,1 / 2)$. We assume that

$$
\sup _{n} \int_{-1 / 2}^{1 / 2}\left|\hat{\mu}_{n}^{\prime \prime}(t)\right||t| d t<\infty
$$

Then there exist $0<\alpha \leq 1$ and $C>0$ such that for $n \geq 1$

$$
\left|\mu_{n}(x+y)-\mu_{n}(x)\right| \leq C \frac{|y|^{\alpha}}{|x|^{1+\alpha}} \quad \text { for } x, y \in \mathbb{Z}, 2|y| \leq|x|
$$

Theorem 2.3 Let $\left(\nu_{n}\right)$ be a sequence of strictly aperiodic probability measures on \mathbb{Z} such that
(i) $E\left(\nu_{n}\right)=0 \forall n$;
(ii) $\phi(n)=\sum_{i=1}^{n} m_{2}\left(\nu_{i}\right)=O(n)$;
(iii) there exist a constant C and an integer $N_{0}>0$, such that $\left|\hat{\nu}_{n}(t)\right| \leq e^{-C t^{2}}$ for $n>N_{0}$ and $t \in[-1 / 2,1 / 2)$.
Then for $\mu_{n}=\nu_{1} * \cdots * \nu_{n}$ we have that

$$
\sup _{n} \int_{-1 / 2}^{1 / 2}\left|\hat{\mu}_{n}^{\prime \prime}(t)\right||t| d t<\infty
$$

and therefore the maximal operator $M f(x)=\sup _{n \in \mathbb{Z}}\left|\mu_{n} f(x)\right|$ is weak-type $(1,1)$.
Proof Without loss of generality we can assume that $N_{0}=1$. Let $a_{n}=4 \pi^{2} m_{2}\left(\nu_{n}\right)$. Under our hypothesis one can show that for $\hat{\nu}_{n}(t)=\sum_{k} \nu_{n}(k) e^{2 \pi i k t}$ and $t \in$ $[-1 / 2,1 / 2)$,

$$
\begin{aligned}
\left|\hat{\nu}_{n}^{\prime}(t)\right| \leq a_{n}|t|, & \text { for } t \in[-1 / 2,1 / 2) \\
\left|\hat{\nu}_{n}^{\prime \prime}(t)\right| \leq a_{n}, & \text { for } t \in[-1 / 2,1 / 2)
\end{aligned}
$$

Observe that since $\mu_{n}=\nu_{1} * \cdots * \nu_{n}$,

$$
\begin{aligned}
\hat{\mu}_{n}(t) & =\prod_{i=1}^{n} \hat{\nu}_{i}(t) \\
\hat{\mu}_{n}^{\prime}(t) & =\sum_{j=1}^{n} \prod_{\substack{i=1 \\
i \neq j}}^{n} \hat{\nu}_{i}(t) \hat{\nu}_{j}^{\prime}(t) \\
\hat{\mu}_{n}^{\prime \prime}(t) & =\sum_{j=1}^{n} \prod_{\substack{i=1 \\
i \neq j}}^{n} \hat{\nu}_{i}(t) \hat{\nu}_{j}^{\prime \prime}(t)+\sum_{j=1}^{n} \sum_{\substack{k=1 \\
k \neq j}}^{n} \prod_{\substack{i=1 \\
i \neq j, k}}^{n} \hat{\nu}_{i}(t) \hat{\nu}_{j}^{\prime}(t) \hat{\nu}_{k}^{\prime}(t)
\end{aligned}
$$

These imply that

$$
\begin{aligned}
\left|\hat{\mu}_{n}^{\prime \prime}(t)\right| & \leq \sum_{j=1}^{n} a_{j} e^{-(n-1) C t^{2}}+\sum_{j=1}^{n} a_{j} \sum_{\substack{k=1 \\
k \neq j}}^{n} a_{k} e^{-(n-2) C t^{2}}|t|^{2} \\
& \leq 4 \pi^{2} \phi(n) e^{-(n-1) C t^{2}}+16 \pi^{4} \phi(n)^{2} e^{-(n-2) C t^{2}}|t|^{2}
\end{aligned}
$$

