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High-Reynolds-number wake of a slender body
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The high-Reynolds-number axisymmetric wake of a slender body with a turbulent
boundary layer is investigated using a hybrid simulation. The wake generator is a 6 : 1
prolate spheroid and the Reynolds number based on the diameter D is Re = 105. The
transition of the wake to a state of complete self-similarity is investigated by looking for
the first time into the far field of a slender-body wake. Unlike bluff-body wakes, here
the flow is not dominated by vortex shedding in the near wake. Instead, the recirculation
region is very small, the near wake is quasi-parallel and is characterised by the presence of
broadband turbulence. Until x/D ≈ 20, the wake decay of a slender body with turbulent
boundary layer is very similar to the classic high-Re behaviour, Ud ∼ x−2/3. Extrapolation
of this observation to larger x/D has led to the belief that these wakes decay following
the asymptotic −2/3 decay law. Our results show, however, that this is not the case and
the wake transitions to a faster decay rate once complete self-similarity is achieved. In this
later region (20 < x/D < 80), mean and turbulence profiles are self-similar. Furthermore,
despite the high global and local Reynolds numbers, the classic hypotheses that lead to
the well-known decay exponents are not fulfilled. Instead, turbulent dissipation follows a
non-equilibrium scaling and a new decay rate Ud ∼ x−6/5 is observed. The transition from
Ud ∼ x−2/3 to Ud ∼ x−6/5 is preceded by the dominance of the azimuthal |m| = 1 mode
and the emergence of a large-scale helical structure.

Key words: wakes, shear layer turbulence

1. Introduction

Turbulent wakes are ubiquitous in nature. From the wind fluctuations generated by
buildings to the large-scale oceanic structures left by currents flowing past islands,
turbulent wakes distribute energy and momentum across space in a wide variety
of situations and environments. In this work, we focus on the wake generated by
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an axisymmetric slender body, which is particularly relevant for aerodynamic and
hydrodynamic applications.

As a canonical shear flow that can serve as a building block to study more complex
flows, turbulent wakes have been studied extensively in the past. However, an overall wake
decay theory is still missing and recent studies have shown a richer and more complex
problem than that portrayed by classical theory. The classic solutions for the decay of
the axisymmetric turbulent wake assume that the flow evolves in a self-similar manner
(Tennekes & Lumley 1972; Townsend 1976). They are based on the hypothesis that the
profiles of the velocities and the Reynolds stresses become invariant with respect to x
(the streamwise coordinate) when expressed in terms of local characteristic scales. The
self-similarity concept is often combined with the notion of universality (Townsend 1976).
According to the universality hypothesis, far from their generators, all wakes evolve into
a universal state, where the chaotic mixing of eddies has erased the memory of the initial
conditions. In the self-similar and universal state, an axisymmetric wake obeys a single set
of power-law exponents. The classic high-Reynolds-number wake laws are Ud ∼ x−2/3

and L ∼ x1/3 where Ud is the centreline velocity deficit and L is the wake width. At
low Reynolds number, the laws change to Ud ∼ x−1 and L ∼ x1/2. In the last decades,
the classical decay laws together with evidence of universality have remained elusive
to experiments and simulations. Studying turbulent wakes is challenging, it requires
measuring weak fluctuations in extremely long domains, at high Reynolds numbers, and
during time intervals which are sufficiently long to reach statistical convergence. This has
led to some contradictory and ambiguous evidence regarding the wake evolution.

The early experiments of Carmody (1964) employed a disk as a wake generator. At
Re = 7 × 104 and in a domain up to x/D = 15, he found Ud ∼ x−2/3. Some years later,
Chevray (1968) reported the first experiment on a high-Re slender-body wake. Using a
6 : 1 prolate spheroid with a tripped boundary layer, he also observed Ud ∼ x−2/3. This
experiment was at Re = 4.5 × 105 and spanned a downstream distance of 18D. Around
the same time, Gibson, Chen & Lin (1968) using a sphere at Re = 6.5 × 104 measured a
sharper decay, Ud ∼ x−0.85 (between classic low- and high-Re laws) up to x/D ≈ 60. The
studies of Uberoi & Freymuth (1970) and Bevilaqua & Lykoudis (1978) report Ud ∼ x−2/3

in the lee of a sphere at Re = 8.6 × 103 and Re = 104, respectively. However, Uberoi &
Freymuth (1970) only observed the −2/3 decay after x/D = 50 in a domain that spanned
x/D = 300 whereas Bevilaqua & Lykoudis (1978) found it after x/D = 8 in a domain that
spanned until x/D = 100. In both cases, the sphere wakes had local Re below 500. This
is a threshold that, years later, Johansson, George & Gourlay (2003) would suggest as the
limit below which a wake starts showing a low-Re Ud ∼ x−1 decay. George (1989) is the
first work that emphasises that the classical way of looking at wake power laws may be
oversimplified and introduces the idea of local and partial self-similarity conditions. Two
years later, Cannon (1991) performed an extensive series of experiments looking at the
evolution of the far wake with different wake generators. He found that a fully self-similar
state was not achieved in a domain that spanned x/D ≈ 100 at Reynolds numbers ReD =
1.3–2.15 × 104. His work pointed to the existing ambiguity between the high- and low-Re
decay laws and to the necessity of an additional characteristic velocity, apart from Ud, to
scale the results. In a later study, Bonnier & Eiff (2002) reported Ud ∼ x−0.97 for a sphere
wake at Re up to 1.2 × 104.

