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ON A THEOREM OF GOLDSCHMIDT APPLIED TO 
GROUPS WITH A COPRIME AUTOMORPHISM 

MARTIN R. P E T T E T 

1. Introduction. In a recent important paper of Goldschmidt [3], all finite 
simple groups were determined in which a non-trivial abelian 2-subgroup 
controls 2-fusion. Our purpose here is to present a straightforward application 
of this deep result to the following general question: If p is a prime and G is a 
finite group of order not divisible by p which admits an automorphism a of 
order pn, what conditions on the fixed point subgroup CG(a) will ensure that G 
is solvable? 

Probably the best known result in this direction is the theorem of Thompson 
[1, Theorem 10.2.1] that if n = 1 and a is fixed-point-free on G (i.e. CG(a) = 1), 
then G is nilpotent. It is still an open conjecture that the existence of a fixed-
point-free automorphism (of any order) is sufficient to imply solvability. Of 
course, in the case that p = 2, the theorem of Feit and Thompson on groups 
of odd order (which will be implicit in our argument) immediately disposes of 
the question of solvability without reference to the fixed point subgroup of a. 

By way of motivating the present discussion, we remark that in general, it 
seems that the non-abelian simple groups tend to admit rather a limited 
number of coprime automorphisms. Indeed, if G is a Chevalley group over a 
finite field, the automorphisms of order relatively prime to the order of G 
arise essentially from automorphisms of the field. In this case then, the group 
of fixed points of a coprime automorphism contains a subgroup isomorphic to 
the appropriate Chevalley group over the prime subfield and, in particular, 
has even order. It seems reasonable, therefore, to ask what can be said about 
the structure of a group admitting a coprime automorphism with a fixed point 
subgroup of odd order. 

For a restricted class of finite groups, we have the following partial answer: 

MAIN THEOREM. Let G be a finite group which admits an automorphism a of 
order a power of p, where p is a prime not dividing the order of G. Assume that G 
contains a unique a-invariant Sylow 2-subgroup S and also, that a has no non-
trivial fixed points in S. If G does not involve the symmetric group of degree four, 
then G is solvable. 

To clarify the hypotheses somewhat, we remark that the mere existence of 
^-invariant Sylow subgroups (for every prime) is guaranteed by the hypothesis 
of coprime order; the uniqueness of 5 is equivalent to the further assumption 
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that CG(<r) normalizes S [1, Theorem 6.2.2]. The hypotheses are, of course, 
inductive. 

As a consequence of this theorem, we have the 

COROLLARY. A finite group which admits a fixed-point-free automorphism of 
order a power of three is solvable. 

These results, it should be admitted, are completely subsumed by the recent 
spectacular success of Glauberman in classifying (also as a corollary of Gold-
schmidt's work) all simple groups in which the symmetric group of degree four 
is not involved. However, although we do make use of an earlier Glauberman 
result on "S4-free" groups (Lemma 2.3), the argument presented here is 
independent of his most recent work. 

All groups under consideration here are, of course, finite and our notation 
conforms to that of [1]. We shall assume familiarity with Sections 5.3 and 
6.2 of [1]. 

2. The tools. If G is a group and A is a subset of the subgroup S of G, A is 
said to be strongly closed in S with respect to G if S P\ A9 C A for every element 
g of G. As we indicated at the outset, the crucial tool in the argument presented 
here is the following theorem of Goldschmidt [3]; 

LEMMA 2.1. Let G be a non-abelian finite simple group with a Sylow 2-subgroup 
S. Suppose S contains a non-trivial abelian subgroup A which is strongly closed in 
S with respect to G. Then G is isomorphic to one of 

(a) L2(2
n), n^S, 

(b) Sz(22n+l),n ^ 1, 
(c) U,(2n),n^2, 
(d) L2(q), a = 3 or 5 (mod 8) or 
(e) G is of uJanko-Ree type." 

For future reference, we note that each of the groups in Goldschmidt's list 
enjoys the property that it contains a unique conjugacy class of involutions. 

In addition to the usual results on coprime operators, we shall need the 
following representation theoretic fact due to Shult and Gross: 

LEMMA 2.2. Let G be a finite group admitting an automorphism a of order pn, 
where p is an odd prime not dividing the order of G, and let H be the semi-direct 
product G (a). Suppose K is a field of characteristic not dividing the order of H 
and A is a faithful K[H]-module with the property that a has no non-trivial 
fixed points in A. Then avn~l centralizes G in either of the following two situations: 

(a) G has odd order [6, Corollary 3.2] or 
(b) a is fixed-point-free on G [4, Theorem 2]. 

As remarked in the Introduction, the restriction that p be odd (which is, 
in fact, a necessary hypothesis) is, for our purposes, no restriction at all. 
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We say the group G is S^-free if the symmetric group of degree four is not 
involved in G. The final non-standard device we shall make use of is a difficult 
theorem due to Glauberman on the structure of such groups [2, Corollary 10]. 

LEMMA 2.3. Let S be a Sylow 2-subgroup of the finite group G and suppose 
CG(02(G)) Ç 02(G). If G is St-free, then G = (NG(J(S)), CG(Z{S))), where 
Z(S) is the centre of S and J(S) is a certain characteristic subgroup of S containing 
Z(S). 