so that

$$
\begin{aligned}
\int_{-1 / 2}^{1 / 2}\left|\hat{\mu}_{n}^{\prime \prime}(t)\right||t| d t \leq & 4 \pi^{2} \phi(n) \int_{-1 / 2}^{1 / 2} e^{-(n-1) C t^{2}}|t| d t \\
& +16 \pi^{4} \phi(n)^{2} \int_{-1 / 2}^{1 / 2} e^{-(n-2) C t^{2}}|t|^{3} d t \\
\leq & \mathrm{I}_{1}+\mathrm{I}_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{I}_{1} & =4 \pi^{2} \phi(n) \int_{-1 / 2}^{1 / 2} e^{-(n-1) C t^{2}}|t| d t=8 \pi^{2} \phi(n) \int_{0}^{1 / 2} e^{-(n-1) C t^{2}} t d t \\
& =8 \pi^{2} \phi(n)\left[\frac{e^{-(n-1) C t^{2}}}{-2(n-1) C}\right]_{0}^{1 / 2}=8 \pi^{2} \phi(n)\left(\frac{e^{\frac{-(n-1) C}{4}}}{-2(n-1) C}+\frac{1}{2(n-1) C}\right) \\
& =4 \pi^{2} \frac{\phi(n)}{C(n-1)}\left(1-e^{-\frac{(n-1) C}{4}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{I}_{2} & =16 \pi^{4} \phi(n)^{2} \int_{-1 / 2}^{1 / 2} e^{-(n-2) C t^{2}}|t|^{3} d t=32 \pi^{4} \phi(n)^{2} \int_{0}^{1 / 2} e^{-(n-2) C t^{2}} t^{3} d t \\
& =16 \pi^{4} \phi(n)^{2} \int_{0}^{1 / 4} e^{-(n-2) C u} u d u \\
& =16 \pi^{4} \phi(n)^{2}\left(-\left.\frac{u e^{-(n-2) C u}}{(n-2) C}\right|_{0} ^{1 / 4}+\frac{1}{(n-2) C} \int_{0}^{1 / 4} e^{-(n-2) C u} d u\right) \\
& =16 \pi^{4} \phi(n)^{2}\left(-\frac{e^{-\frac{(n-2) C}{4}}}{4(n-2) C}-\left.\frac{1}{(n-2)^{2} C^{2}} e^{-(n-2) C u}\right|_{0} ^{1 / 4}\right) \\
& =16 \pi^{4} \phi(n)^{2}\left(-\frac{e^{-\frac{(n-2) C}{4}}}{4(n-2) C}-\frac{1}{(n-2)^{2} C^{2}}\left(e^{-\frac{(n-2) C}{4}}-1\right)\right) \\
& =16 \pi^{4}\left(-\frac{1}{4 C}\left(\frac{\phi(n)}{n-2}\right)^{2} e^{-\frac{(n-2) C}{4}}(n-2)-\frac{1}{C^{2}}\left(\frac{\phi(n)}{n-2}\right)^{2}\left(e^{-\frac{(n-2) C}{4}}-1\right)\right) .
\end{aligned}
$$

Both integrals I_{1} and I_{2} are bounded, given that $\phi(n)=O(n)$. Hence,

$$
\sup _{n} \int_{-1 / 2}^{1 / 2}\left|\hat{\mu}_{n}^{\prime \prime}(t)\right||t| d t<\infty .
$$

Lemma 2.4 ([9]) Let $f(t)$ be a characteristic function of a random variable X. Then for all real numbers $t, 1-|f(2 t)|^{2} \leq 4\left(1-|f(t)|^{2}\right)$.

This lemma helps us prove the following result, which is a modification of a theorem found in [9].
Lemma 2.5 If $|\hat{\mu}(t)| \leq c<1$ for $\frac{1}{2}>|t| \geq b$ and for some b such that $|b|<\frac{1}{4}$, then $|\hat{\mu}(t)| \leq 1-\frac{1-c^{2}}{8 b^{2}} t^{2}$ for $|t| \leq b$.
Proof For $t=0$ the claim is obvious. Choose t such that $|t|<b$. We can find n such that $2^{-n} b \leq|t|<2^{-n+1} b$. Then $b \leq 2^{n}|t|<2 b$. Hence $\left|\hat{\mu}\left(2^{n} t\right)\right| \leq c$. Lemma 2.4 implies that by induction $1-\left|f\left(2^{n} t\right)\right|^{2} \leq 4^{n}\left(1-|f(t)|^{2}\right)$ holds for all t and any characteristic function f. Using the fact that $\hat{\mu}(t)=\overline{f(2 \pi t)}$ for $-1 / 2 \leq t<1 / 2$, we have that

$$
1-\left|\hat{\mu}\left(2^{n} t\right)\right|^{2}=1-\left|\overline{f\left(2^{n} 2 \pi t\right)}\right|^{2} \leq 4^{n}\left(1-|f(2 \pi t)|^{2}\right)=4^{n}\left(1-|\hat{\mu}(t)|^{2}\right)
$$

which implies that

$$
1-|\hat{\mu}(t)|^{2} \geq \frac{1}{4^{n}}\left(1-\left|\hat{\mu}\left(2^{n} t\right)\right|^{2}\right) \geq \frac{1}{4^{n}}\left(1-c^{2}\right) \geq \frac{1-c^{2}}{4 b^{2}} t^{2}
$$

