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Abstract

Let u be a solution of a parabolic equation ut = F(v, Du, D2u). Under convenient hypotheses
it is proved that the angle between a given direction and the normal to the level surfaces of
u(-,t) satisfies a maximum principle.
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1. Introduction

Let O be an open, connected, bounded set in Rn, T a positive constant and
H = fi x (0, T]. Let u be a sufficiently smooth solution in H of a parabolic
equation of the form

(1) ut = F(u,DU,D2u),

where Du = (du/dxi,... ,du/dxn), and D2u is the hessian matrix of u with
respect to the space variables.

Let \Du\ ^ 0 in H and let w(x, t) be the angle between Du(x, t) and a given
direction in Rn. We will prove the following strong maximum principle.

If w < TT/2 in H, then

(2) w(x,t)<maxw for (x,i) G H,
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where dpH = {dQ x [0,T]} U {(x,0);x € 0 } is the parabolic boundary of H;
furthermore w is constant in H if equality holds in (2) for some (x, T).

We will also show that for n > 2 the hypothesis w < TT/2 is essential.
Note that no hypothesis on the sign of the derivative of F with respect to u

is assumed.
Analogous results for solutions of elliptic equations have been obtained in [5].
The maximum principle for w gives information on the behaviour of the level

sets of u(-, t). Geometric properties of these level sets have been investigated by
Brascamp and Lieb [1], Matano [4], Jones [3], Gage [2], Tso [7].

The results obtained in this paper were announced in [6] where references
can be found about geometric properties of level sets of solutions of elliptic and
parabolic equations.

2. A differential equation

Let T be the class of real functions u, u € C^/f), such that Du G Cl{H),
and D2u is differentiate with respect to the space variables.

In this paper we denote by F a real differentiate function on the set R x Rn x
M, M being the space of the real, symmetric, n x n matrices. Let us suppose
that a positive constant a exists such that in H

1'n f)F
(3) y\-^(u,Du,D2u)\r\s >a\X\2 for A e Rn,

r,s dUrs

where urs is the second derivative of u with respect to xr and xg. Furthermore
let us assume throughout this paper that

|£>u| ^ 0 in ~H.

THEOREM I. Under the stated hypothesis the angle w(x,t), between Du(x,t)
and a given direction y. in Rn, is a function of class C°(H); in the set K =
{(x, t); (x, t) € H, 0 < w(x, t) < w}w is of class C1 and Dw is differentiable with
respect to the space variables; moreover w satisfies in K the following parabolic
equation

^ dF ^ i £ dF
(4) wt = > wrs+ > brWr+cotgw} ^ wrws-gcotgw,

r,a °Ura r r,a °Urs

where br, gG C°(H),

(5) g > 0;
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br and g have the following expressions

(6) bT = | — (u, Du, D2u) + \Du\

(7)

g = \Du\~2 Y\ ^ - ( u , Du, D2u)

{u, Du, D2u) £ U i u t s ,

r,8
duT

PROOF. We compute the derivatives of w in terms of the derivatives of u.
Since we have

(8) w = arc cos

it follows that

(9) wr = -[\Du\2-ul]-1'*\up.

\Du\'
du

1-2 '

2u,1\Du\~4 ^ UiUir

By (9) it follows

l 2
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and with this substitution we obtain

(11)
1,71

* 3

l,n

l,n

- \Du ~2 Ui(uirws + uiawr) - [\Du\2 -

By (1) we obtain

A, dF i £ dF dF
—' duri ^-^ dui du

and

X dF dF

Hence, by (9) and (10), we have

[4]

(12)
r,a

Therefore the equation (4) follows from (11) and (12), taking into account (6)
and (7).

Let &" be the matrix (dF/durs); by the assumption (3) it follows that the
matrix {D2u)*&~{D2u) is symmetric and positive definite. Hence

u)) - \Du\({D2uY3r{D2u)Du,Du) > 0,

that is, (5) holds.
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3. The m a x i m u m principle

As a consequence of the previous theorem we obtain

THEOREM I I . Let us suppose

(13) uM > 0 in H

where fi is a given direction in Rn. Then the angle w(x, t) between n and Du(x, t)
satisfies the strong maximum principle, that is, (2) holds and w is constant in
fi x [0, T] if equality holds in (2) for some (£, r) € H. Furthermore, if w is
constant and less than TT/2 in fi x [0,T], then Du has constant direction in this
set.

