
ON RELATIVELY INVARIANT MEASURES 

MARK MAHOWALD 

1. Introduction. In this note we will discuss the question of the measura-
bility of the multiplier function of a relatively invariant measure on a group. 
That is, for a group G, c-ring S, and a measure /x denned on the sets of S, we 
assume: E in S, x in G implies xE is in S and /JL(XE) = <r(x)n(E) and study 
the measurability of the function <j(x). 

The problem was discussed by Halmos (1, p. 265), on locally compact 
groups and there the situation proved to be as nice as it could be, that is, if 
the measure is a non-trivial, relatively invariant Baire measure then the 
multiplier function is continuous. We prove two theorems for groups in which 
no topology is assumed. In the first theorem we assume a shearing condition 
and answer the question completely. The second theorem places a condition 
on the measure and weakens the shearing assumption. Its proof is compli
cated and occupies the major portion of this paper. 

2. Definitions and Notation. We shall use the measure-theoretic nota
tion and definitions of (1) with these modifications and additions. All measures 
which are considered are complete. 

2.1. A left-invariant ring, R, is a ring of subsets of a group, G such that 
E in R implies xE is in R for all x in G. 

2.2. When we say a function, / , is S-measurable we mean that for E in 5 
and M a Borel set of the real line, E r\f~l{M) Pi AT(/) is in 5. (N(f) = 
{x:f(x)^0}.) 

2.3. (G, S, fx) will be a measure space such that G is a group and S is a 
left-invariant cr-ring of subsets. 

2.4. If E and xE are measurable and /JL(XE) = a(x)fx(E) and if n is not 
identically equal to zero and is cr-finite then JU is called relatively invariant 
and will be denoted by (o-)/*. Note that the definition of <r(x) implies that 
0 < <r(x) < oo , all X G G,a(xy) = a(x)a(y) = a(yx),a(e) = 1, a(x)a(x~l) = 1. 

2.5. By H(S) we shall mean the hereditary airing generated by 5. 
2.6. In (G, H(S), (V)M*) we shall define an outer measure integral denoted 

by ô*(£) = J V ( * ) < V \ whe re / is an arbitrary non-negative function on G 
and 

«*(£) = lim E (i - l)2~y (£n, H E) 
W->oo 2 = 1 
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where Eni = {x: (i - l )2~ n < / ( * ) < i2~n for i = 1, . . . , n2n}. Note t h a t 
0 < a(x) < oo implies t h a t if Ô* = $*<j(x~l)dix*, then <5*(£) = 0 if and only 
if M ( £ ) = 0. 

2.7. (G, 5) will be said to satisfy the shearing condition if the t ransformation 
from G X G to G X G defined by 0(x, y) —> 0(x, :ry) is a measurabi l i ty pre
serving t ransformation, (carries 5 X 5 onto 5 X 5 ) . 

2.8. By weak shearing we shall mean t h a t if f(x) is 5-measurable then 
g(x, y) = f(xy) is 5 X 5-measurable. 

2.9. By condition A on a measure space we shall mean t h a t the space is 
the union of a disjoint class £$ of measurable sets of finite measure with the 
proper ty t h a t every measurable set may be covered by countably many sets 
of & and a set of measure zero. 

Remark. According to Halmos (1 , p . 132) this implies t h a t the R a d o n -
Nikodym theorem is valid. 

2.10. We say t h a t (G,S,/JL) is countably coverable if for every set E of 
positive measure and any other measurable set F, there exist xu i = 1, 2, . . . , 
such t h a t F — \JxtE has measure zero. 

Remark. Lebesgue measure is countably coverable. 

2.11. By a measure group we shall mean a measurable space (G, 5) such 
t h a t G is a group and 5 is left-invariant and satisfies the shearing condition. 

3. M e a s u r a b i l i t y t h e o r e m s . 

T H E O R E M 1. Let (G, 5) be a measure group and let (o-)ju be a relatively invariant 
measure defined on 5 . Then a is S-measurable. 

