# A MAXIMUM PRINCIPLE RELATED TO LEVEL SURFACES OF SOLUTIONS OF PARABOLIC EQUATIONS 

## CARLO PUCCI

(Received 15 October 1986)

Communicated by R. O. Vyborny


#### Abstract

Let $u$ be a solution of a parabolic equation $u_{t}=F\left(u, D u, D^{2} u\right)$. Under convenient hypotheses it is proved that the angle between a given direction and the normal to the level surfaces of $u(\cdot, t)$ satisfies a maximum principle.


1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 35 B 50.

## 1. Introduction

Let $\Omega$ be an open, connected, bounded set in $R^{n}, T$ a positive constant and $H=\Omega \times(0, T]$. Let $u$ be a sufficiently smooth solution in $H$ of a parabolic equation of the form

$$
\begin{equation*}
u_{t}=F\left(u, D U, D^{2} u\right) \tag{1}
\end{equation*}
$$

where $D u=\left(\partial u / \partial x_{1}, \ldots, \partial u / \partial x_{n}\right)$, and $D^{2} u$ is the hessian matrix of $u$ with respect to the space variables.

Let $|D u| \neq 0$ in $\bar{H}$ and let $w(x, t)$ be the angle between $D u(x, t)$ and a given direction in $\mathbf{R}^{\boldsymbol{n}}$. We will prove the following strong maximum principle.

If $w \leq \pi / 2$ in $H$, then

$$
\begin{equation*}
w(x, t) \leq \max _{\partial_{p} H} w \quad \text { for }(x, t) \in H \tag{2}
\end{equation*}
$$

(C) 1989 Australian Mathematical Society 0263-6115/89 $\$$ A2.00 +0.00
where $\partial_{p} H=\{\partial \Omega \times[0, T]\} \cup\{(x, 0) ; x \in \Omega\}$ is the parabolic boundary of $H$; furthermore $w$ is constant in $H$ if equality holds in (2) for some $(x, T)$.

We will also show that for $n>2$ the hypothesis $w \leq \pi / 2$ is essential.
Note that no hypothesis on the sign of the derivative of $F$ with respect to $u$ is assumed.

Analogous results for solutions of elliptic equations have been obtained in [5].
The maximum principle for $w$ gives information on the behaviour of the level sets of $u(\cdot, t)$. Geometric properties of these level sets have been investigated by Brascamp and Lieb [1], Matano [4], Jones [3], Gage [2], Tso [7].

The results obtained in this paper were announced in [6] where references can be found about geometric properties of level sets of solutions of elliptic and parabolic equations.

## 2. A differential equation

Let $\Gamma$ be the class of real functions $u, u \in C^{1}(\bar{H})$, such that $D u \in C^{1}(H)$, and $D^{2} u$ is differentiable with respect to the space variables.

In this paper we denote by $F$ a real differentiable function on the set $\mathbf{R} \times \mathbf{R}^{n} \times$ $M, M$ being the space of the real, symmetric, $n \times n$ matrices. Let us suppose that a positive constant $\alpha$ exists such that in $H$

$$
\begin{equation*}
\sum_{r, s}^{1, n} \frac{\partial F}{\partial u_{r s}}\left(u, D u, D^{2} u\right) \lambda_{r} \lambda_{s} \geq \alpha|\lambda|^{2} \quad \text { for } \lambda \in \mathbf{R}^{n} \tag{3}
\end{equation*}
$$

where $u_{r s}$ is the second derivative of $u$ with respect to $x_{r}$ and $x_{s}$. Furthermore let us assume throughout this paper that

$$
|D u| \neq 0 \quad \text { in } \bar{H} .
$$

THEOREM I. Under the stated hypothesis the angle $w(x, t)$, between $D u(x, t)$ and a given direction $\mu$ in $\mathbf{R}^{n}$, is a function of class $C^{0}(\bar{H})$; in the set $K=$ $\{(x, t) ;(x, t) \in H, 0<w(x, t)<\pi\} w$ is of class $C^{1}$ and $D w$ is differentiable with respect to the space variables; moreover $w$ satisfies in $K$ the following parabolic equation

$$
\begin{equation*}
w_{t}=\sum_{r, s}^{i, n} \frac{\partial F}{\partial u_{r s}} w_{r s}+\sum_{r}^{1, n} b_{r} w_{r}+\operatorname{cotg} w \sum_{r, s}^{1, n} \frac{\partial F}{\partial u_{r s}} w_{r} w_{s}-g \operatorname{cotg} w \tag{4}
\end{equation*}
$$

