ON RELATIVELY INVARIANT MEASURES
MARK MAHOWALD

1. Introduction. In this note we will discuss the question of the measura-
bility of the multiplier function of a relatively invariant measure on a group.
That is, for a group G, ¢-ring S, and a measure u defined on the sets of .S, we
assume: E in S, x in G implies xE is in .S and p(xE) = o(x)u(E) and study
the measurability of the function o (x).

The problem was discussed by Halmos (1, p. 265), on locally compact
groups and there the situation proved to be as nice as it could be, that is, if
the measure is a non-trivial, relatively invariant Baire measure then the
multiplier function is continuous. We prove two theorems for groups in which
no topology is assumed. In the first theorem we assume a shearing condition
and answer the question completely. The second theorem places a condition
on the measure and weakens the shearing assumption. Its proof is compli-
cated and occupies the major portion of this paper.

2. Definitions and Notation. We shall use the measure-theoretic nota-
tion and definitions of (1) with these modifications and additions. All measures
which are considered are complete.

2.1. 4 left-invariant ring, R, is a ring of subsets of a group, G such that
E in R implies xE is in R for all x in G.

2.2. When we say a function, f, is S-measurable we mean that for E in S
and M a Borel set of the real line, E N1 (M) N N(f) is in S. (N(f) =
{x:f(x) # 0}.)

2.3. (G, S, u) will be a measure space such that G is a group and S is a
left-invariant o-ring of subsets.

2.4. If E and xE are measurable and pu(xE) = o¢(x)u(E) and if u is not
identically equal to zero and is o-finite then u is called relatively invariant
and will be denoted by (¢)u. Note that the definition of ¢(x) implies that
0<o(x) < w,allx € G,o(xy) = a(x)a(y) = c(yx),0(e) = 1,0(x)o(x™")=1.

2.5. By H(S) we shall mean the hereditary o-ring generated by S.

2.6. In (G, H(S), (o)p*) we shall define an outer measure integral denoted
by 6*(E) = f*Ef(x)du*, where f is an arbitrary non-negative function on G
and

n2n

*(E) = lim >, (i — D27w*(E,; N E)

Ny =1
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where E,; = {x: (1 — 1)27" < f(x) <2™ for ¢ =1,...,n2"}. Note that
0 < o(x) < » implies that if 6* = [*¢(x~!)du*, then 6*(E) = 0 if and only
if w(E) =0.

2.7. (G, S) will be said to satisfy the shearing condition if the transformation
from G X G to G X G defined by 6(x, y) — 6(x, xy) is a measurability pre-
serving transformation, (carries S X S onto S X .5).

2.8. By weak shearing we shall mean that if f(x) is S-measurable then
g(x,v) = f(xy) is S X S-measurable.

2.9. By condition A on a measure space we shall mean that the space is
the union of a disjoint class ¢ of measurable sets of finite measure with the
property that every measurable set may be covered by countably many sets
of Z and a set of measure zero.

Remark. According to Halmos (1, p. 132) this implies that the Radon-
Nikodym theorem is valid.

2.10. We say that (G, S, u) is countably coverable if for every set £ of
positive measure and any other measurable set F, there exist x;,2 = 1,2,...,
such that F — Ux;E has measure zero.

Remark. Lebesgue measure is countably coverable.

2.11. By a measure group we shall mean a measurable space (G,.S) such
that G is a group and S is left-invariant and satisfies the shearing condition.

3. Measurability theorems.

THEOREM 1. Let (G, S) be a measure group and let (o) be a relatively invariant
measure defined on S. Then o is S-measurable.

Proof. From the definition of shearing we have, for any subset £ of G X G,
(6(E)): = xE,. (See (1), p. 258.) Let E = F X F, where Fis in S. By Fubini's
theorem we have that

J xumidn) = w(@0@)) = 1GE) = a@u(F) s

is a measurable function of x. Therefore, ¢ (x)u(F)x» is measurable but u(F)
is a constant and F is an arbitrary set in S; hence o (x) is S-measurable.

COROLLARY. In a measure group the existence of one non-trivial measure (o)u
implies that any other non-trivial (¢')u’ can be written as

W(E) = K fEa'/U dp.

Proof. The theorem implies that both ¢ and ¢’ are measurable. Let
0(E) =fEa(x—‘)du and 0’ (E) =fEa’(x"1)du’. Both 6 and 6 are invariant
measures and (G, S, ) and (G, S, 6’) are measurable groups (see (1), page 257).
Therefore Theorem 60:B of (1) applies and shows that K6 = ¢’. Let
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Z Qpm X Enm

m=1

be a sequence of simple functions monotonically converging to ¢’. Then

wW(E) = f o’ (x)do’ = llmJ 1.6

n—co

M
=IlimK >, am,bf o(x Ndp = K f (¢’ /o) dp.
EamNE JE

n—co m=1

For Theorem 2 we shall need the following lemmas:

LemMMA 1. For arbitrary non-negative funciion f on G, 6%, the outer measure
integral of fin (G, H, (S), u*), is an outer measure on H(S) and the s-ring of
w¥-measurable sets is contained in the o-ring of 6*-measurable sets.