Then $|\hat{\mu}(t)| \leq 1-\frac{1-c^{2}}{8 b^{2}} t^{2}$ for $|t|<b$ follows.
Lemma 2.6 If μ is a strictly aperiodic probability measure on \mathbb{Z} and $\hat{\mu}(t)$ denotes the Fourier transform of μ for $t \in(-1 / 2,1 / 2]$, then there exist positive constants $c<1$ and d such that

$$
|\hat{\mu}(t)| \leq 1-\frac{1-c^{2}}{8 d^{2}} t^{2} \quad \text { for }|t| \leq d
$$

which implies that there exists $C>0$ such that $|\hat{\mu}(t)| \leq e^{-C t^{2}}$ for $t \in[-1 / 2,1 / 2)$.
The third condition of Theorem 2.3replaces the condition of strict aperiodicity in the case when all of the ν_{i} 's are the same measure, i.e., $\nu_{i}=\nu$.
Lemma 2.7 Let $\left\{\nu_{n}\right\}$ be a sequence of probability measures on \mathbb{Z}. The following are equivalent.
(i) $\forall \delta>0$

$$
\varlimsup_{n \rightarrow \infty} \sup _{|t|>\delta}\left|\hat{\nu}_{n}(t)\right|<1 \text { (asymptotically strictly aperiodic). }
$$

(ii) There exist C and N_{0} such that

$$
\left|\hat{\nu}_{n}(t)\right| \leq e^{-C t^{2}} \text { for } n>N_{0}
$$

Proof $($ ii $) \Rightarrow($ i) is obvious. To show that (i) \Rightarrow (ii), since for $\delta>0$

$$
\varlimsup_{n \rightarrow \infty} \sup _{|t|>\delta}\left|\hat{\nu}_{n}(t)\right|<1
$$

given $\epsilon>0$, we can choose $\delta>0$ and $N \in \mathbb{Z}$ such that $\sup _{|t|>\delta}\left|\hat{\nu}_{n}(t)\right|<1-\epsilon$ for $n>N$. By Lemma 2.4, $\left|\hat{\nu}_{n}(t)\right| \leq 1-K t^{2}$ for some constant $K, n \geq N$ and $|t|<\delta$. So that there exists a constant C such that $\left|\hat{\nu}_{n}(t)\right| \leq e^{-C t^{2}}$ for all $t \in[-1 / 2,1 / 2)$ for $n \geq N$.

2.2 Dense Set and Almost Everywhere Convergence in $\mathbf{L}^{1}(X)$

Lemma 2.8 Let μ_{n} be a sequence of probability measures on \mathbb{Z} such that
(i) there is $0<\alpha \leq 1$ and $C>0$ such that for $n \geq 1$

$$
\left|\mu_{n}(x+y)-\mu_{n}(x)\right| \leq C \frac{|y|^{\alpha}}{|x|^{1+\alpha}} x, y \in \mathbb{Z} 2|y| \leq|x|
$$

(ii) $\quad \hat{\mu}_{n}(t) \xrightarrow{n \rightarrow \infty} 0$ for a.e. $t \in[-1 / 2,1 / 2)$.

Then $\left\|\mu_{n}-\mu_{n} * \delta_{1}\right\|_{1} \xrightarrow{n \rightarrow \infty} 0$.
Proof Note that by the first assumption,

$$
\begin{aligned}
\left|\mu_{n}(k)-\mu_{n} * \delta_{1}(k)\right| & =\left|\mu_{n}(k-1+1)-\mu_{n}(k-1)\right| \\
& \leq C \frac{1}{(k-1)^{1+\alpha}}, \quad \text { for } 2<|k-1|
\end{aligned}
$$

This implies that the sequence $\left|\mu_{n}(k)-\mu_{n} * \delta_{1}(k)\right|$ is bounded by a summable function. By Lebesgue's dominated convergence theorem the condition $\left\|\mu_{n}-\mu_{n} * \delta_{1}\right\|_{1} \xrightarrow{n \rightarrow \infty} 0$ holds if we show that $\left|\mu_{n}(k)-\mu_{n}(k-1)\right| \xrightarrow{n \rightarrow \infty} 0$ for all k. Indeed, observe that

$$
\begin{aligned}
\left|\mu_{n}(k)-\mu_{n}(k-1)\right| & =\left|\int_{-1 / 2}^{1 / 2} \hat{\mu}_{n}(t)\left(e^{-2 \pi i k t}-e^{-2 \pi i(k-1) t}\right) d t\right| \\
& \leq \int_{-1 / 2}^{1 / 2}\left|\hat{\mu}_{n}(t)\right|\left|e^{-2 \pi i k t}\right|\left|1-e^{2 \pi i t}\right| d t \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