With the advent of increasing computational power, the use of temporal simulations
enabled for the first time the analysis of the very far wake, up to x/D ∼ O(103). Temporal
simulations make use of the Galilean transformation that relates time in a reference frame
moving with the wake to the streamwise distance in a fixed reference frame t = x/U,
where U is the velocity of the body. By assuming that the downstream development of flow
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statistics is slow, the temporal simulations use streamwise periodic boundary conditions
and advance the equations in time. Instead of introducing the wake generator, an initial
condition is chosen to approximate the flow at some distance from the body. The use of
a temporal model reduces the computational cost very significantly but requires a good
initial condition to achieve a quantitative match with experiments. Expanding on the
results of Gourlay et al. (2001), Johansson et al. (2003) showed that the rate of decay
of the wake might depend on the local Reynolds number. In their computational study, the
wake transitioned from a decay rate of −2/3 to −1 when the value of the local Reynolds
number, ReL = UdL/ν, went below approximately 500. In a later temporal study, Redford
et al. (2012) performed two temporal simulations with different initial conditions. They
showed that universality was achieved only after a long passage of time, and suggested
that the universal regime might not be seen in practice. Interestingly, in the far wake, the
flow statistics followed the high-Re decay despite the local Re falling below 500.

One year later, Nedić et al. (2013) introduced the concept of non-equilibrium dissipation
to the study of axisymmetric wakes. Instead of assuming that turbulent dissipation
scales as ε ∼ k3/2/L, where k is the turbulent kinetic energy (TKE) and L is a
characteristic large-eddy length, a new scaling ε ∼ (Re/ReL)nk3/2/L was proposed. This
non-equilibrium dissipation scaling has been attributed to unsteadiness of the energy
cascade and has led to a re-examination of the classical decay exponents. For example, the
experiments and simulations of Dairay et al. (2015) found that the wake of a Re = 5 × 103

fractal plate exhibits a Ud ∼ x−1 non-equilibrium decay. According to classic theory, this
wake should have decayed as x−2/3 because ReL was high. However, this was not the case
and only the non-equilibrium theory was able to explain it. Other works such as Obligado,
Dairay & Vassilicos (2016) and more recently Chongsiripinyo & Sarkar (2020) have also
observed this non-equilibrium region in the wake of square plates and disks.

Despite the use of slender bodies in many engineering applications, the majority of
wake studies are devoted to the wake of bluff bodies. There are some particularities
that make the study of high-Reynolds-number slender-body wakes especially challenging.
Computationally, it is very costly to simulate turbulent boundary layers over long bodies
and also resolve their far wake. The problem is tremendously stiff and the required
spatial and temporal resolution is enormous. In a wind tunnel or in a tank, if the body
is long, a significant amount of the measuring section can be taken by the wake generator.
Furthermore, slender-body wakes are thinner than bluff-body wakes and potentially harder
to probe and measure. These constraints have significantly limited the available studies on
the topic.

The first study of this kind is Chevray (1968). In his work, a 6 : 1 prolate spheroid with
a tripped boundary layer was used as a wake generator. The Reynolds number based on
the diameter was Re = 4.5 × 105 and the domain spanned x/D = 18. In this region, the
wake defect velocity showed a decay of Ud ∼ x−2/3 and self-similarity was achieved only
in the mean velocity. Years later, Jiménez et al. (2010) performed a study of the near wake
of a standard submarine model (DARPA SUBOFF) with a tripped boundary layer at Re =
1.2 × 105 − 7.7 × 105. This study, spanning 15 diameters, also showed the wake decay
following Ud ∼ x−2/3. Only recently, high-resolution body-inclusive (BI) simulations have
provided more data on the decay of the slender-body axisymmetric wake. Posa & Balaras
(2016) observed a −2/3 decay for the wake of a SUBOFF at Re = 1.39 × 105 in a domain
up to x/D = 12. Kumar & Mahesh (2018) simulated flow past an unappended SUBOFF at
Re = 1.26 × 105 in a domain that spanned x/D = 15. They observed −2/3 decay followed
by a transition to −1 at x/D ≈ 5, which they attributed to low-Re decay.

918 A30-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

34
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.347


J.L. Ortiz-Tarin, S. Nidhan and S. Sarkar

100 101 102

x/D

10−3

10−2

10−1

100

U
d
/U

∞

x−2/3

x−1

CS20

NVG13

JG06

JGG03

RCC12

BS10

Present

KM18

C68

PB16

JHS10

DOV15

Figure 1. Decay of the defect velocity in various wake studies. Slender-body wakes (black): �, black PB16,
Posa & Balaras (2016); �, black C68, Chevray (1968); ©, black KM18, Kumar & Mahesh (2018); �, black
JHS10, Jiménez, Hultmark & Smits (2010). The red line is the present simulation. Disk wakes (green): –, green
CS20, Chongsiripinyo & Sarkar (2020); +, green NVG13, Nedić, Vassilicos & Ganapathisubramani (2013);
©, green JG06, Johansson & George (2006a). Temporal simulations (blue dashed lines): ×, blue JGG03,
Johansson et al. (2003); �, blue RCC12 case SD, Redford, Castro & Coleman (2012); �, blue BS10, Brucker &
Sarkar (2010). Fractal plate (orange) +, orange DOV15, Dairay, Obligado & Vassilicos (2015). The streamwise
coordinate measures distance from the end of the wake generator.

Data from these studies are compiled in figure 1, which shows the decay of Ud in,
to the best of the authors’ knowledge, all the available experiments and simulations of
slender body wakes at high Reynolds numbers (in black). Slender-body wakes span up
to x/D ≈ 20 from the end of the body, a much shorter domain than studies with other
wake generators which are also shown. The figure also includes recent studies of a disk
(in green), temporally evolving wakes (in blue) and a fractal plate wake (in orange).
Overall, the picture of wake decay remains unclear. The disk wakes show an initial decay
similar to Ud ∼ x−1 and later on they transition to Ud ∼ x−2/3. The fractal plate decays
following Ud ∼ x−1. The temporal simulations show significant variability owing to the
use of different initialisation techniques and the transformation from t to x/D. Some also
show long initial regions where the decay is faster than the classic high-Re Ud ∼ x−2/3.
All four of the slender-body wakes show a decay close to the classic Ud ∼ x−2/3. This
result of −2/3 decay of Ud, which is derived by assuming full self-similarity of the flow,
is somewhat puzzling since the length of the domain is limited in these studies and it is
likely that only partial self-similarity is achieved.