Proof. F rom the definition of shearing we have, for any subset E of G X G, 
(0(E))x = xEx. (See (1), p. 258.) Let E = F X F, where F is in 5 . By Fubini ' s 
theorem we have t h a t 

J xe(E)dfi(y) = n((0(E))x) = v(xEx) = <T(X)H(F)XF 

is a measurable function of x. Therefore, Œ(X)JJL(F)XF is measurable bu t n(F) 
is a cons tan t and F is an a rb i t ra ry set in 5 ; hence a(x) is 5-measurable. 

COROLLARY. In a measure group the existence of one non-trivial measure (a)/j. 
implies that any other non-trivial (</)// can be written as 

V'(E) =K ( a'/adii. 

Proof. T h e theorem implies t h a t bo th a and <jr are measurable. Let 
6(E) = jEa(x-1)dfji and 0'(E) = j'E°' (x~l)d^''. Both 0 and 0' are invar iant 
measures and (G, 5 , 0) and (G, 5 , 0') are measurable groups (see (1), page 257). 
Therefore Theorem 60 :B of (1) applies and shows t h a t K0 = 0''. Let 
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be a sequence of simple functions monotonically converging to a''. Then 

M ' (£) = f (j'(x)dd' = lim ( fnd6' 

M r » r» 

= limK 5Z anm I a(x~1)djjL = K I (a'/a) d[i. 
n^co m=\ *SEnmftE *)E 

For Theorem 2 we shall need the following lemmas: 

LEMMA 1. For arbitrary non-negative function f on G, <5*, the outer measure 
integral of f in (G, H, (5), /**), is an outer measure on H(S) and the a-ring of 
V*-measurable sets is contained in the a-ring of b*-measurable sets. 

Proof. The fact that <5* is an outer measure follows immediately from the 
definition. Let E be ^-measurable. Then for arbitrary A £ H(S) we have 

6*(A) = lim £ (i - l ) 2 ' V ( i PI Eni) 
n-ïco i= 1 

= lim £ (i - i)2-B[M%4 n £Bi n £) + M*(̂ 4 n E. , n £')] 

= Ô*(A HE) +Ô*(A DE'). 

This completes the proof of the lemma. 

LEMMA 2. If <5* (E) = j*Efdn*, then f is R-measurable, where R is the collection 
of ô*-measurable sets. 

Proof. It is sufficient to show ENj satisfies the Carathéodory criterion for 
all A £ H (S). For N and j fixed and n > N, we have either Eni C\ ENj = <£ 
or Eni. Therefore, for arbitrary A £ H (S) we have 

8* (A) = lim £ (i - 1)2-W(M*(^- H A D Eni) + f(E'Nj HAH Eni)) 
n^co i— 1 

= Ô*(A nEKj) + Ô*(A nE'Nj). 
LEMMA 3. 8*(E) = §*Ea(x~~l)dii* is an invariant outer measure on H(S) and 

the restriction of 5* to S is an invariant measure on S. 

The proof of this lemma is long and will be given in § 4. We now have 
this 

THEOREM 2. Let (G, 5, (<r)n) satisfy condition A and be countably cover able 
and suppose that there exists a set E £ S such that 0 < 5* (E) < œ f (with 8* 
as in Lemma 3). Then there exists a a-ring R containing S and a measure (a) 
ix on R which is an extension of LX on S such that a is R-measurable. If in addition 
S satisfies the weak shearing condition then a(x) is S-measurable. 
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Proof. By Lemma 3, <5* restricted to 5 is a measure. Since ô*(E) = 0 if 
JJL(E) = 0, 5* <3C IJL and condition A then implies the Radon-Nikodym theorem 
is valid. L e t / be the R — N derivative. Let E £ S be such that 0 < <5* (E) < oo . 
Let /I be any set of ^. There exist {xt}, i = 1, 2, . . . , 1 such that \JxtE D /I. 
Therefore, on A, 5 is cr-finite. Hence / can be chosen to be finite-valued on A, 
hence on G. On each subset F of A such that ô*(F) < oo, we have, 

**(F) = (7(y)<fr = «*(**') = f f(y)dn = aU"1) f / o r V ) <*/*• 

Therefore, for each x 

(1) /(y) = a(x~1)f(x~ly)J [fx] in 3; for y m A. 