by (ii) and the bounded convergence theorem.
Theorem 2.9 Let $\left(\nu_{n}\right)$ be a sequence of strictly aperiodic probability measures on \mathbb{Z} such that
(i) $E\left(\nu_{n}\right)=0, \forall n$;
(ii) $\phi(n)=\sum_{i=1}^{n} m_{2}\left(\nu_{i}\right)=O(n)$;
(iii) there exist a constant C and an integer $N_{0}>0$, such that $\left|\hat{\nu}_{n}(t)\right| \leq e^{-C t^{2}}$ for $n>N_{0}$ and $t \in[-1 / 2,1 / 2)$.
The sequence of operators $\left\{\mu_{n} f\right\}$ converges almost everywhere in $L^{1}(X)$.
Proof Since the maximal operator has been shown to be of weak-type $(1,1)$ (Theorem (2.3), it is enough to show that convergence holds on the dense class $\{f+g-g \circ \tau$: $\left.f \circ \tau=f, g \in \mathrm{~L}_{\infty}\right\}$. Clearly, $\mu_{n} f$ converges almost everywhere for τ-invariant functions f. Then to show that $\left(\mu_{n} g-\mu_{n}(g \circ \tau)\right)$ converges almost everywhere for $g \in \mathrm{~L}_{\infty}$, it is enough to show that $\left\|\mu_{n} g-\mu_{n}(g \circ \tau)\right\|_{\infty} \xrightarrow{n \rightarrow \infty} 0$. But

$$
\begin{aligned}
\left\|\mu_{n} g-\mu_{n}(g \circ \tau)\right\|_{\infty} & \leq\left\|\mu_{n} g-\left(\mu_{n} * \delta_{1}\right) g\right\|_{\infty} \\
& \leq\left\|\mu_{n}-\mu_{n} * \delta_{1}\right\|_{1}\|g\|_{\infty}
\end{aligned}
$$

so that it is enough to show $\left\|\mu_{n}-\mu_{n} * \delta_{1}\right\|_{1} \xrightarrow{n \rightarrow \infty} 0$, which holds according to Lemma 2.8 .

3 Collections with Uniformly Bounded Second Moments

Lemma 3.1 Let $A \subseteq \mathbb{C}^{4}$ be the set

$$
A=\left\{\left(a_{1}, a_{2}, z_{1}, z_{2}\right): a_{1}+a_{2}=1, a_{1}, a_{2} \geq 0,\left|z_{1}\right|=\left|z_{2}\right|=1\right\}
$$

and let $S(\delta, \eta) \subseteq A$ be the set

$$
\left.S(\delta, \eta)=\left\{\left(a_{1}, a_{2}, z_{1}, z_{2}\right): a_{1}, a_{2} \geq \delta \text { and }\left|z_{1}-z_{2}\right| \geq \eta\right\}, 0<\delta, 0<\eta\right\}
$$

Then there exists $\rho=\rho(\delta, \eta)<1$ such that for $\left(a_{1}, a_{2}, z_{1}, z_{2}\right) \in S(\delta, \eta),\left|a_{1} z_{1}+a_{2} z_{2}\right| \leq$ ρ holds.

Proof By the triangle inequality for points in $A\left|a_{1} z_{1}+a_{2} z_{2}\right|=1$ if and only if $a_{1} z_{1}=$ $\lambda a_{2} z_{2}$ for $\lambda \geq 0$, which implies that $\left(a_{1}, a_{2}, z_{1}, z_{2}\right) \in A$. Therefore $F\left(a_{1}, a_{2}, z_{1}, z_{2}\right)=$ $a_{1} z_{1}+a_{2} z_{2}$ has modulus 1 on A only on the set $R=\left\{\left(a_{1}, a_{2}, z_{1}, z_{2}\right), a_{1}=a_{2}, z_{1}=z_{2}\right\}$. Observe that the points in $S(\delta, \eta)$ are bounded away from R. Since $S(\delta, \eta)$ is a compact subset of A and F is continuous on A, the claim follows.
Lemma 3.2 Let ν be a probability measure on \mathbb{Z} with $m_{1}(\nu) \leq a$ and

$$
\sup _{\beta, r \in \mathbb{Z}} \nu(\beta \mathbb{Z}+r) \leq \rho<1
$$

Suppose l / s is a rational number in $(-1 / 2,1 / 2]$ with $|s| \leq M$ and $|l| \leq\left\lfloor\frac{|s|}{2}\right\rfloor$. Then there exists $0 \leq \sigma=\sigma(a, \rho)<1$ such that $|\hat{\nu}(l / s)| \leq \sigma$.
Proof Let $|s| \leq M$. For $|l| \leq\lfloor s / 2\rfloor$, we have $\hat{\nu}\left(\frac{l}{s}\right)=\sum_{m \in \mathbb{Z}} \nu(m) e^{2 \pi i m(l / s)}$. Write $d=\operatorname{gcd}(l, s)$; then $l=d \alpha, s=d \beta$, and $m=\gamma \beta+r$ for some $0 \leq r<\beta$. Then

$$
\hat{\nu}\binom{l}{s}=\sum_{r=0}^{\beta-1} \nu(\beta \mathbb{Z}+r) e^{2 \pi i r(\alpha / \beta)}
$$

