J. Austral. Math. Soc. (Series A) 46 (1989), 1-7

A MAXIMUM PRINCIPLE RELATED TO LEVEL SURFACES OF SOLUTIONS OF PARABOLIC EQUATIONS

CARLO PUCCI

(Received 15 October 1986)

Communicated by R. O. Vyborny

Abstract

Let u be a solution of a parabolic equation $u_t = F(u, Du, D^2u)$. Under convenient hypotheses it is proved that the angle between a given direction and the normal to the level surfaces of $u(\cdot, t)$ satisfies a maximum principle.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 35 B 50.

1. Introduction

Let Ω be an open, connected, bounded set in \mathbb{R}^n , T a positive constant and $H = \Omega \times (0,T]$. Let u be a sufficiently smooth solution in H of a parabolic equation of the form

(1)
$$u_t = F(u, DU, D^2u),$$

where $Du = (\partial u/\partial x_1, \ldots, \partial u/\partial x_n)$, and D^2u is the hessian matrix of u with respect to the space variables.

Let $|Du| \neq 0$ in \overline{H} and let w(x,t) be the angle between Du(x,t) and a given direction in \mathbb{R}^n . We will prove the following strong maximum principle.

If $w \leq \pi/2$ in H, then

(2)
$$w(x,t) \leq \max_{\partial_{p}H} w \text{ for } (x,t) \in H,$$

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

Carlo Pucci

where $\partial_p H = \{\partial \Omega \times [0,T]\} \cup \{(x,0); x \in \Omega\}$ is the parabolic boundary of H; furthermore w is constant in H if equality holds in (2) for some (x,T).

We will also show that for n > 2 the hypothesis $w \le \pi/2$ is essential.

Note that no hypothesis on the sign of the derivative of F with respect to u is assumed.

Analogous results for solutions of elliptic equations have been obtained in [5].

The maximum principle for w gives information on the behaviour of the level sets of $u(\cdot, t)$. Geometric properties of these level sets have been investigated by Brascamp and Lieb [1], Matano [4], Jones [3], Gage [2], Tso [7].

The results obtained in this paper were announced in [6] where references can be found about geometric properties of level sets of solutions of elliptic and parabolic equations.

2. A differential equation

Let Γ be the class of real functions $u, u \in C^1(\overline{H})$, such that $Du \in C^1(H)$, and D^2u is differentiable with respect to the space variables.

In this paper we denote by F a real differentiable function on the set $\mathbb{R} \times \mathbb{R}^n \times M$, M being the space of the real, symmetric, $n \times n$ matrices. Let us suppose that a positive constant α exists such that in H

(3)
$$\sum_{r,s}^{1,n} \frac{\partial F}{\partial u_{rs}}(u, Du, D^2u)\lambda_r\lambda_s \ge \alpha |\lambda|^2 \quad \text{for } \lambda \in \mathbf{R}^n,$$

where u_{rs} is the second derivative of u with respect to x_r and x_s . Furthermore let us assume throughout this paper that

$$|Du| \neq 0$$
 in \overline{H} .

THEOREM I. Under the stated hypothesis the angle w(x,t), between Du(x,t)and a given direction μ in \mathbb{R}^n , is a function of class $C^0(\overline{H})$; in the set $K = \{(x,t); (x,t) \in H, 0 < w(x,t) < \pi\} w$ is of class C^1 and Dw is differentiable with respect to the space variables; moreover w satisfies in K the following parabolic equation

(4)
$$w_t = \sum_{r,s}^{i,n} \frac{\partial F}{\partial u_{rs}} w_{rs} + \sum_r^{1,n} b_r w_r + \cot g w \sum_{r,s}^{1,n} \frac{\partial F}{\partial u_{rs}} w_r w_s - g \cot g w,$$

where b_r , $g \in C^0(H)$,

 $(5) g \ge 0;$

 b_r and g have the following expressions

(6)
$$b_{r} = \frac{\partial F}{\partial u_{r}}(u, Du, D^{2}u) + |Du|^{-2} \sum_{s}^{1,n} \frac{\partial F}{\partial u_{rs}}(u, Du, D^{2}u) \sum_{i}^{1,n} u_{i}u_{is},$$