where $b_{r}, g \in C^{0}(H)$,

$$
\begin{equation*}
g \geq 0 ; \tag{5}
\end{equation*}
$$

$b_{r}$ and $g$ have the following expressions

$$
\begin{equation*}
b_{r}=\frac{\partial F}{\partial u_{r}}\left(u, D u, D^{2} u\right)+|D u|^{-2} \sum_{s}^{1, n} \frac{\partial F}{\partial u_{r s}}\left(u, D u, D^{2} u\right) \sum_{i}^{1, n} u_{i} u_{i s} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
g=|D u|^{-2} \sum_{r, s}^{1, n} \frac{\partial F}{\partial u_{r s}}\left(u, D u, D^{2} u\right)\left[\sum_{i}^{1, n} u_{i r} u_{i s}-|D u|^{-2} \sum_{i}^{1, n} u_{i} u_{i r} \sum_{j}^{1, n} u_{j} u_{j s}\right] \tag{7}
\end{equation*}
$$

Proof. We compute the derivatives of $w$ in terms of the derivatives of $u$. Since we have

$$
\begin{equation*}
w=\arccos \frac{u_{\mu}}{|D u|}, \quad\left(u_{\mu}=\frac{\partial u}{\partial \mu}\right) \tag{8}
\end{equation*}
$$

it follows that
(9) $\quad w_{r}=-\left[|D u|^{2}-u_{\mu}^{2}\right]^{-1 / 2}\left[u_{\mu r}-u_{\mu}|D u|^{-2} \sum_{i}^{1, n} u_{i} u_{i r}\right]$,

$$
\begin{align*}
w_{t}= & -\left[|D u|^{2}-u_{\mu}^{2}\right]^{-1 / 2}\left[u_{\mu t}-u_{\mu}|D u|^{-2} \sum_{i}^{1, n} u_{i} u_{i t}\right]  \tag{10}\\
w_{r s}= & -\left[|D u|^{2}-u_{\mu}^{2}\right]^{-1 / 2}\left[u_{\mu r s}-u_{\mu}|D u|^{-2} \sum_{i}^{1, n} u_{i} u_{i r s}-u_{\mu s}|D u|^{-2} \sum_{i}^{1, n} u_{i} u_{i r}\right. \\
& +2 u_{\mu}|D u|^{-4} \sum_{i}^{1, n} u_{i} u_{i r} \sum_{j}^{1, n} u_{j} u_{j s} \\
& +\left[|D u|^{2}-u_{\mu}^{2}\right]^{-3 / 2}\left[\sum_{i}^{1, n} u_{i} u_{i s}-u_{\mu} u_{\mu s}\right]\left[u_{\mu r}-u_{\mu}|D u|^{-2} \sum_{i}^{1, n} u_{i} u_{i r}\right] .
\end{align*}
$$

By (9) it follows

$$
u_{\mu s}=u_{\mu}|D u|^{-2} \sum_{i}^{1, n} u_{i} u_{i s}-\left[|D u|^{2}-u_{\mu}^{2}\right]^{1 / 2} w_{s}
$$

and with this substitution we obtain

$$
\begin{align*}
w_{r s}=- & {\left[|D u|^{2}-u_{\mu}^{2}\right]^{-1 / 2}[ } \tag{11}
\end{align*} \quad\left[u_{\mu r s}-u_{\mu}|D u|^{-2} \sum_{i}^{1, n} u_{i} u_{i r s}\right] .
$$

By (1) we obtain

$$
\sum_{r, s}^{1, n} \frac{\partial F}{\partial u_{r s}} u_{\mu r s}=-\sum_{j}^{1, n} \frac{\partial F}{\partial u_{j}} u_{\mu j}-\frac{\partial F}{\partial u} u_{\mu}+u_{t \mu}
$$

and

$$
\sum_{r, s}^{1, n} \frac{\partial F}{\partial u_{r s}} u_{i r s}=-\sum_{j}^{1, n} \frac{\partial F}{\partial u_{j}} u_{i j}-\frac{\partial F}{\partial u} u_{i}+u_{t i}
$$

Hence, by (9) and (10), we have

$$
\begin{align*}
& \sum_{r, s}^{1, n} \frac{\partial F}{\partial u_{\tau s}}\left[u_{\mu r s}-u_{\mu}|D u|^{-2} \sum_{i}^{1, n} u_{i} u_{i r s}\right]  \tag{12}\\
& \quad=\left[|D u|^{2}-u_{\mu}^{2}\right]^{1 / 2}\left\{\sum_{j}^{1, n} \frac{\partial F}{\partial u_{j}} w_{j}-w_{t}\right\}
\end{align*}
$$

Therefore the equation (4) follows from (11) and (12), taking into account (6) and (7).