The experimental evidence shows that the approach to self-similarity depends on the
nature of the wake generator (Higuchi & Kubota 1990). It also shows that universality, if
ever achieved, is not achieved at distances relevant for practical applications (Wygnanski,
Champagne & Marasli 1986; Redford et al. 2012). All the available literature looking
into the high-Re far wake is devoted to bluff-body wakes. The present work is the first
look into the far wake of a slender body at high Reynolds number. The main goal is
to study the transition to self-similarity and ascertain if the far wake follows the classic
high-Reynolds-number decay laws, as suggested by the previous body of literature. Unlike
the wake of bluff bodies, the near wake of a slender body with a turbulent boundary layer
is not dominated by vortex shedding (Jiménez et al. 2010; Kumar & Mahesh 2018). In this
work we also look into how this feature might affect the establishment and development
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of the wake. Some of the questions that we address are as follows. (i) Does the decay of
a slender-body wake at high Reynolds number conform to classical theory? (ii) How is
the transition to self-similarity different from the wake of a bluff body? (iii) Why have
some previous experiments and simulations shown wake exponents close to low-Re values
even at very high Reynolds numbers? (iv) Is there a possible relation between coherent
structures and the wake decay?

To answer these questions, we simulate the wake of a 6 : 1 prolate spheroid with a
tripped boundary layer. Unlike previous studies of slender-body wakes which reached up
to a streamwise distance of x/D = 20, here, we span x/D = 80 at Re = 105 to investigate
the far wake. To the best of the authors’ knowledge, this is the highest Reynolds number
in a far-wake study that resolves the flow at a slender-body wake generator.

2. Hybrid simulation

To study the evolution of near-body flow into the far wake in a computationally feasible
manner we employ a hybrid simulation. The hybrid simulation combines two simulations:
a BI one that resolves the flow around the wake generator and a body-exclusive (BE) one
that resolves the far wake. The BE simulation can be a temporally evolving wake (Pasquetti
2011) or a spatially evolving wake similarly to the approach of VanDine, Chongsiripinyo
& Sarkar (2018) who validated the method for a sphere wake. The use of the BI simulation
avoids the drawback of regular temporal simulations, for which the choice of initial
conditions introduces considerable variability in the subsequent wake evolution. In our
implementation, the BI flow field provides the inflow for the subsequent BE simulation.
The data from a selected cross-stream plane of the BI simulation are interpolated on to a
new grid and fed into the BE simulation as an inlet boundary condition. This procedure
allows us to relax the natural stiffness of the far-wake problem by using different spatial
and temporal resolutions appropriate for the BI and BE stages. The grid cell in the BE
simulation, which has to be sufficiently small to adequately resolve wake turbulence, is
still much larger than that required to resolve the boundary layer. The consequently large
time step in the BE simulation leads to considerable savings in computational time without
compromising accuracy (VanDine et al. 2018).

The three-dimensional Navier–Stokes equations are solved in a cylindrical coordinate
system using a staggered grid. An immersed boundary method (Balaras 2004; Yang
& Balaras 2006) is used to represent the 6 : 1 prolate spheroid. Both the BI and BE
simulations are performed with the same solver. The solver uses a third-order Runge–Kutta
method combined with second-order Crank–Nicolson scheme to advance the equations in
time, and second-order-accurate central differences for spatial derivatives. This solver has
been extensively validated in both unstratified and stratified sphere wakes (Pal et al. 2017).
A wall-adapting local eddy-viscosity (WALE) model is used (Nicoud & Ducros 1999).
For both simulations, the boundary conditions are Dirichlet at the inflow, Orlanski for the
convective outflow and Neumann at the lateral boundary. Further numerical details and
validation are reported for a disk wake (Chongsiripinyo & Sarkar 2020) and a lower-Re
slender-body wake with laminar boundary layer (Ortiz-Tarin, Chongsiripinyo & Sarkar
2019).

The cylindrical coordinate system is (x, r, φ) with the origin at the body centre. The
minor-axis diameter of the prolate spheroid is D and the major axis is aligned with the
incoming velocity U∞. The body aspect ratio is 6 : 1 and the Reynolds number based
on D is Re = U∞D/ν = 105. To accelerate laminar-to-turbulent transition, the boundary
layer is tripped by a small surface bump at 0.5D from the nose of the body. The bump has
radial thickness of 0.002D (∼15 wall units) and streamwise extent of 0.1D. The location
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Case Re Lr Lφ L−
x L+

x Nr Nφ Nx

BI 105 5 2π −8 15 746 512 2560
BE 105 10 2π — 80 479 256 4608

Table 1. Simulation parameters of the body-inclusive (BI) and body-exclusive (BE) simulations.
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Figure 2. Grid quality: (a) radial maximum of the streamwise grid size over the Kolmogorov length scale;
(b) radial grid size over the Kolmogorov length scale across the wake.

at which the flow time history from the BI simulation is extracted and subsequently fed as
inflow into the BE simulation is x/D = 6. This location is well away from the recirculation
region which ends at x/D = 3.1.