3. Fusion in S^-free groups. The object of this section is to exploit the 
preceding result of Glauberman to attain some control over the fusion of 
2-elements in SVfree groups. 

LEMMA 3.1. Let S be a Sylow 2-subgroup of G and suppose T is a normal sub­
group ofS. If G is Si-free, then NG(T) C CG(T)(NG(J(S)), CG(Z(S))). 

Proof. Let N = NG(T) and U = TCS(T), so C8(U) Q U. By the Dedekind 
lemma, U = S C\ TCG(T) so since 5 C N and TCG(T) is normal in N, we 
conclude that U is a Sylow 2-subgroup of TCG(T). Then by the Frattini 
argument, TV = CG(T)NN(U), so it suffices to show that NG(U) C (NG(J(S)), 
CG{Z{S))). 

Let M = NG{U). S is contained in M so CS(U) = Z(U) is a Sylow 2-
subgroup of CG(U). By Burnside's normal complement theorem, CG(U) = 
Z(U) X K, where K is a subgroup of odd order. If X is any subgroup of M, 
denote by X the image of X in M/K. Then 0 is normal in M and C^{D) = 
~CGW) Ç V, so from Lemma 2.3, it follows that M = (NM(J(S)), CH(Z(S))). 

A Frattini argument implies that Nm(J(S)) = NM(J(S)) and Cm(Z(S)) = 
CM(Z(S)), so M=(NM(J(S)), CM(Z{S)), K). Finally, K Q CG(U) Q 
CG(Z(S}) since Z{S) C U, whence M = (NM(J(S)), CM{Z{S))) and the proof 
is complete. 

Definition. If 5 is a Sylow subgroup of G and T is a subgroup of S, let P\(T) 
= jY s ( r ) ,7Vi(r) = A W ) , and define recursively P ,+ i ( r ) = N8(J(Pi(T))) 
and Ni+i(T) = NG(J(Pi(T))). Then T is said to be we// placed in S (with 
respect to J) if P\{T) is a Sylow subgroup of Nt(T) for all i §: 1. 

LEMMA 3.2. Let S be a Sylow 2-subgroup of G and T be a well-placed subgroup 
of S with respect to J. If G is S,-free, then NG(T) C CG(T) (NG(J(S)), CG(Z(S))). 

Proof. Suppose the lemma is false and assume a counterexample T is chosen 
with Ti = Ns(T) of maximal possible order. 

Since T is well-placed, 7\ is a Sylow 2-subgroup of NG(T). Applying Lemma 
3.1 to NG(T), we conclude that NG(T) C CG(r)<iVG( /(r i)) , CG(Z(r!))) . 
Also, since Z(S) Q NS(T) = Tu we have Z(S) C Z(!Ti) Ç / ( r 0 , so certainly 
CG(Z(rO) Ç CG(Z(5)). Finally, 7\ ^ 5 by Lemma 3.1, so T1 C NsiTJ C 
Ns(J(Ti)). Since J(T\) is wrell placed in 5, our particular choice of 7" forces 
NoiJiTi)) C (NQ(J(S)), C0(Z(S))) and we have a contradiction. 
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Now we state the main result of this section. 

THEOREM 3.3. Let S be a Sylow 2-subgroup of G and assume that G is S^-free. 
Then two subsets of S are conjugate in G if and only if they are conjugate in 
(N0(J(S)),Ca(Z(S))). 

Proof. This is an immediate consequence of Lemma 3.2 and the well known 
results of Alperin and Gorenstein on the localization of fusion [1, Theorem 
8.4.5 and Remark, p. 288]. 

4. The main theorem. To make use of Goldschmidt's result, we clearly 
must construct, under the hypotheses of the Main Theorem, a strongly closed 
abelian 2-subgroup. We shall employ for this purpose the following simple 
consequence of Lemma 2.2: 

LEMMA 4.1. Let G be a solvable group admitting an automorphism a of order pn, 
where p is an odd prime not dividing the order of G. Assume that G contains a 
unique <J-invariant Sylow 2-subgroup S and also, that a has no non-trivial fixed 
points in S. Then [S, avn~l] is normal in G. 

Proof. Suppose false and assume G is a counterexample of minimal order. 
If Ov (G) ^ 1, then Oq(G) ^ 1 for some prime q ^ 2 so, applying the induc­

tive hypothesis to G/0Q(G), we conclude that [S, apn~1]Oq(G) is normal in G. 
Now the Frattini quotient A of Oq(G) is a module for S (a) over GF(q) and 
since, by hypothesis, CG(a) normalizes S, CA(a) centralizes S so A/CA(a) is 
also a module for S (a). It follows from Lemma 2.2 (b) that [S, o-vn~l] is contained 
in the kernel of this representation, so [5, vpn~l] centralizes A and hence, Oq(G). 
Therefore, [5, a7*71'1] is normal in G, a contradiction. 