Let $\mathscr{F}$ be the matrix ( $\partial F / \partial u_{r s}$ ); by the assumption (3) it follows that the matrix $\left(D^{2} u\right)^{*} \mathscr{F}\left(D^{2} u\right)$ is symmetric and positive definite. Hence

$$
\operatorname{tr}\left(\left(D^{2} u\right)^{*} \mathscr{F}\left(D^{2} u\right)\right)-|D u|\left(\left(D^{2} u\right)^{*} \mathscr{F}\left(D^{2} u\right) D u, D u\right) \geq 0
$$

that is, (5) holds.

## 3. The maximum principle

As a consequence of the previous theorem we obtain
Theorem II. Let us suppose

$$
\begin{equation*}
u_{\mu} \geq 0 \quad \text { in } H \tag{13}
\end{equation*}
$$

where $\mu$ is a given direction in $\mathbf{R}^{n}$. Then the angle $w(x, t)$ between $\mu$ and $D u(x, t)$ satisfies the strong maximum principle, that is, (2) holds and $w$ is constant in $\bar{\Omega} \times[0, \tau]$ if equality holds in (2) for some $(\xi, \tau) \in H$. Furthermore, if $w$ is constant and less than $\pi / 2$ in $\bar{\Omega} \times[0, \tau]$, then Du has constant direction in this set.

Remarks. (1) Changing $\mu$ to $-\mu$ yields the analogous statement for the minimum of $w$.
(2) The hypothesis of smoothness of $u$ can be relaxed. It is sufficient to suppose smoothness of $u$ such that the maximum principle holds for $w$.
(3) The hypothesis $|D u| \neq 0$ is necessary to define $w$. In the case $|D u|=0$ in a subset of $H$, the theorem gives information on the behaviour of $w$ in the neighbourhood of any point at which $|D u| \neq 0$.
(4) If $w$ is constant in $H$ and equal to $\pi / 2$, then

$$
\frac{\partial u}{\partial \mu}=0 \text { in } H .
$$

In this case, $u$ can be considered as a function of $n-\mathbf{1}$ space variables. In case $w$ is constant in $H$ and less than $\pi / 2, u$ can be considered as a function of only one space variable.
(5) The hypothesis (13) needs to be justified. We shall show that it is superfluous for $n=2$ (Theorem III) and it is essential for $n>2$.

Proof. By Theorem I, $w$ satisfies (4) in $K$. By (13) it follows that $w \leq \pi / 2$; hence by (5) we get

$$
-w_{t}+\sum_{r, s}^{1, n} \frac{\partial F}{\partial u_{r s}} w_{r s}+\sum_{r=1}^{n} B_{r} w_{r} \geq 0 \quad \text { in } K,
$$

with $B_{r}$ continuous in $K$.

$$
B_{r}=b_{r}+\operatorname{cotg} w \sum_{s=1}^{n} \frac{\partial F}{\partial u_{r s}} w_{s} .
$$

Then $\max _{\bar{K}} w=\max _{\partial_{p} K} w$; where $\partial_{p} K$ is the parabolic boundary of the open set $K$, as usually defined. Since $H=K \cup\{w=0\}$, we get (2). Furthermore the strong parabolic maximum principle holds in $H$ : if there is $(\xi, \tau) \in H$ such
that $w(\xi, \tau)=\max _{\partial_{p} H} w$, then $w$ is constant in $\bar{\Omega} \times[0, \tau]$. Let us consider now this latter case with $w<\pi / 2$ to complete the proof of the theorem. If $w=0$, $D u$ has constant direction $\mu$. Let $0<w<\pi / 2$. Let $y$ be a given point in $\Omega$; it uniquely defines a direction $\lambda$ in $\mathbf{R}^{n}$, coplanar with $D u(y, \tau)$ and $\mu$, orthogonal to $D u(y, \tau)$ and such that the angle between $\lambda$ and $\mu$ is $\pi / 2-w$. Let $\gamma(x, t)$ the angle between $\lambda$ and $D u(x, t)$; by the inequality $\gamma \leq w+\widehat{\mu \lambda}$ it follows that $\gamma(x, t) \leq \pi / 2$ in $\bar{H}$. Thus $\gamma$ has a maximum at $(y, \tau)$ and, by the previous strong maximum principle, $\gamma$ is constant in $\bar{\Omega} \times[0, \tau]$. Hence, at any point of this set $D u$ is orthogonal to $\lambda$ and the angle $w$ between $\mu$ and $D u$ is constant, then the direction of $D u$ is constant.

THEOREM III. Let us suppose $n=2$ and $w<\pi$ in H. Then (2) holds and, if the maximum of $w$ is achieved in a point $(\xi, \tau)$ of $H$, then $D u$ has constant direction in $\bar{\Omega} \times[0, \tau]$.

Proof. Because of Theorem II, it is sufficient to prove the theorem under the hypothesis $\max _{\bar{H}} w>\pi / 2$.