(7)

$$g = |Du|^{-2} \sum_{r,s}^{1,n} \frac{\partial F}{\partial u_{rs}}(u, Du, D^2u) \left[\sum_{i}^{1,n} u_{ir} u_{is} - |Du|^{-2} \sum_{i}^{1,n} u_i u_{ir} \sum_{j}^{1,n} u_j u_{js} \right].$$

PROOF. We compute the derivatives of w in terms of the derivatives of u. Since we have

(8)
$$w = \arccos \frac{u_{\mu}}{|Du|}, \qquad \left(u_{\mu} = \frac{\partial u}{\partial \mu}\right),$$

it follows that

$$(9) \quad w_{r} = -[|Du|^{2} - u_{\mu}^{2}]^{-1/2} \left[u_{\mu r} - u_{\mu} |Du|^{-2} \sum_{i}^{1,n} u_{i} u_{ir} \right],$$

$$(10) \quad w_{t} = -[|Du|^{2} - u_{\mu}^{2}]^{-1/2} \left[u_{\mu t} - u_{\mu} |Du|^{-2} \sum_{i}^{1,n} u_{i} u_{it} \right],$$

$$w_{rs} = -[|Du|^{2} - u_{\mu}^{2}]^{-1/2} \left[u_{\mu rs} - u_{\mu} |Du|^{-2} \sum_{i}^{1,n} u_{i} u_{irs} - u_{\mu s} |Du|^{-2} \sum_{i}^{1,n} u_{i} u_{ir} + 2u_{\mu} |Du|^{-4} \sum_{i}^{1,n} u_{i} u_{ir} \sum_{j}^{1,n} u_{j} u_{js} - u_{\mu} |Du|^{-2} \sum_{i}^{1,n} u_{is} u_{ir} \right]$$

$$+ \left[|Du|^2 - u_{\mu}^2 \right]^{-3/2} \left[\sum_{i}^{1,n} u_i u_{is} - u_{\mu} u_{\mu s} \right] \left[u_{\mu r} - u_{\mu} |Du|^{-2} \sum_{i}^{1,n} u_i u_{ir} \right].$$

By (9) it follows

$$u_{\mu s} = u_{\mu} |Du|^{-2} \sum_{i}^{1,n} u_{i} u_{is} - [|Du|^{2} - u_{\mu}^{2}]^{1/2} w_{s},$$

[3]

and with this substitution we obtain

$$(11) \quad w_{rs} = -[|Du|^{2} - u_{\mu}^{2}]^{-1/2} \left[u_{\mu rs} - u_{\mu} |Du|^{-2} \sum_{i}^{1,n} u_{i} u_{irs} + u_{\mu} |Du|^{-4} \sum_{i}^{1,n} u_{u} u_{ir} \sum_{j}^{1,n} u_{j} u_{js} - u_{\mu} |Du|^{-2} \sum_{i}^{1,n} u_{is} u_{ir} \right] \\ - |Du|^{-2} \left[\sum_{i}^{1,n} u_{i} (u_{ir} w_{s} + u_{is} w_{r}) \right] - [|Du|^{2} - u_{\mu}^{2}]^{-1/2} u_{\mu} w_{r} w_{s}.$$

By (1) we obtain

$$\sum_{\mathbf{r},\mathbf{s}}^{\mathbf{1},\mathbf{n}} \frac{\partial F}{\partial u_{\mathbf{r}s}} u_{\mu \mathbf{r}s} = -\sum_{j}^{\mathbf{1},\mathbf{n}} \frac{\partial F}{\partial u_{j}} u_{\mu j} - \frac{\partial F}{\partial u} u_{\mu} + u_{t\mu},$$

and

$$\sum_{r,s}^{1,n} \frac{\partial F}{\partial u_{rs}} u_{irs} = -\sum_{j}^{1,n} \frac{\partial F}{\partial u_{j}} u_{ij} - \frac{\partial F}{\partial u} u_{i} + u_{ti}.$$

Hence, by (9) and (10), we have

(12)
$$\sum_{r,s}^{1,n} \frac{\partial F}{\partial u_{rs}} \left[u_{\mu rs} - u_{\mu} |Du|^{-2} \sum_{i}^{1,n} u_{i} u_{irs} \right] \\ = [|Du|^{2} - u_{\mu}^{2}]^{1/2} \left\{ \sum_{j}^{1,n} \frac{\partial F}{\partial u_{j}} w_{j} - w_{t} \right\}.$$

Therefore the equation (4) follows from (11) and (12), taking into account (6) and (7).