By assumption there exist two cosets $\beta \mathbb{Z}+r_{1}, \beta \mathbb{Z}+r_{2}$ and a value δ that depends only on M and ρ, such that $\nu\left(\beta \mathbb{Z}+r_{1}\right), \nu\left(\beta \mathbb{Z}+r_{2}\right) \geq \delta$. Therefore,

$$
\begin{gathered}
\hat{\nu}\left(\frac{l}{s}\right)=\nu\left(\beta \mathbb{Z}+r_{1}\right) e^{2 \pi i r_{1}(\alpha / \beta)}+\nu\left(\beta \mathbb{Z}+r_{2}\right) e^{2 \pi i r_{2}(\alpha / \beta)} \\
+\sum_{m \notin \beta \mathbb{Z}+r_{1} \cup \beta\left(\mathbb{Z}+r_{2}\right),} \nu(m) e^{2 \pi i m(\alpha / \beta)} .
\end{gathered}
$$

Also since $\operatorname{gcd}(\alpha, \beta)=1$,

$$
\left|e^{2 \pi i r_{1}(\alpha / \beta)}-e^{2 \pi i r_{2}(\alpha / \beta)}\right|=\left|1-e^{2 \pi i\left(r_{2}-r_{1}\right)(\alpha / \beta)}\right| \geq \eta>0
$$

where η depends on M and ρ since $|\beta| \leq|s| \leq M$. Therefore, by Lemma 3.1 there exists a $0 \leq \sigma^{\prime}=\sigma^{\prime}(M, \rho)<1$ such that

$$
\left|\nu\left(\beta \mathbb{Z}+r_{1}\right) e^{2 \pi i r_{1}(\alpha / \beta)}+\nu\left(\beta \mathbb{Z}+r_{2}\right) e^{2 \pi i r_{2}(\alpha / \beta)}\right| \leq \sigma^{\prime}\left(\nu\left(\beta \mathbb{Z}+r_{1}\right)+\nu\left(\beta \mathbb{Z}+r_{2}\right)\right)
$$

It follows that there exists $0 \leq \sigma=\sigma(M, \rho)<1$ such that $|\hat{\nu}(l / s)| \leq \sigma$.

Theorem 3.3 Let ν be a probability measure on \mathbb{Z} with $m_{1}(\nu) \leq a$ and

$$
\sup _{\beta, r \in \mathbb{Z}} \nu(\beta \mathbb{Z}+r) \leq \rho<1
$$

Then there exists a $c=c(a, \rho)$ such that $|\hat{\nu}(t)| \leq e^{-c t^{2}}$.
Proof By hypothesis and using Chebyshev's inequality there exist $\delta=\delta(\rho, a), M=$ $M(a)$, and integers k, j such that $|k|,|j| \leq M$ and $\nu(k), \nu(j) \geq \delta$. Let $s=k-j$, and consider the points $\left\{\frac{p}{s}: p=0, \pm 1, \ldots, \pm\left\lfloor\frac{|s|}{2}\right\rfloor\right\}$. By Lemma 3.2 and the mean value theorem, for $p= \pm 1, \ldots, \pm \frac{|s|}{2}$ there exists an $\epsilon=\epsilon(a)$ such that for all $t \in$ $\left(\frac{p}{s}-\epsilon, \frac{p}{s}+\epsilon\right)$ we have $|\hat{\nu}(t)| \leq \sigma+\frac{1-\sigma}{2}$, where σ is the value in Lemma 3.2. Let $I_{p}=\left(\frac{p}{s}-\epsilon, \frac{p}{s}+\epsilon\right)$, where $p=0, \pm 1, \ldots, \pm\left\lfloor\frac{|s|}{2}\right\rfloor$, and t_{0} a point in the complement of $S=\bigcup_{p} I_{p}$. We have

$$
\hat{\nu}\left(t_{0}\right)=\nu(k) e^{2 \pi i k t_{0}}+\nu(j) e^{2 \pi i j t_{0}}+\sum_{m \neq k, j} \nu(m) e^{2 \pi i m t_{0}}
$$

Now $\left|e^{2 \pi i k t_{0}}-e^{2 \pi i j t_{0}}\right|=\left|1-e^{2 \pi i s t_{0}}\right|$ and this is greater than a value $\eta>0$, which depends only on s and ϵ which depends only on $m_{1}(\nu)$ which is bounded by a. Thus by Lemma 3.1

$$
\left|\nu(k) e^{2 \pi i k t_{0}}+\nu(j) e^{2 \pi i j t_{0}}\right| \leq \sigma^{\prime}(\nu(k)+\nu(j))
$$

and therefore $\left|\hat{\nu}\left(t_{0}\right)\right| \leq \sigma^{\prime \prime}<1$ for some value $\sigma^{\prime \prime}=\sigma^{\prime \prime}(\rho, a)$. We therefore have for $|t| \geq \epsilon$ a value $\sigma^{\prime \prime \prime}=\max \left(\sigma, \sigma^{\prime \prime}\right)<1$ dependent on ρ and a only, such that $|\hat{\nu}(t)| \leq \sigma^{\prime \prime}$. By Lemma 2.4 there exists a c^{\prime} such that $|\hat{\nu}(t)| \leq 1-c^{\prime} t^{2}<1$ for $0<|t|<\epsilon$. The conclusion follows by choosing a value c small enough so that $|\hat{\nu}(t)| \leq e^{-c t^{2}}$ for $t \in(-1 / 2,1 / 2]$.