The simulation parameters are listed in table 1. The grid is designed to resolve the
turbulent boundary layer and to resolve small-scale wake turbulence. The total number
of grid points across BI and BE domains is approximately 1.5 billion. The turbulent
boundary layer is resolved with �x+ = 40, �r+ = 1 and r�φ+ = 32. There are 10
points in the viscous sublayer and 130 across the buffer and log layers. In the wake,
the peak ratio between the grid size and the Kolmogorov length (η = (ν3/ε)1/4), in both
BI and BE domains, is max(�x/η) = 7.5, max(�r/η) = 6 and max(r�θ/η) = 5. The
distributions of �x/η and �r/η in the domain are given in figure 2. The peak ratio of
the turbulent viscosity over the molecular viscosity occurs at the tripping location and
is νsgs/ν ≈ 3. Everywhere else, νsgs/ν < 1, confirming the excellent resolution of the
large-eddy simulation grid of both BI and BE simulations.

Flow statistics are obtained by temporal and azimuthal averaging. The average, denoted
by 〈 〉, is performed over 100 D/U∞ after the flow has reached statistically steady
state. Velocity is normalised with the free-stream velocity U∞ and length with the
body minor axis D. The mean velocities are (U, Ur, Uφ), the root-mean-square (r.m.s.)
turbulent fluctuations (ux, ur, uφ) and the Reynolds shear stress uxr. The TKE is given by
k = (u2

x + u2
r + u2

φ)/2 and the turbulent dissipation rate by ε = 2ν〈sijsij〉 where sij is the
fluctuating strain-rate tensor. The decay rate α of any quantity is computed as the best fit
of a power law, f (x) = C(x − x0)

α , to the data. The procedure employed here is similar to
that of Obligado et al. (2016). The exponent is fitted first and then the amplitude and the
virtual origin are obtained. Similarly to the experimental findings of Jiménez et al. (2010),
keeping the virtual origin x0 fixed had negligible effects on α or the fit quality. The R2

regression value exceeds 0.98 in all cases.
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Figure 3. (a) Instantaneous lateral vorticity contour ωy in the near wake, (b) instantaneous streamwise velocity
contour in the near wake and (c) the intermediate wake. In (b) the red isoline shows the limit of the recirculation
region where the streamwise velocity is zero.

3. Flow visualisation

The visualisation of instantaneous vorticity and streamwise velocity in figure 3 reveals the
main characteristics of the flow. The near wake is quasi-parallel and carries small-scale
turbulence which has originated in the tripped boundary layer. The separation region,
shown in red in figure 3(b), is small and extends for a distance of 0.1D from the end of the
body, in accordance with the experiments of Chevray (1968). The wake topology is similar
to that observed in previous slender-body studies such as Kumar & Mahesh (2018) and
Posa & Balaras (2016). Disk, plates and other bluff body wakes have significantly larger
recirculation bubbles, e.g. the disk of Chongsiripinyo & Sarkar (2020) has a recirculation
bubble of length 2D. In addition, compared with the wake of bluff bodies, here the near
wake is not dominated by the asymmetric shedding of the boundary layer, as was also
observed by Kumar & Mahesh (2018). In a bluff-body wake, the asymmetric shedding
of the boundary-layer vorticity leads to the dominance of a helical mode immediately
after the recirculation bubble, e.g.Berger, Scholz & Schumm (1990), Johansson & George
(2006b) and Nidhan et al. (2020). Figure 3(a,b) shows a quasi-cylindrical structure in
the near wake. Only farther downstream beyond x ≈ 20, (figure 3c), does the wake start
showing a large-scale sinuous structure.

4. The classic axisymmetric wake theory

The classic analysis of the axisymmetric turbulent wake starts with the Reynolds-averaged
streamwise momentum equation,

U
∂U
∂x

+ Ur
∂U
∂r

= −1
r

∂

∂r
(ruxr) − 1

ρ

∂p
∂x

. (4.1)
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By writing the left-hand side as a function of the momentum deficit U∞ − U, assuming
that the momentum deficit is U∞ − U 	 U∞ and retaining only the first-order terms, one
obtains

U∞
∂(U − U∞)

∂x
= −1

r
∂

∂r
(rurx), (4.2)

where we have used the boundary-layer approximation and assumed high Re so that the
viscous term is negligible.

The analysis proceeds by assuming self-similarity of the velocity deficit and the
Reynolds stresses,

U∞ − U = Ud(x)f (η), urx = Rs(x)g(η), (4.3a,b)

where η = r/L is a similarity variable that depends on a characteristic wake width L =
L(x). Here Ud and Rs are the peak values of the velocity deficit and the Reynolds shear
stress, respectively. Equation (4.2) then simplifies to[

L
Ud

dUd

dx

]
f −

[
dL
dx

]
ηf ′ =

[
Rs

U∞Ud

]
1
η

d
dη

(ηg), (4.4)

where, for self-preservation, all the terms in brackets must have the same x dependence.
The same procedure applied to the conservation of TKE leads to[

L
Ks

dKs

dx

]
h −

[
dL
dx

]
ηh′ = −

[
DsL

KsU∞

]
e +

[
TsL

KsU∞

]
t +

[
PsL

KsU∞

]
p, (4.5)

where the TKE, turbulent dissipation, production and transport terms are as follows,

k = Ks(x)h(η), ε = Ds(x)e(η), P = Ps(x)p(η) and T = Ts(x)t(η). (4.6a–d)

As in (4.4), for full self-similarity, all the bracketed terms in (4.5) must have the same
x dependence. However, flows can be partially self-preserving, meaning that they show
self-similarity only in the mean momentum equation or only up to certain orders of the
turbulence statistics (George 1989).

The integration of the momentum equation over a cross-section provides us with
an additional constraint, namely, the momentum thickness θ(x), or its first-order
approximation θ̃ (x), is constant. Here,

θ2 = 1
U2∞

∫ ∞

0
U(U∞ − U)r dr and θ̃2 = 1

U∞

∫ ∞

0
(U∞ − U)r dr, (4.7a,b)

and θ ≈ θ̃ holds only when Ud/U∞ 	 1. After employing (4.3a,b) for the momentum
deficit, the expression for θ̃ can be readily integrated to obtain L2Ud = θ̃2U∞, which
directly relates L and Ud.