Proof. The fact that §* is an outer measure follows immediately from the
definition. Let E be p*-measurable. Then for arbitrary 4 € H(S) we have

n2n

§*(4) = lim Z (i — D27"w*(A N Ey))

nco  i=1

n2m

= lim Z C—1D2"wW*ANENE) +r*ANENE)]

=AU NE)+*ANE).
This completes the proof of the lemma.
LEMMA 2. If 6% (E) = f* afdu*, then f is R-measurable, where R is the collection
of 6*-measurable sets.
Proof. 1t is sufficient to show Ey, satisfies the Carathéodory criterion for

all A € H(S). For N and j fixed and # > N, we have either E,; \ Ey, = ¢
or E,;. Therefore, for arbitrary 4 € H(S) we have

n2—1

lim Z (’L - 1)24n(“*(ﬂN1 m A ﬂ Enz) + H-*(E’N] ﬂ A ﬂ Enr))

now  i—

LeMMA 3. 6%(E) = f*Ea (x~V)du* 1s an invariant outer measure on H(S) and
the restriction of 6* to S is an invariant measure on S.

5% (4)

The proof of this lemma is long and will be given in § 4. We now have
this

TureoreM 2. Let (G, S, (o)u) satisfy condition A and be countably coverable
and suppose that there exists a set E € S such that 0 < 6*(E) < o, (with &*
as in Lemma 3). Then there exists a o-ring R containing S and a measure (o)
won R which is an extension of u on S such that o is R-measurable. If in addition
S satisfies the weak shearing condition then o(x) is S-measurable.
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Proof. By Lemma 3, §* restricted to S is a measure. Since §*(E) = 0 if
w(E) = 0, 6* < u and condition A then implies the Radon—Nikodym theorem
is valid. Let f be the R— N derivative. Let E € S be such that 0 < §*(E) < «.
Let 4 be any set of Z. There exist {x;},7 = 1,2, ..., 1such that Ux.E D 4.
Therefore, on A, § is o-finite. Hence f can be chosen to be finite-valued on 4,
hence on G. On each subset F of A such that 6*(F) < «, we have,

#(F) = | 1@in = 5 F) = [ fo1n = o0 [ 167 du

Therefore, for each x
(1) () = c(=Df(x"y),  [u]iny foryin A.

Since the A are disjoint and a countable union of them cover any measurable
set to within a set of measure zero the formula is valid for all x, [y], when
v is restricted to any measurable set.

(1) implies & = f(f(x))”‘dé is a relatively invariant measure with 6 as the
multiplier function on the ¢-ring of § measurable sets R. Lemma 2 shows
that ¢ is R-measurable. Therefore, we have only to show that i is an extension
of u. Using Theorem B, page 134 of (1), we have

J oo = [ 0 = uo),

for every E in S. Therefore, g satisfies the theorem and this completes the
proof of the first part of the theorem.

The weak shearing condition implies that f(y)e (x~!) —f(xy) = g(x,y) is RX R-
measurable. On every set in R X R, g(x, y) is integrable and its integral will
be zero by (1) and the Fubini theorem. Let A be any set in D with u(4) > 0.
Then 6*(4) > 0 and A4 contains a set of points of positive u-measure at
which 0 < f(y) < «. Let E be the subset of 4 X A4 for which f(y)o(x™)
— f(xy) # 0. Then g X g(E) = 0. Therefore, for almost all y in E,

If 4, = {x:f(y)o 1 (x) — f(xy) = 0}, g(4,) =0 for almost all y in A by
the Fubini theorem. If g(4,) = 0, then §*(4,) = 0. Whence u(4,) = 0, using
2.6. Thus there exists ¥y € E with 0 < f(y) < « and such that f(y)e~'(x)
— f(xy) = 0 for almost all x in A[u]. The measurability of f(xy) then implies
that o(x) is measurable in 4, and the definition of A implies that o(x) is
S-measurable.

4. Proof of Lemma 3. We shall prove a sequence of remarks which
will lead to the lemma.
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REMARK 1. p*(xE) = o(x)u*(E) for all E in H(S).

Proof. This statement is an immediate consequence of the definition of an
outer measure and the relative invariance of u.

In the following let E be any set in H(S) such that u*(E,; NV E) < o for
all » and 7 == 1.