Let \mathscr{F} be the matrix $(\partial F/\partial u_{rs})$; by the assumption (3) it follows that the matrix $(D^2u)^*\mathscr{F}(D^2u)$ is symmetric and positive definite. Hence

$$\operatorname{tr}((D^2u)^*\mathscr{F}(D^2u)) - |Du|((D^2u)^*\mathscr{F}(D^2u)Du, Du) \ge 0,$$

that is, (5) holds.

3. The maximum principle

As a consequence of the previous theorem we obtain

THEOREM II. Let us suppose

(13) $u_{\mu} \geq 0 \quad in \ H$

where μ is a given direction in \mathbb{R}^n . Then the angle w(x,t) between μ and Du(x,t) satisfies the strong maximum principle, that is, (2) holds and w is constant in $\overline{\Omega} \times [0,\tau]$ if equality holds in (2) for some $(\xi,\tau) \in H$. Furthermore, if w is constant and less than $\pi/2$ in $\overline{\Omega} \times [0,\tau]$, then Du has constant direction in this set.

REMARKS. (1) Changing μ to $-\mu$ yields the analogous statement for the minimum of w.

(2) The hypothesis of smoothness of u can be relaxed. It is sufficient to suppose smoothness of u such that the maximum principle holds for w.

(3) The hypothesis $|Du| \neq 0$ is necessary to define w. In the case |Du| = 0 in a subset of H, the theorem gives information on the behaviour of w in the neighbourhood of any point at which $|Du| \neq 0$.

(4) If w is constant in H and equal to $\pi/2$, then

$$\frac{\partial u}{\partial \mu} = 0$$
 in H

In this case, u can be considered as a function of n-1 space variables. In case w is constant in H and less than $\pi/2$, u can be considered as a function of only one space variable.

(5) The hypothesis (13) needs to be justified. We shall show that it is superfluous for n = 2 (Theorem III) and it is essential for n > 2.

PROOF. By Theorem I, w satisfies (4) in K. By (13) it follows that $w \le \pi/2$; hence by (5) we get

$$-w_t + \sum_{r,s}^{1,n} \frac{\partial F}{\partial u_{rs}} w_{rs} + \sum_{r=1}^n B_r w_r \ge 0 \quad \text{in } K,$$

with B_r continuous in K.

$$B_r = b_r + \cot g w \sum_{s=1}^n \frac{\partial F}{\partial u_{rs}} w_s.$$

Then $\max_{\overline{K}} w = \max_{\partial_p K} w$; where $\partial_p K$ is the parabolic boundary of the open set K, as usually defined. Since $H = K \cup \{w = 0\}$, we get (2). Furthermore the strong parabolic maximum principle holds in H: if there is $(\xi, \tau) \in H$ such

Carlo Pucci

that $w(\xi, \tau) = \max_{\partial_p H} w$, then w is constant in $\overline{\Omega} \times [0, \tau]$. Let us consider now this latter case with $w < \pi/2$ to complete the proof of the theorem. If w = 0, Du has constant direction μ . Let $0 < w < \pi/2$. Let y be a given point in Ω ; it uniquely defines a direction λ in \mathbb{R}^n , coplanar with $Du(y,\tau)$ and μ , orthogonal to $Du(y,\tau)$ and such that the angle between λ and μ is $\pi/2 - w$. Let $\gamma(x,t)$ the angle between λ and Du(x,t); by the inequality $\gamma \le w + \mu \lambda$ it follows that $\gamma(x,t) \le \pi/2$ in \overline{H} . Thus γ has a maximum at (y,τ) and, by the previous strong maximum principle, γ is constant in $\overline{\Omega} \times [0,\tau]$. Hence, at any point of this set Du is orthogonal to λ and the angle w between μ and Du is constant, then the direction of Du is constant.

THEOREM III. Let us suppose n = 2 and $w < \pi$ in H. Then (2) holds and, if the maximum of w is achieved in a point (ξ, τ) of H, then Du has constant direction in $\overline{\Omega} \times [0, \tau]$.

PROOF. Because of Theorem II, it is sufficient to prove the theorem under the hypothesis $\max_{\overline{H}} w > \pi/2$.