At this point, to obtain the decay law of Ud, more assumptions are required and
classic theories start to differ. Tennekes & Lumley (1972) assume that Rs ∼ U2

d and, using
(4.4), they obtain Ud ∼ x−2/3. Here Rs can vary independently of Ud and then the TKE
equation comes into play. Townsend (1976) and George (1989) assume that dissipation
follows the high-Re inertial scaling ε ∼ K3/2/L and that the turbulent production is
P = −uxr(∂U/∂r) ∼ Rs(Ud/L). With these assumptions, they showed that Ks ∼ Rs ∼ U2

d
and also Ud ∼ x−2/3. In addition, George (1989) obtained the low-Re Ud ∼ x−1 decay
when the viscous term ∼ νUd/L2 dominates the turbulent stress in the momentum balance
and turbulent dissipation scales as ε ∼ νU2

d/L2.
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Figure 4. Streamwise evolution of wake statistics: (a) centreline defect velocity, (b) wake half-widths and
(c) peak r.m.s. velocities, Reynolds shear stress and TKE.

5. Wake analysis

In the present study, the decay rates of near-wake statistics (x < 20) agree well with
previous experiments and simulations of a slender-body wake. However, the behaviour
after x = 20 has not been documented before. We find that after x = 20, the flow
transitions from partial to full self-similarity, while showing notable departures from the
classic wake decay.

Figure 4 shows the streamwise evolution of several wake statistics. The peak defect
velocity Ud shows two distinct decay rates. The near wake, 5 < x < 15, decays in a
similar manner to the classic high-Re result, Ud ∼ x−0.66. However, in the intermediate
and far wake, 20 < x < 80, the decay rate increases to Ud ∼ x−1.2. Figure 4(b) shows
the evolution of the wake width (L) measured in three different ways. Ld is defined such
that U(Ld) = Ud/2, and Lk is defined analogously using the TKE as k(Lk) = k(r = 0)/2.
The displacement thickness (Lθ ) is defined by L2

θ = Ud
−1 ∫ ∞

0 (U∞ − U)r dr. For x > 6,
the three measures of L show the same values of growth rate. The wake width grows as
L ∼ x0.33 in the region 15 < x < 20 and transitions towards L ∼ x0.6 as the wake traverses
30 < x < 80.

Figure 4(c) shows the decay of the peak r.m.s. turbulent intensities together with the
TKE and the Reynolds shear stress. The near wake has anisotropy with ux > uφ > ur and
the individual decay rates agree well with Jiménez et al. (2010). In particular, ur, uφ ∼
x−0.21 and ux, u1/2

xr ∼ x−0.26. After x ≈ 40, the r.m.s. values become similar and they show
a long region of constant decay rate. Here, the TKE and the Reynolds shear stress decay
as k1/2, u1/2

xr ∼ x−0.8 and the r.m.s. velocities as ur, uθ ∼ x−0.73 and ux ∼ x−0.86.
To proceed with the classic wake analysis, we move on to assess self-similarity. Figure 5

shows the profiles of velocity deficit, TKE, Reynolds shear stress (uxr) and dissipation
rate (ε), each scaled by its peak, as a function of normalised radial coordinate at different
streamwise locations.

The U-deficit profile exhibits self-similarity from x ≈ 5 onwards. The uxr profiles
collapse together in local scales after x ≈ 10. TKE shows self-similarity only after x ≈ 30
and ε after x ≈ 40. In the near wake, k and ε show an off-centre maximum, which is
the imprint of the tripped boundary layer. Indeed, self-similarity of higher-order statistics
require longer x, thus revealing stages of partial self-similarity (George 1989). Terms in
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Figure 5. Radial profiles in similarity coordinates at various streamwise locations: (a) defect velocity,
(b) TKE, (c) turbulent shear stress and (d) turbulent dissipation.

x

0.075

0.100

0.125

0.150

0.175

0.200

3 10 40 80 3 10 40 80x

10−5

10−4

10−3

10−2

10−1

100

x−11/5

θ̃

θ
(b)(a) ∂xp U∞∂xUd

∂rruxr

Ud∂xUd

ν
r ∂r(r∂rUd)

Figure 6. (a) Streamwise evolution of the momentum thickness θ and the simplified momentum thickness θ̃ .
(b) Streamwise evolution of terms in the streamwise momentum balance (4.1). The convective term has been
written using Ud = U∞ − U. The viscous term is also plotted.

the momentum equation show self-similar behaviour after x ≈ 10 and terms in the TKE
equation after x ≈ 40.

In addition to the assumption of self-similarity, the classic turbulent wake theory
assumes that the defect velocity Ud is small compared with the free-stream velocity
U∞. This hypothesis simplifies the equations significantly, leads to the classic scaling
laws, and to the integral constraint UdL2 being constant at any cross-section along the
wake. Figure 6(a) shows the evolution of the momentum thickness θ and the first-order
approximation of the momentum thickness θ̃ . The full momentum thickness reaches a
constant value of θ0 = 0.075 after x = 10. The simplified momentum thickness does not
become constant until x ≈ 60 and in the near wake it changes significantly. This explains
why the growth rate of L and the decay of Ud do not fulfil exactly UdL2 = U∞θ2

0 in the
near wake. Note that, in the near-wake region 5 ≤ x ≤ 15, the simulation shows L ∼ x0.26

and Ud ∼ x−0.66, i.e. UdL2 is not constant.
To further understand the approach to similarity, the centreline evolution of the leading

terms in the U equation are evaluated and plotted in figure 6(b). The second-order
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Figure 7. Evaluation of alternative scalings. (a) Peak TKE and shear stress scaled with the classic scaling
(U2

d ) and with U∞UddxL. (b) Peak turbulent dissipation normalised with classical and with non-equilibrium
estimates.