Since the /4 are disjoint and a countable union of them cover any measurable 
set to within a set of measure zero the formula is valid for all x, [y], when 
y is restricted to any measurable set. 

(1) implies /Z = J(f(x))~ldô is a relatively invariant measure with 5 as the 
multiplier function on the c-ring of 8* measurable sets R. Lemma 2 shows 
that a is 7^-measurable. Therefore, we have only to show that p, is an extension 
of fx. Using Theorem By page 134 of (1), we have 

f (fr'dô = f (fr'fdn = H(E), 
•SE *)E 

for every E in S. Therefore, M satisfies the theorem and this completes the 
proof of the first part of the theorem. 

The weak shearing condition implies that f(y)a (x~1) —f{xy) = g(x,y) is J? Xim
measurable. On every set in R X R, g(x, y) is integrable and its integral will 
be zero by (1) and the Fubini theorem. Let A be any set in D with 11(A) > 0. 
Then 5*(A) > 0 and A contains a set of points of positive ju-measure at 
which 0 < f(y) < 00. Let E be the subset of A X A for which f(y)<r(x~1) 
— f(xy) 9^ 0. Then jl X &(E) = 0. Therefore, for almost all y in E} 

If Ay = {x:f(y)a~l(x) — f(xy) = 0}, &(Ay) = 0 for almost all y in A by 
the Fubini theorem. If fx(Ay) = 0, then 8*(Ay) = 0. Whence ji(Ay) = 0, using 
2.6. Thus there exists y Ç E with 0 < f(y) < 00 and such that f(y)<J~l(x) 
— f(xy) = 0 for almost all x in A[IJL]. The measurability of f(xy) then implies 
that <T(X) is measurable in A, and the definition of A implies that a(x) is 
5-measurable. 

4. Proof of Lemma 3. We shall prove a sequence of remarks which 
will lead to the lemma. 
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REMARK 1. n*(xE) = <r(x)n*(E) for all E in H(S). 

Proof. This statement is an immediate consequence of the definition of an 
outer measure and the relative invariance of ju. 

In the following let E be any set in H(S) such that n*(Eni C\ E) < oo for 
all n and i j* 1. 

From Remark 1 we have 

S*(E) = lim i f (* - 1 ) / 2 V ( £ . ( O E) = lim E (i - l ) /2V(y) . 
W->oo 1 = 1 ft->oo i = l 

Let ^(iV, i) = \j: (i - l)/2V(y) < (j - l ) / 2 " < j/2N < i/2"<r(y)} for 
i = 1, . . . , w2n. Note that j in 4̂ (iV, i) implies EN] C y£„j and that 

UUA (N, i) ENj CU 
if iV < M. 

In Remarks 2 and 3 we shall be concerned with a particular i and fixed n 
and ;y; hence we shall suppress the i in the notation ^4(A7)-

REMARK 2. 

3>£ni = lim UjeA(N) ENj U / 

where I — {x: a(x) = 2na(y)/(i — 1)}. 

Proof. From the definition of A we see that the right side is a subset of 
the left side. Let 2 be a member of the left side. Then 

,(*-!) = a- i)(2vw)-1 

or 

(* - l)(2V0y))-> < cr^-1) < »(2V(y))-'. 

The first case implies z is in / . For the second case there exists an M and 
j 6 A (M) such that 

(i - l)/2V(y) < (j - 1)2-" < (x^-1) < j / 2 " < i/2V(y). 

Therefore s is in the union over 4̂ (ilf) and \J jiA(N)ENj is an increasing sequence 
of sets; hence the remark follows. 