Combining Theorems 2.9 and 3.3 we get the following theorem.
Theorem 3.4 If ν_{n} is a sequence of probability measures on \mathbb{Z} such that for all n,
(i) $E\left(\nu_{n}\right)=0$,
(ii) $m_{1}\left(\nu_{n}\right) \leq a$,
(iii) $\sup _{n} \sup _{\alpha, \beta} \nu_{n}(\beta \mathbb{Z}+\alpha) \leq \rho<1$,
(iv) $\phi(n)=\sum_{i=1}^{n} m_{2}\left(\nu_{i}\right)=O(n)$.

Then $\mu_{n} f(x)$ converges a.e. for all $f \in L^{1}(X)$.
Remark 3.5 Let

$$
\nu_{n}(k)= \begin{cases}\frac{1-a_{n}}{2} & k= \pm 1 \\ a_{n} & k=0 \\ 0 & \text { otherwise }\end{cases}
$$

where $1>a_{n}>0$ and $a_{n} \rightarrow 0$ fast enough so that $\prod_{n=1}^{\infty} a_{n}>0$. Then, using an argument similar to that in [3], one may show that the sequence $\mu_{n} f$ does not converge a.e. for some $f \in \mathrm{~L}^{\infty}$. Of course, the sequence $\nu_{n}(k)$ does not satisfy the condition $\sup _{n} \sup _{\alpha, \beta} \nu_{n}(\beta \mathbb{Z}+\alpha) \leq \rho$ while it does satisfy the condition $m_{1}\left(\nu_{n}\right) \leq a$.

4 The Strong Sweeping Out Property

4.1 Introduction

In this section $(X, \mathcal{B}, m, \tau)$ and τ are as previously. Here we discuss cases where the operators $\mu_{n} f(x)=\sum_{k \in \mathbb{Z}} \mu_{n}(k) f\left(\tau^{k} x\right)$ fail to converge, whereas before $\mu_{n}=\nu_{1} *$ $\cdots * \nu_{n}$. The case where μ_{n} is given by the convolution powers of a single probability measure μ on \mathbb{Z}, i.e., $\mu_{n}=\mu^{n}$, has been studied. In the event of convolution powers, the probability measure μ given by $\mu=\frac{1}{2}\left(\delta_{0}+\delta_{1}\right)$ is the prototype of bad behavior for the resulting sequence of operators $\left(\mu^{n} f\right)(x)$. Using the central limit theorem, it was shown in [3] that the bad behavior of this prototype is typical, at least if μ has $m_{2}(\mu)<\infty$ and $E(\mu) \neq 0$ ([3]). In [6], this result was extended to probability measures with $E(\mu)=0$ and $m_{p}(\mu)<\infty$ for $p>1$.

Definition 4.1 The sequence of measures μ_{n} is said to have the strong sweeping out property, if given $\epsilon>0$, there is a set $B \in \mathcal{B}$ with $m(B)<\epsilon$ such that

$$
\underset{n}{\lim \sup } \mu_{n} \chi_{B}(x)=1 \text { a.e., } \quad \liminf _{n} \mu_{n} \chi_{B}(x)=0 \text { a.e. }
$$

We will use the following in our constructions.
 dissipative, i.e., $\lim _{N \rightarrow \infty} \mu_{N}(k)=0$ for all $k \in \mathbb{Z}$, if there exists $b>0$ and a dense
 ergodic dynamical system $(X, \mathcal{B}, m, \tau)$ the sequence μ_{n} is strong sweeping out.

4.2 Strong Sweeping out with Convolution Measures

Theorem 4.3 If $\nu_{n}=a_{n} \delta_{x_{n}}+\left(1-a_{n}\right) \gamma_{n}$, where γ_{n} is a probability measure, $\sum x_{n}$ either $\rightarrow \infty$ or $\rightarrow-\infty$ and $\sum_{n}\left(1-a_{n}\right)<\infty$, then $\left\{\mu_{n}=\nu_{1} * \cdots * \nu_{n}\right\}$ is a dissipative sequence.