Let us suppose that there exists $(\xi, \tau)$ such that

$$
\begin{equation*}
w(\xi, \tau)=\max _{\bar{H}} w, \quad(\xi, \tau) \in H \tag{14}
\end{equation*}
$$

By the continuity of $D u$, a positive constant $\delta$ exists such that the angle between $D u(x, t)$ and $D u(\xi, \tau)$ is less than $w(\xi, \tau)-\pi / 2$ in

$$
\begin{equation*}
M \equiv\{(x, t) ;|x-\xi|<\delta, \tau-\delta<t \leq \tau\} \subset H \tag{15}
\end{equation*}
$$

A direction $\lambda$ in $\mathbf{R}^{2}$, orthogonal to $\mu$, is uniquely defined such that the angle between $\lambda$ and $D u(\xi, \tau)$ is equal to $w(\xi, \tau)-\pi / 2$. Let $\gamma(x, t)$ be the angle between $D u(x, t)$ and $\lambda$; we have

$$
\gamma(x, t) \leq \gamma(\xi, \tau)<\frac{\pi}{2} \quad \text { for }(x, t) \in M
$$

Then $u_{\lambda}>0$ in $M$. By Theorem II it follows that $D u$ has constant direction in $M$; hence $w$ is constant in $M$. We have proved that, for any $(\xi, \tau)$ for which (14) holds, there is a set $M$, defined by (15), in which $w$ is constant and $D u$ has constant direction. Hence $w$ is constant and $D u$ has constant direction in $\bar{\Omega} \times[0, \tau]$.

The following example shows that the hypothesis (12) cannot be relaxed in the case $n>2$.

Let $\varepsilon$ be a negative constant,

$$
\begin{aligned}
u(x, t)= & x_{1}+x_{1}^{2}-x_{3}^{2}-6 x_{2}(T-t)-x_{3}^{3} \\
& +\varepsilon\left[\frac{1}{2} x_{1}^{2}-\frac{1}{2} x_{1} x_{2}^{2}+\frac{1}{2} x_{2}^{3}-2 x_{2} x_{3}^{3}+\frac{1}{6} x_{1}^{3}\right] \\
\mu= & \left(\frac{2 \varepsilon}{\sqrt{1+4 \varepsilon^{2}}}, \frac{-1}{\sqrt{1+4 \varepsilon^{2}}}, 0\right)
\end{aligned}
$$

and let $w$ be the angle between $\mu$ and $D u$. The function $u$ satisfies the heat equation

$$
u_{t}=\Delta u \quad \text { in } H=\mathbf{R}^{3} \times[0, T] .
$$

Let $Q=(0,0,0)$; one may check with elementary calculations

$$
\begin{aligned}
& w_{i}(Q, T)=0, \quad i=1,2,3, \quad w_{t}(Q, T)=6 \\
& w_{11}(Q, T)=\varepsilon, \quad w_{12}(Q, T)=-\varepsilon, \quad w_{13}(Q, T)=0 \\
& w_{22}(Q, T)=3 \varepsilon-6, \quad w_{23}(Q, T)=0, \quad w_{33}(Q, T)=4 \varepsilon
\end{aligned}
$$

Hence $w(x, t)<w(1, T)=\arccos \left(2 \varepsilon / \sqrt{1+4 \varepsilon^{2}}\right)$ for $(x, t)$ in a neighbourhood of $(Q, T), t \leq T$. We can observe $w(Q, T)>\pi / 2$ and $w(Q, T) \rightarrow \pi / 2$ if $\varepsilon \rightarrow 0$.

## References

[1] H. J. Brascamp and E. H. Lieb, 'On extensions of the Brunn-Minkowski and PrékopaLendler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation', J. Funct. Anal. 22 (1976), 366-389.
[2] M. E. Gage, 'An isoperimetric inequality with applications to curve shortening', Duke Math. J. 50 (1983), 1225-1229.
[3] C. Jones, 'Spherically symmetric solutions of a reaction-diffusion equation', J. Differential Equations 49 (1983), 42-169.
[4] H. Matano, 'Asymptotic behaviour and stability solutions of semilinear diffusion equations', Publ. Res. Inst. Math. Sci. 15 (1979), 401-454.
[5] C. Pucci, 'An angle's maximum principle for the gradient of solutions of elliptic equations', Boll. Un. Mat. Ital. A 1 (1987).
[6] C. Pucci, 'An angle's maximum principle for the gradient of solutions of elliptic and parabolic equations', Ist. Anal. Glob. C. N. R. Quad 17 (1987), 1-7.
[7] Kaising Tso, 'Deforming a hypersurface by its Gauss-Kronecker curvature', Comm. Pure Appl. Math. 38 (1985), 867-882.

Istituto Matematico
"Ulisse Dini"
Universita Degli Studi
50134, Firenze
Italy