REMARK 3. Let a > 0 be arbitrary; then, for any E £ H (S) such that 
/x* (En i O E) < oo y there exists an M such that 

v*{yEni HyE) < £ v*{EM] n y£) + /**(/ n y£) + ^""«"l 

Proof. From Remark 2 we have 
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n*(yEni H yE) < M* (lim (JjeAW) ENj n yE) + /x*(J H yE) 
N->oo 

= lim n*(\JjeA(N) ENj Pi yE) + (x*(I n 3>£) 
iV->oo 

< lim £ M*(E^ O y£) + n*(I O yE). 
iV-X» jeA(N) 

Since the left side is finite, there exists an M such that the remark holds. 
We can do this for each i obtaining an Mt. If we are given y and fix n such 

that <j{y)n > 1 and if we let No = maxjAf*, log2cr(;y) + n) then Remark 3 
holds uniformly in i for all N > iV0. In addition, since l/2n<r(y) > 1/2A", there 
exists one distinct j t for each i such that 

ENji D / . 

We then can prove 

REMARK 4. 

£ ( i - l ) (2V(y)) - 1 M*(3 '£^n3 ' -E) 
1 = 1 

N 2^ nïn 

< £ (i - l )2 -V(£*i n y £ ) + E 2 " V ( ^ i , - Pi yE) + a 
i = l 1=1 

/or all N > TVo. 

Proof. We shall call the left side of the inequality Kn. Then, from Remark 3 
and the definition of A (N, i), we have 

Kn < £ (i- l)/2V(y) 
eA (JV, z) J •jeA(N, i) 

n2n 

+ £ < * ( * - l)/»32-V(y) 

< E Z to' - i)2-%*(£^ n y£) 
z = l jcA(N, i) 

+ E (» - l)(2V(y))-VCy£ n /) + a. 

Since there exists one j \ for each i, we have for all N > AT
0 

Kn<T, (J - l)2~N
lj*{ENj n yE) 

+ « + £ [(* - l ) (2V(y))- 1 - (Js - 1)2"%*(£ jV , ; n yE). 
1 = 1 

Since (i - 1)(2V(3;))-1 - ( j , - 1)2"* < 2~N, the remark follows. 

REMARK 5. 77ze lemma is true if /x* (£) < <x>. 
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Proof. If n*(E) = 0 we are finished. Therefore we shall assume that 
0 < ju* (E) < oo. Then from Remark 4 and the monotonicity of the outer 
measure, we have 

Kn < a + d*(yE) + (n2n/2N)^(yE). 

Letting A7 —-> oo we have Kn < a + 8*(yE). This is true for all n from some 
point on; therefore, ô*(E) < a + ô*(y£). Since a is arbitrary we have 
ô*(E) < ô*(yE). Applying this inequality to the set yE and y~l we conclude 
that ô*(E) > ô*(yE) and the remark follows. 

REMARK 6. If n* (E) = oo, then the lemma is true if there exists a K such 
that p.*(yEni C\ yE) < 2nK for all n and Î V 1. 

Proof. Since 1/2* < l /2V(y), we have 

C A U A M . 
Then from Remark 4 we have 

Kn < a*(yJ5) + £ 2 " ] V ( 3 ' £ > H H yE) + M*(y£».i-i O ?£)] + o 

< 5*(yE) + 2 2nK n2n 2~N + a. 

The remark now follows as in Remark 5. 

REMARK 7. If n*(E) = oo and there does not exist a K as in remark 6, then 
the lemma is true. 

Proof. Let K' be given. Then there exists an n and io 9e 1 such that 

U.*(yEni0 r\ yE) = <r(y)„*(Eni0 H E) > 2nK'<j(y). 

This implies 

S*(E) > Ê" (« - i)2-y (£Mi n £) > x'. 
1 = 1 

Hence 5*(E) = oo. The result follows as in Remark 5. 
This completes the proof of the Lemma. The case which was excluded 

just before Remark 2, that is, E such that ix*(Eni P\ E) = oo for some n 
and i y£ 1, is clearly covered in Remark 7. 
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