Proof Without loss of generality, assume that $\sum x_{n} \rightarrow \infty$. Suppose

$$
\nu_{n}=a_{n} \delta_{x_{n}}+\left(1-a_{n}\right) \gamma_{n}
$$

as above. Then we have $\sum P\left(Z_{n} \neq x_{n}\right) \leq \sum\left(1-a_{n}\right)<\infty$, where Z_{n} is a sequence of independent random variables having distribution ν_{n}. By the Borel-Cantelli lemma $P\left(Z_{n} \neq x_{n}\right.$ i.o $)=0$. Let $\omega \in\left(Z_{n} \neq x_{n} \text { infinitely often }\right)^{c}$. Then

$$
\begin{aligned}
S_{N}(\omega)=\sum_{m=1}^{N} Z_{m}(\omega) & =\sum_{Z_{m}(\omega) \neq x_{m}} z_{n}+\sum_{Z_{m}(\omega)=x_{m}} x_{m} \\
& \geq-c(\omega)+\sum_{Z_{m}(\omega)=x_{m}} x_{m} \rightarrow \infty \text { as } N \rightarrow \infty,
\end{aligned}
$$

as $c(\omega)$ is a constant depending on ω. Hence $S_{N}(\omega) \rightarrow \infty$ with probability 1. Therefore, when k is fixed, $P\left(S_{N}=k\right) \rightarrow 0$. Indeed, since

$$
P\left(\bigcup_{N=1}^{\infty}\left(S_{m}(\omega)>k \forall m \geq N\right)\right)=1
$$

and the sequence of sets is increasing, we have $P\left(S_{m}(\omega)>k \forall m \geq N\right) \rightarrow 1$. But $P\left(S_{N}>k\right) \geq P\left(S_{m}>k \forall m \geq N\right)$ so $P\left(S_{N}(\omega)=k\right) \leq 1-P\left(S_{N}(\omega)>k\right) \rightarrow 0$. Hence, $\lim _{n \rightarrow \infty} \mu_{n}(k)=\lim _{n \rightarrow \infty}\left(\nu_{1} * \cdots * \nu_{n}\right)(k)=0$ and $\left\{\mu_{n}\right\}$ is a dissipative sequence.

Corollary 4.4 Let $\nu_{n}=a_{n} \delta_{x_{n}}+\left(1-a_{n}\right) \gamma_{n}$, where γ_{n} is a probability measure on \mathbb{Z}, such that $x_{n} \in \mathbb{Z}, \sum\left(1-a_{n}\right)<\infty,\left|x_{n}\right| \geq 1$ and $\sum x_{n} \rightarrow \infty$ or $-\infty$. Then for any ergodic dynamical system $(X, \mathcal{B}, m, \tau)$ the sequence $\mu_{n}=\nu_{1} * \cdots * \nu_{n}$ is strong sweeping out.

Proof Theorem4.3 implies that the sequence $\mu_{n}=\nu_{1} * \cdots * \nu_{n}$ is dissipative. Note that for $t \in[-1 / 2,1 / 2)$ we have

$$
\begin{aligned}
\left|\hat{\mu}_{n}(t)\right| & =\prod_{l=1}^{n}\left|\hat{\nu}_{l}(t)\right|=\prod_{l=1}^{n}\left|a_{l} e^{-2 \pi i x_{l} t}+\left(1-a_{l}\right) \hat{\gamma}_{l}(t)\right| \\
& \geq \prod_{l=1}^{n}| | a_{l}\left|-\left(1-a_{l}\right)\right| \hat{\gamma}_{l}(t)| | \geq \prod_{l=1}^{n}| | a_{l}\left|-\left(1-a_{l}\right)\right|=\prod_{l=1}^{n}\left(2 a_{l}-1\right) \\
& =\prod_{l=1}^{n} a_{l}\left(2-\frac{1}{a_{l}}\right) \geq c \prod_{l=1}^{N} a_{l} \geq c c^{\prime}>0
\end{aligned}
$$

The result follows by Proposition4.2 Note that we have used the fact that for $a_{l}>0$, $\sum\left(1-a_{l}\right)<\infty$ implies that $\prod a_{l}$ converges to a nonzero value.
Lemma 4.5 Let $\nu_{n}=a_{n} \delta_{x_{n}}+\left(1-a_{n}\right) \gamma_{n}$, where γ_{n} is a probability measure, $E\left(\nu_{n}\right)=0$, $\left|x_{n}\right| \geq c$, and $a_{n} \geq d$ for some constants c and d. Then $m_{2}\left(\nu_{n}\right) \geq \frac{\alpha}{1-a_{n}}$, where $\alpha=d c^{2}$.
Proof Since $E\left(\nu_{n}\right)=a_{n} x_{n}+\left(1-a_{n}\right) E\left(\gamma_{n}\right)=0, \frac{a_{n} x_{n}}{a_{n}-1}=E\left(\gamma_{n}\right)$. Therefore

$$
\begin{aligned}
m_{2}\left(\nu_{n}\right) & =a_{n} x_{n}^{2}+\left(1-a_{n}\right) m_{2}\left(\gamma_{n}\right) \geq a_{n} x_{n}^{2}+\left|E\left(\gamma_{n}\right)\right|^{2}\left(1-a_{n}\right) \\
& =a_{n} x_{n}^{2}+\frac{a_{n}^{2} x_{n}^{2}}{1-a_{n}} \\
& \geq \frac{\alpha}{1-a_{n}}
\end{aligned}
$$