REMARKS. (1) Changing /i to — fi yields the analogous statement for the
minimum of w.

(2) The hypothesis of smoothness of u can be relaxed. It is sufficient to
suppose smoothness of u such that the maximum principle holds for w.

(3) The hypothesis \Du\ ^ 0 is necessary to define w. In the case \Du\ = 0
in a subset of H, the theorem gives information on the behaviour of w in the
neighbourhood of any point at which \Du\ ^ 0.

(4) If w is constant in H and equal to TT/2, then

In this case, u can be considered as a function of n — 1 space variables. In case
w is constant in H and less t h a n TT/2, U can be considered as a function of only
one space variable.

(5) The hypothesis (13) needs to be justified. We shall show t h a t it is super-
fluous for n = 2 (Theorem III) and it is essential for n > 2.

PROOF. By Theorem I, w satisfies (4) in K. By (13) it follows t h a t w < it/2;
hence by (5) we get

1>n dF n

—Wt + > u)r, + > Brwr > 0 in
^ dura ^- j
r,s r = l

with S r continuous in K.

BT = br + cotg w
s = i

Then max^iu = maxapff w; where dvK is the parabolic boundary of the open
set K, as usually defined. Since H — K U {w — 0}, we get (2). Furthermore
the strong parabolic maximum principle holds in H: if there is (£, r) € H such
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that W(£,T) = maxap// w, then w is constant i n f i x [0,T}. Let us consider now
this latter case with w < w/2 to complete the proof of the theorem. If w — 0,
Du has constant direction /i. Let 0 < w < ir/2. Let y be a given point in fi; it
uniquely defines a direction A in Rn, coplanar with Du(y,r) and fx, orthogonal
to Du(y,r) and such that the angle between A and n is TT/2 - w. Let "){x,t)
the angle between A and Du(x, t); by the inequality 7 < w + fi\ it follows that
7(2, t) < TT/2 in i / . Thus 7 has a maximum at (y, r) and, by the previous strong
maximum principle, 7 is constant in fi x [0, r]. Hence, at any point of this set
Du is orthogonal to A and the angle w between /1 and Du is constant, then the
direction of Du is constant.

THEOREM III . Let us suppose n = 2 and w < -K in H. Then (2) holds and,
if the maximum of w is achieved in a point (f, r) of H, then Du has constant
direction in fi x [0, r].

PROOF. Because of Theorem II, it is sufficient to prove the theorem under
the hypothesis max-jj-w > TT/2.

Let us suppose that there exists (£, r) such that

(14) w(f, r) = maxw, (£, T) e H.
H

By the continuity of Du, a positive constant 6 exists such that the angle between
Du(x, i) and DU(£,T) is less than w(£, r) — TT/2 in

(15) M = {(x,t);\x - £\ <6,T-6 <t<r}cH.

A direction A in R2, orthogonal to //, is uniquely defined such that the angle
between A and DU(£,T) is equal to w(£, r) - TT/2. Let 7(1, i) be the angle
between Du(x,t) and A; we have

< f for (z,«)€M.

Then u\ > 0 in M. By Theorem II it follows that Du has constant direction
in M; hence w is constant in M. We have proved that, for any (f, r) for which
(14) holds, there is a set M, defined by (15), in which w is constant and Du
has constant direction. Hence w is constant and Du has constant direction in
fix [0,r].

The following example shows that the hypothesis (12) cannot be relaxed in
the case n > 2.

Let e be a negative constant,

u{x, t) - xi + x\ - x\ - 6x2(T - t) - xl

+ e [\x\ - \xxx\ + \x\ - 2x2x% + ±z?] ,
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and let w be the angle between fi and Du. The function u satisfies the heat

equation

u( = Au in/f = R3 x [0,T].

Let Q = (0,0,0); one may check with elementary calculations

Wi(Q,T) = 0, 1 = 1,2,3, wt{Q,T) = 6,

) = e, wu(Q,T) = -e, w13(Q,T) = 0,

) = 3e- 6, w23(Q, T) = 0, w33(Q, T) = 4e.

Hence w(x, t) < w(l,T) = arc cos(2e/\/l + 4e2) for (a;, t) in a neighbourhood of
(Q,T), t < T. We can observe w(Q,T) > ir/2 and w(Q,T) -* n/2 if e -^ 0.
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