term, Ud(∂Ud/∂x), remains non-negligible until x ≈ 15. Equation (4.2) becomes a better
approximation of the exact U-equation with increasing x but complete balance between
the decay of U and the radial derivative of uxr is not achieved until x ≈ 25. Note that
the viscous term remains at least two orders of magnitude below the leading terms. At
comparable Re, blunt-body wakes show a higher initial value of Ud however, because their
entrainment levels are higher, Ud decays faster. Therefore, in the range x ≈ 10–20, Ud of a
blunt-body disk wake becomes half that of the spheroid wake as is evident after comparing
the black and the green lines in figure 1. At x = 10 the disk of Chongsiripinyo & Sarkar
(2020) exhibits a value of Ud/U∞ = 0.09 and at x = 30 the value is Ud/U∞ = 0.03.
Here, at x = 10 the magnitude is Ud/U∞ = 0.22 and, at x = 30, Ud/U∞ = 0.06. This
factor-of-two-larger value of Ud for the prolate spheroid relative to the sphere wake at
comparable x implies that a longer streamwise distance is required in the spheroid wake
for the second-order terms to truly become negligible.

The first-order approximation of the momentum conservation (4.2) and the first-order
approximation of the momentum thickness definition (4.7a,b) have been used to explain
the observed decay of Ud in the near wake of slender bodies since the classic wake theories
were established (Chevray 1968; Jiménez et al. 2010; Kumar & Mahesh 2018). They both
rely on the assumption that Ud 	 U∞ which, based on the present results, is not a good
approximation in the near wake of a streamlined body.

After testing the validity of the assumptions involving the velocity deficit and the
transverse Reynolds stress, we now move to the scaling of TKE and turbulent dissipation ε.
Figure 7(a) shows the peak TKE (Ks) and the peak turbulent shear stress (Rs) scaled by U2

d .
Neither becomes constant, which implies that, at least until x = 80, U2

d is not the proper
scaling for k and uxr. Instead, they satisfy Ks ∼ Rs ∼ U∞Ud(dL/dx). The r.m.s. velocities
ur, uφ, ux also show the same trend individually. This scaling was observed in the wake
of a fractal plate by Dairay et al. (2015) and it can be obtained from (4.4), introducing
Ks ∼ Rs as observed in the simulation.

The inertial estimate, ε ∼ K3/2
s /L, is tested for the normalised peak dissipation (Ds),

black solid curve in figure 7(b). This curve does not asymptote to a constant, showing that
inertial scaling does not hold in the region x < 80. An alternative is the non-equilibrium
scaling proposed by Nedić et al. (2013),

ε =
(

Re
Rek

)n k3/2

L
, (5.1)
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where Rek = √
kL/ν is the local Reynolds number. The non-equilibrium estimate,

specifically with n = 2 in (5.1), is found to be a much better choice to scale Ds beyond
x = 40 as shown by the dashed curve in figure 7(b). The non-equilibrium scaling of
dissipation has been observed in bluff-body wakes (Nedić et al. 2013; Dairay et al. 2015;
Obligado et al. 2016; Chongsiripinyo & Sarkar 2020) and jets (Cafiero & Vassilicos 2019).
It has also been found to hold in unsteady decaying turbulence (Goto & Vassilicos 2016),
where it was shown to be related to the imbalance between the large-scale energy of
the turbulence and the small-scale dissipation. Whereas in previous bluff-body studies
n = 1 was the appropriate exponent to scale dissipation, here n = 2 is a better choice. The
different exponent might be related to a different mechanism sustaining the large-scale
wake motions, here the imprint of vortex shedding from the body is weak, large-scale
coherent structures are only observed late in the wake, and the TKE and dissipation profiles
show an off-centre peak whereas in bluff-body wakes such as those studied by Dairay et al.
(2015) and Nidhan et al. (2020), the maxima occur at the centreline. Further investigation
is still required for a more comprehensive understanding of the non-equilibrium scaling
(Vassilicos 2015; Cafiero & Vassilicos 2019). In addition, assessment of whether the
turbulent dissipation transitions to the classic inertial estimate at larger downstream
distances will require longer spatial domains.

At this point, we have enough information to obtain power laws for {Ud, L, Ks, Rs, Ds} in
the self-similar far wake. Let Ud ∼ x−α . Then L ∼ xα/2 to satisfy the momentum integral
constraint. Let Ks ∼ x−β . Equation (5.1) with n = 2 leads to Ds ∼ x−(β+3α)/2. We have
shown previously that Ks ∼ Rs ∼ U∞Ud(dL/dx), so β = 1 + α/2. After balancing the
TKE decay with the dissipation, equation (4.5) provides us with an additional constraint
for α, whose solution is α = 6/5. Finally,

Ud ∼ x−6/5, L ∼ x3/5, Ks ∼ Rs ∼ x−8/5 and Ds ∼ x−13/5, (5.2a–d)

which agree well with the growth rates observed in the simulation for the region 40 < x <

80,

Ud ∼ x−1.20, L ∼ x0.59, Ks ∼ x−1.60 Rs ∼ x−1.64 and Ds ∼ x−2.63. (5.3a–e)

It is worth noting that the production, which scales as Ps ∼ x−17/5, drops from the
leading-order TKE balance.

Here, it is necessary to remark on the near-wake behaviour. The observed power laws
over 5 < x < 15 are Ud ∼ x−2/3 and L ∼ x0.26. Our simulation and all the previous
evidence (see figure 1) show a region of Ud ∼ x−0.66 over 5 � x � 15. However, in this
region, the profiles of uxr, k and ε are not self-similar. Thus, (4.4) and (4.5) cannot
be invoked. Furthermore, Rs � U2

d . The observed Ud ∼ x−0.66 is probably a short-lived
coincidence and not the asymptotic -2/3 decay. In this region, the first-order momentum
integral constraint (UdL2) is not constant and, hence, L � x0.33. Instead, L grows at a
slower rate, L ∼ x0.26.