Let us suppose that there exists (ξ, τ) such that

(14)
$$w(\xi,\tau) = \max_{\overline{H}} w, \qquad (\xi,\tau) \in H.$$

By the continuity of Du, a positive constant δ exists such that the angle between Du(x,t) and $Du(\xi,\tau)$ is less than $w(\xi,\tau) - \pi/2$ in

(15)
$$M \equiv \{(x,t); |x-\xi| < \delta, \tau - \delta < t \le \tau\} \subset H.$$

A direction λ in \mathbb{R}^2 , orthogonal to μ , is uniquely defined such that the angle between λ and $Du(\xi,\tau)$ is equal to $w(\xi,\tau) - \pi/2$. Let $\gamma(x,t)$ be the angle between Du(x,t) and λ ; we have

$$\gamma(x,t) \leq \gamma(\xi, au) < rac{\pi}{2} \quad ext{for } (x,t) \in M.$$

Then $u_{\lambda} > 0$ in M. By Theorem II it follows that Du has constant direction in M; hence w is constant in M. We have proved that, for any (ξ, τ) for which (14) holds, there is a set M, defined by (15), in which w is constant and Duhas constant direction. Hence w is constant and Du has constant direction in $\overline{\Omega} \times [0, \tau]$.

The following example shows that the hypothesis (12) cannot be relaxed in the case n > 2.

Let ε be a negative constant,

$$\begin{split} u(x,t) &= x_1 + x_1^2 - x_3^2 - 6x_2(T-t) - x_3^3 \\ &+ \varepsilon \left[\frac{1}{2} x_1^2 - \frac{1}{2} x_1 x_2^2 + \frac{1}{2} x_2^3 - 2x_2 x_3^3 + \frac{1}{6} x_1^3 \right], \\ \mu &= \left(\frac{2\varepsilon}{\sqrt{1+4\varepsilon^2}}, \frac{-1}{\sqrt{1+4\varepsilon^2}}, 0 \right), \end{split}$$

and let w be the angle between μ and Du. The function u satisfies the heat equation

$$u_t = \Delta u$$
 in $H = \mathbb{R}^3 \times [0, T]$.

Let Q = (0, 0, 0); one may check with elementary calculations

$$\begin{split} w_i(Q,T) &= 0, \quad i = 1, 2, 3, \quad w_t(Q,T) = 6, \\ w_{11}(Q,T) &= \varepsilon, \quad w_{12}(Q,T) = -\varepsilon, \quad w_{13}(Q,T) = 0, \\ w_{22}(Q,T) &= 3\varepsilon - 6, \quad w_{23}(Q,T) = 0, \quad w_{33}(Q,T) = 4\varepsilon. \end{split}$$

Hence $w(x,t) < w(1,T) = \arccos(2\varepsilon/\sqrt{1+4\varepsilon^2})$ for (x,t) in a neighbourhood of $(Q,T), t \leq T$. We can observe $w(Q,T) > \pi/2$ and $w(Q,T) \to \pi/2$ if $\varepsilon \to 0$.

References

- H. J. Brascamp and E. H. Lieb, 'On extensions of the Brunn-Minkowski and Prékopa-Lendler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation', J. Funct. Anal. 22 (1976), 366-389.
- [2] M. E. Gage, 'An isoperimetric inequality with applications to curve shortening', Duke Math. J. 50 (1983), 1225-1229.
- [3] C. Jones, 'Spherically symmetric solutions of a reaction-diffusion equation', J. Differential Equations 49 (1983), 42-169.
- [4] H. Matano, 'Asymptotic behaviour and stability solutions of semilinear diffusion equations', Publ. Res. Inst. Math. Sci. 15 (1979), 401-454.
- [5] C. Pucci, 'An angle's maximum principle for the gradient of solutions of elliptic equations', Boll. Un. Mat. Ital. A 1 (1987).
- [6] C. Pucci, 'An angle's maximum principle for the gradient of solutions of elliptic and parabolic equations', Ist. Anal. Glob. C. N. R. Quad 17 (1987), 1-7.
- [7] Kaising Tso, 'Deforming a hypersurface by its Gauss-Kronecker curvature', Comm. Pure Appl. Math. 38 (1985), 867-882.

Istituto Matematico "Ulisse Dini" Universita Degli Studi 50134, Firenze Italy

[7]