This provides a lower bound on the second moment, i.e., $m_{2}\left(\nu_{n}\right) \geq \frac{\alpha}{1-a_{n}}$. If in addition $\sum\left(1-a_{n}\right)<\infty$, once we allow $\prod a_{n} \geq c>0$, the second moments $m_{2}\left(\nu_{n}\right)$ cannot grow arbitrarily slowly.

Example 4.6 Let a_{n} be a sequence such that $\sum\left(1-a_{n}\right)<\infty$. Let $b_{n}=\left[\frac{1}{1-a_{n}}\right]$, where $[x]$ denotes the integer part of the number x. Consider the measures given by

$$
\nu_{n}(k)= \begin{cases}\frac{1+2 b_{n}}{3+2 b_{n}}, & k=1, \\ \frac{1}{3+2 b_{n}}, & k=-b_{n}, \\ \frac{1}{3+2 b_{n}}, & k=-b_{n}-1 .\end{cases}
$$

These measures satisfy the assumptions of Theorem4.4 As such, the sequence $\mu_{n} f=$ $\left(\nu_{1} * \cdots * \nu_{n}\right) f$ is strong sweeping out. It is noteworthy that all the measures in this example additionally satisfy the property

$$
m_{2}\left(\nu_{n}\right)=\frac{2 b_{n}^{2}+4 b_{n}+2}{3+2 b_{n}}
$$

which implies that the second moment grows like $\frac{1}{1-a_{n}}$. One might think of this sequence ν_{n} as

$$
\nu_{n}=a_{n} \delta_{1}+\frac{\left(1-a_{n}\right)}{2}\left(\delta_{-b_{n}}+\delta_{-b_{n}-1}\right)=a_{n} \delta_{1}+\left(1-a_{n}\right) \gamma_{n},
$$

where $\gamma_{n}=1 / 2\left(\delta_{-b_{n}}+\delta_{-b_{n}-1}\right)$.

References

[1] M. A. Akcoglu, Alternating sequences with nonpositive operators. Proc. Amer. Math. Soc. 104(1988), no. 4, 1124-1130. http://dx.doi.org/10.1090/S0002-9939-1988-0943791-8
[2] A. Bellow and A. Calderón, A weak type inequality for convolution products. In: Harmonic Analysis and Partial Differential Equations. Chicago Lectures in Math. Univ. Chicago Press, Chicago, IL, 1999, pp. 41-48.
[3] A. Bellow, R. L. Jones, and J. M. Rosenblatt, Almost everywhere convergence of convolution products. Ergodic Theory Dynam. Systems 14(1994), no. 3, 415-432.
[4] , Almost everywhere convergence of weighted averages. Math. Ann. 293(1992), no. 3, 399-426. http://dx.doi.org/10.1007/BF01444724
[5] V. Losert, The strong sweeping out property for convolution powers. Ergodic Theory Dynam. Systems 21(2001), no. 1, 115-119.
[6] , A remark on almost everywhere convegrence of convolution powers. Illinois J. Math. 43(1999), no. 3, 465-479.
[7] D. Ornstein, On the pointwise behavior of iterates of a self-adjoint operator. J. Math. Mech. 18(1968/1969), 473-477.
[8] K. Petersen, Ergodic Theory. Cambridge Studies in Advanced Mathematics 2. Cambridge University Press, Cambridge, 1983.
[9] V. V. Petrov, Sums of Independent Random Variables. Ergebnisse der Mathematik und ihrer Grenzgebiete 82. Springer-Verlag, New York, 1975.
[10] J. M. Rosenblatt, Universally bad sequences in ergodic theory. In: Almost Everywhere Convergence. II. Academic Press, Boston, MA, 1991, pp. 227-245.
[11] G. C. Rota, An "Alternierende Verfahren" for general positive operators. Bull. Amer. Math. Soc. 68(1962), 95-102. http://dx.doi.org/10.1090/S0002-9904-1962-10737-X

Department of Mathematics, University at Albany, SUNY, Albany, NY 12222 USA
e-mail: reinhold@albany.edu
Department of Mathematical Sciences, Indiana University in South Bend, South Bend, IN, 46545 USA e-mail: annsavvo@iusb.edu cwedrych@iusb.edu

[^0]: Received by the editors November 10, 2009; revised September 10, 2010.
 Published electronically June 24, 2011.
 Anna Savvopoulou was partially supported by a Faculty Research Grant from IU South Bend. AMS subject classification: 28D.