There are three potential causes for the change of wake power laws from the near to
far wake: (i) after a transient, the mean flow and turbulence achieve equilibrium, (ii) the
local Reynolds number reduces significantly to bring viscosity into play, or (iii) there is a
structural change in the wake. In figure 7, it was shown that turbulence and mean flow are
not in equilibrium since k � U2

d , Rs � U2
d throughout the domain. Regarding (ii), the flow

does not show a transition to low local Reynolds number. As can be seen in figure 8, both
ReL = UdL/ν and Rek are of the order of 103. In their simulations, Johansson et al. (2003)
observed that the flow transitioned to low-Re decay once the local Reynolds number went
below 500, here the local Reynolds numbers are well above that threshold. In addition, the
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Figure 8. Streamwise evolution at the centreline of different local Reynolds numbers: ReL = UdLd/ν,
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Figure 9. Isocountours of instantaneous streamwise velocity: (a) the near wake, white 0.97U∞, blue 0.7U∞;
and (b) the intermediate wake, white 0.97U∞, blue 0.85U∞.

microscale Reynolds number, Reλ = √
kλ/ν where λ2 = 15νu2

x/ε, is above 100 and the
energy spectra show a −5/3 decay throughout the domain (figure 10b).

Regarding (iii), the emergence or decay of coherent structures is a major structural
change. The three-dimensional visualisation of figure 9 shows the emergence of a
helical structure coinciding with the Ud ∼ x−2/3 to Ud ∼ x−6/5 transition. The near wake
(figure 9(a), also evident in figure 3a,b) is quasi-parallel without any visible large-scale
azimuthal asymmetry. This near-wake topology is similar to that found by Kumar &
Mahesh (2018) and Posa & Balaras (2016). However, farther downstream (figure 9b)
a sinuous single helix, originating at x ≈ 20, is observed. Previous simulations and
experiments did not access locations downstream of x ≈ 20 and, hence, did not observe
the emergence of helical structures in the intermediate wake region.

To further characterise the sinuous mode, figure 10(a) shows the cross-sectional
area-integrated energy of the streamwise velocity fluctuations as a function of the
azimuthal mode (m). Initially, at x = 3.5, the turbulence is nearly broadband. As
the wake evolves, energy concentrates around the |m| = 1 mode and, progressively, the
single helical mode dominates. The spectra (figure 10b) of ux confirms this finding.
After x = 10, a peak at St = fD/U = 0.28 is visible and is sustained until the end
of the domain. St = 0.28 corresponds to the wavelength of the undulation identified
in figure 9(b).

We can further investigate the structure of the wake by looking into the spatio-temporal
evolution of the azimuthal modes. Figure 11(a,c,e,g) show the time evolution of the Fourier
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Figure 10. (a) Cross-wake area-integrated energy of ux as a function of the azimuthal wavenumber |m|.
(b) Energy spectra of ux at r = 0.5.

coefficients of the axisymmetric m = 0 mode and the single helix |m| = 1 mode. The
r − t variation of these modes is plotted at two streamwise locations: x = 3.5 and x =
30, representative of the near and the intermediate wake, respectively. The characteristic
frequencies of these modes are also identified by performing a temporal Fourier transform.
The corresponding spectra are shown in figure 11(b,d, f,h).

In the near wake at x = 3.5, which is 0.5D from the trailing end of the spheroid, the
|m| = 0 axisymmetric mode is broadband and carries the small-scale turbulence of the
boundary layer, see figure 11(a,b). The |m| = 1 mode (figure 11c), however, has distinctive
low-frequency motions in the wake core. This low frequency is caused by the oscillation
of the recirculation region, which is small and spans r ≈ 0.1 as was shown in figure 3(b).
In the spectra of figure 11(d), two low-frequency peaks are observed: St = 0.16 and St =
0.28. At x = 3.5, both m = 0 and |m| = 1 have energy levels comparable with the other
nearby modes, as was shown in figure 10(a).

At x = 30, the small scales of the boundary layer have been dissipated and the |m| = 1
low-frequency motion spans the whole wake width. A peak with a characteristic frequency
of St = 0.28 is clearly identified in figure 11(h) and is visible in the periodic stripes of
figure 11(g). This peak is also observed farther downstream, as was shown in figure 10(b)
and corresponds to the undulation observed in the wake visualisations, figures 3(c) and
9(b). In this region, the asymmetric |m| = 1 mode contributes the most to the energy of
the flow. Note that the origin of the St = 0.28 oscillation can be traced to the near wake.
However, its effect as a coherent structure is not visible until x ≈ 20.

It is well established by experiments and linear stability analysis (Sato & Okada 1966;
Wygnanski et al. 1986; Monkewitz 1988; Berger et al. 1990; Rigas et al. 2014), that the
wake of axisymmetric bodies is dominated by a global instability with azimuthal wave
number |m| = 1. In bluff-body wakes, the |m| = 1 mode dominates the flow starting right
at the recirculation region where there is strong asymmetric shedding of the boundary layer
(Rigas et al. 2014; Nidhan et al. 2020). In this wake, however, the recirculation region is
much smaller, and the asymmetry induced by the separated flow is weaker. The asymmetry
is particularly weak because the flow immediately behind the body is surrounded by an
axisymmetric region of turbulence originating from the turbulent boundary layer. As a
result, the large-scale symmetry breaking of the wake associated with the presence of a
coherent helical structure, becomes dominant only farther downstream, at x ≈ 20, when
the imprint of the boundary-layer turbulence becomes sufficiently weak.