From Remark 1 we have

n2n n2n
$*(E) = lim 2. (i — 1)/2"w*(E,i N E) = lim (i —1)/2%(y).
s i=1 e i=1

w*(VEu: N yE).
Let A(N,2) = {j: (i — 1)/2"%(y) < (j — 1)/2¥ < j/2¥ < /2" (y)} for
i =1,...,n2" Note that jin 4 (N, 7) implies Ey, C yE,; and that

UjeA(N, i) ENj C UjeA(M, i) EMJ'

if N < M.
In Remarks 2 and 3 we shall be concerned with a particular z and fixed #
and y; hence we shall suppress the 7 in the notation A ().

REMARK 2.

YEu i = lim Ujeawy En; U [

N

where [ = {x:0(x) = 2% (y)/( — 1)}.

Proof. From the definition of 4 we see that the right side is a subset of
the left side. Let z be a member of the left side. Then

o(z™) = (¢ = 1@
or
(G —=DEe@)" <oz <i(2e@)™"

The first case implies z is in I. For the second case there exists an M and
j € A(M) such that

(G —=1/2%(y) < (G — D27 <o(z) <j/2% <i/2% ().

Therefore z is in the union over 4 (M) and \U ;4w Ex, Is an increasing sequence
of sets; hence the remark follows.

REMARK 3. Let a > 0 be arbitrary; then, for any E € II(S) such that
W (E,; N\ E) < o, there exists an M such that

p*(YE.; N YE) < 2 KBy OV YE) + w*(I N YE) + a2,

jeA'M

Proof. From Remark 2 we have
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p'*(yEni N yE) < w* (lim Ujeaan Ex; N yE) 4+ w*(I N yE)

Nooo

= lim p*(Ujean) Ex; N YE) + w*(I N yE)

Noco

< lim X0 p*(Ey; N yE) + p*(I N yE).

Noow jed(N)

Since the left side is finite, there exists an M such that the remark holds.

We can do this for each 7 obtaining an M ;. If we are given y and fix # such
that o(y)n > 1 and if we let Ny = max{M, logss(y) + n} then Remark 3
holds uniformly in ¢ for all N > N,. In addition, since 1/2% (y) > 1/2¥, there
exists one distinct j; for each 7 such that

Eyi DI
We then can prove
REMARK 4.
n2n
2 (0= 1)(@0() W (yEu: N YE)
N2V nan

<X G = D2V B N yE) + X 2 By 0 9E) +a
Jj= =

for all N > N,.

Proof. We shall call the left side of the inequality K,. Then, from Remark 3
and the definition of 4 (N, 7), we have

Ko< G- D/2et)| ¥ W (Ex; 0 9E) £ O98) |

JEAN, i

n2n

+ 2 ali = 1)/n2" ()

N
i™

2 (G = D2 (Ey; N yE)

i=1 jeA(N,1)

n2n

+ X G- DG WOENTD +a.

Since there exists one j; for each ¢, we have for all N > N,

NoN

K, < Zl (] - 1)2—N"'*(EN]' N yE)
=

n2n

+a+ gl [0 = D)) = Gy — D27V W* By, N yE).
Since (2 — 1)(2"(y))™! — (j: — 1)27Y < 27V, the remark follows.

REMARK 5. The lemma is true if u*(E) < o.
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Proof. If u*(E) =0 we are finished. Therefore we shall assume that
0 < y*(E) < ». Then from Remark 4 and the monotonicity of the outer
measure, we have

K, <a+ 8 (E) + n2"/2V)p* (yE).

Letting N — « we have K, < a + §*(yE). This is true for all #» from some
point on; therefore, 6*(E) < a + 6*(yE). Since @ is arbitrary we have
*(E) < 8*(yE). Applying this inequality to the set yE and y~! we conclude
that 6*(E) > 8 (yE) and the remark follows.

REMARK 6. If u*(E) = o, then the lemma 1is true if there exists a K such
that p* (WE,; \yE) < 2"K for all n and i 5% 1.

Proof. Since 1/2¥ < 1/2%(y), we have
Eynj CyEL U yE, 1.

Then from Remark 4 we have

K, < &*(yE) + Zl 27V w* (yEni N YE) 4+ uw*(YEq i1 N YE)] + @
< *(YE) +22"K n2" 27V + a.
The remark now follows as in Remark 5.

REMARK 7. If u*(E) = o and there does not exist ¢ K as wn remark 6, then
the lemma 1s true.

Proof. Let K’ be given. Then there exists an z and 4, # 1 such that
:“*(yEnio NyE) = ‘T(y)ﬂ*(Enio NE) > 2nK,U(y)-
This implies
n2n

H*E)> D, (1 — D27 (EnNE)> K.
=1

Hence 6*(E) = o. The result follows as in Remark 5.

This completes the proof of the Lemma. The case which was excluded
just before Remark 2, that is, E such that u*(E,; N E) = « for some #
and 7 # 1, is clearly covered in Remark 7.
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