918 A30-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

34
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.347


High-Reynolds-number wake of a slender body

0
0

0.5

1.0
10–4

10–2 10–1 100

St

St–5/3

St–5/3

10–6

10–8

10–10

10–4

10–6

10–8

10–10

10–4

10–6

10–8

10–10

10–4

0.02Re(ûx)
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Figure 11. Azimuthal Fourier coefficients of modes |m| = 0 and |m| = 1 as a function of the radial coordinate
and time at a fixed streamwise location: (a,c) near wake at x = 3.5, which is 0.5D downstream from the trailing
end of the body; (e,g) intermediate wake at x = 30. Corresponding power spectra of the modes computed at
specific radial locations, marked by the dotted black line: (b,d) near-wake spectra computed at r = 0.1; ( f,h)
intermediate-wake spectra at r = 0.5.

The dominance of the |m| = 1 mode in the intermediate wake coincides with the change
of the decay rate and precedes the non-equilibrium scaling of dissipation. The relation
between the non-equilibrium scaling of dissipation and the presence of coherent structures
was hypothesised by Goto & Vassilicos (2016) in three-dimensional decaying turbulence
and more recently by Cafiero & Vassilicos (2019) in turbulent jets. Here also, there is
evidence of such a connection. In previous bluff-body wake studies (Chongsiripinyo &
Sarkar 2020; Nidhan et al. 2020), the dominance of the helical |m| = 1 instability and
the establishment of a region of non-equilibrium scaling occurs very early in the wake.
In the slender-body wake, the helical mode develops farther downstream and so does
the non-equilibrium region. Note the strong contribution to the energy of the |m| = 1
mode at x = 30 in figure 10(a) immediately before the non-equilibrium scaling becomes
appropriate.

Farther downstream, near the end of the domain, as shown in figure 10(a), the
dominance of |m| = 1 recedes. Therefore, the far wake might eventually transition to the
classic Ud ∼ x−2/3. Simulations or experiments with longer domains are needed to clarify
this.
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6. Conclusions

The turbulent wake of a slender body has been studied using a high-resolution hybrid
simulation. The wake generator is a 6 : 1 prolate spheroid with a tripped boundary
layer and the diameter-based Reynolds number is Re = 105. To the best of the authors’
knowledge this is the highest Re considered in a far-wake study that solves the flow around
the wake generator.

Previous investigations of slender-body wakes with turbulent boundary layers have
reached a maximum downstream distance that does not exceed x/D = 18 (Chevray 1968;
Jiménez et al. 2010; Posa & Balaras 2016; Kumar & Mahesh 2018). Until x/D = 18, the
wake decay rate is similar to the classic high-Re behaviour: Ud ∼ x−2/3. However, in this
study the domain extends until x/D = 80 and we show that, after x/D ≈ 20, the decay rate
changes to Ud ∼ x−6/5.

In the near-wake region (x/D � 20), the classic self-similar turbulence scalings (k ∼
uxr ∼ U2

d and ε ∼ k3/2/L) that lead to the asymptotic Ud ∼ x−2/3 decay do not hold. The
variables have not reached full self-similarity, the magnitude of the second-order terms is
still significant and the observed Ud ∼ x−2/3 is probably a short-lived coincidence with
the classic wake result. After x/D = 40, profiles of k and ε exhibit self-similarity. The
transition to the observed far-wake decay law of Ud ∼ x−6/5 is derived from the observed
non-equilibrium scaling of dissipation ε ∼ (Re/Rek)

2k3/2/L, which was used previously
to explain non-classical decay rates in bluff-body wakes (Nedić et al. 2013; Dairay et al.
2015; Obligado et al. 2016; Chongsiripinyo & Sarkar 2020).

The change in wake decay cannot be attributed to the low-Re asymptotic result Ud ∼
x−1, because the local wake Reynolds numbers, Re = UdL/ν, Rek = √

kL/ν and Reλ =√
kλ/ν, where λ is the Taylor microscale, remain large throughout the domain. The decay

rate transitions in the region where there is a structural change in the wake, dominance
of a sinuous single helix (|m| = 1) azimuthal mode. In a bluff-body wake the strong
asymmetric shedding of the boundary layer leads to a dominant helical mode immediately
after the recirculation bubble (Berger et al. 1990; Johansson & George 2006b; Nidhan et al.
2020). Here, the separated region behind the slender-body is very small (approximately
0.1D), the near wake is quasi-parallel and dominated by the boundary-layer turbulence
leaving the body, and the large-scale coherent helical structure is only visible farther
downstream preceding the change of decay rate. This transition, which is not observed
in the wake of disks or plates, allows us to elucidate the possible role of the |m| = 1
instability in the decay laws.

The appearance of a large-scale coherent structure in the wake and the dominance
of the |m| = 1 mode precede the non-equilibrium scaling region. This finding supports
the idea that there is a connection between the presence of coherent structures and the
non-equilibrium scaling of dissipation as hypothesised by Goto & Vassilicos (2016) and
more recently suggested by Alves Portela, Papadakis & Vassilicos (2018) and Cafiero &
Vassilicos (2019). The |m| = 1 dominance is less evident towards the end of the domain
(x/D = 80), indicating that the wake might eventually exhibit a further transition in
behaviour, possibly to the classical power law.

The present work clarifies and expands the limited available literature on slender-body
wakes at high Reynolds number. Streamlined bodies with turbulent boundary layers have
many hydrodynamic applications and the characterisation of their wake has significant
engineering implications. This is the first study which looks into the far wake of a slender
body and describes its transition to complete self-similarity. The study is performed at Re
in excess of any previous far-wake studies that include a wake generator, and the domain is
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significantly longer than any previous work with this type of body. The turbulent wake of a
slender body is a more complex problem than that described by classical theory and further
investigation is required to answer several remaining open questions. What happens farther
downstream beyond 80D behind the body? Is there a change so that the classic decay laws
are recovered? If so, do the coherent structures subside? More simulations and experiments
are needed to definitively answer these questions.
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