Thus, Ov (G) = 1 so CG(02(G)) ÇI 02(G). If Q is a a-invariant Sylow sub­
group of G of odd order, Q(a) is then faithfully represented on the Frattini 
quotient of 02(G). Since Cs(o-) = 1, we conclude from Lemma 2.2 (a) that 
apn~l centralizes Q. Therefore, G = CG^^S SO [S, a*71'1] = [G, apn~l] which 
is normal in G. This contradiction completes the proof. 

Now we bring these results to bear on the 

Proof of the main theorem. Suppose the theorem is false and assume G is a 
non-solvable 54-free group of minimal order subject to admitting an auto­
morphism a with the stated properties. 

If N is a characteristic subgroup of G, a induces automorphisms of order a 
power of p on both N and G/N, so G must be characteristically simple. Thus, 
G = Gi X . . . X Gm, where m is a power of p, the G/s are isomorphic simple 
groups, and a permutes the G/s transitively. Since each Gt is normal in G, 
S C\ Gt is a Sylow 2-subgroup of Gt so S = (S C\ G\) X . . . X (5Pi Gm). 

NG(J(S)) and CG(Z(S)) are proper c-invariant subgroups of G and hence, 
are solvable. By Lemma 4.1, it follows that if cr has order pn, then (NG(J(S)), 
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C0(Z(S)))ÇNG([S, <jpn~1}). Theorem 3.3 then yields that Z([S, a^1]) is 
strongly closed in S with respect to G. 

If Z([S, <jvn~1}) = 1, then S C CG{dpn~l) so we may choose k ^ 1 to be 
minimal subject t o S C CG(apk). Let r = <rpk and suppose x and y are two 
elements of S such that g~lxg = y for some g in G. Then 

g-ltfg = y = yr = ( g - l t f g ) ' = ( g 7 " ) " 1 ^ 

so gTg-1 centralizes x. That is, r stabilizes the coset CG(x)g. But the orbit 
equation then implies that r fixes some element of this coset so eg £ CG{T) for 
some c £ C<s<(x). Since (cg)_1#(c&) = g~lxg = y, we have shown that two 
elements of S are conjugate in G if and only if they are conjugate in CG(r). 
However, CG(T) is solvable if k ^ n — 1 so Lemma 4.1 implies that CG(T) C 
iV(y([5, o^"1]). From this and the preceding paragraph, we conclude that for 
some k rg n, Z([5, o^*-1]) is non-trivial and strongly closed in 5 with respect 
toG. 

If Z([S, o-^"1]) H Gi = 1, then since [5, c^"1] H Gi is normal in [5, cr^"1] 
it follows that [5, (T "̂1] H Gi = 1. Then S H Gi C C ^ * " 1 ) and since o-
permutes the G/s transitively, we have 5 C CG(O-^ -1), contradicting the 
assumption on fe. 

The upshot of this is that Z([S, apk~1]) Pi Gi is a non-trivial abelian sub­
group of Gi, strongly closed in S f~\ G\ with respect to Gi, so by Lemma 2.1, the 
G/s are isomorphic to certain known simple groups. But we remarked in 
Section 2 that each of the groups in Goldschmidt's list has a unique class of 
involutions. In other words, if x is an involution in Gi, then G\ contains i = 
\G\ : CGl(z)\ involutions, so G has (i + l )m — 1 involutions. But m is a power 
of p so (i + l)m = i + 1 (mod £). Since i is not divisible by p, a must fix 
some involution of G, which contradicts the hypothesis that CG(<T) has odd 
order. This completes the proof of the Main Theorem. 

5. Some remarks. Without the assumption of 54-freeness in our theorem, 
we lose control of 2-fusion and dealing with the question of solvability appears 
much more difficult. However, with more stringent assumptions on the fixed 
point subgroups, something may be said. For example, a glance at the present 
proof reveals that if we assume CG(apn~l) is solvable and contains 5, we already 
have sufficient control of the fusion in 5 to complete the proof of solvability. 
At the other extreme, if we replace the 54-free hypothesis by the assumption 
that CG(apn~1) has odd order, then by Lemma 4.1, every (j-invariant solvable 
subgroup of G is 2-closed and, as in the proof of [5], it follows from a fusion 
result of Glauberman that G is 2-closed. In particular, the assumption in the 
Main Theorem that G is 54-free may be dispensed with if <j has prime order, 
in which case the result may be regarded as a generalization of the theorem of 
Thompson mentioned in the Introduction. 

The hypothesis that a be fixed-point-free on S cannot be omitted. For 
example, if G = L2(S

q) where q = pn, p an odd prime, then G is 54-free and the 
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Frobenius automorphism of GF(3q) induces a coprime automorphism on G of 
order q whose fixed point subgroup is isomorphic to L2(3) and hence, is the 
normalizer of a Sylow 2-subgroup of G. However, if p is not a Fermât prime, 
then Lemma 2.2 holds without either of the restrictions (see [6]) and, at least 
in the 54-free situation, it seems that with a minor modification of the above 
argument, the solvability of G does follow if the hypothesis that a be fixed-
point-free on 5 is replaced by the assumption that for every prime q, Cs(cr) 
normalizes a c-invariant Sylow g-subgroup of G. In particular, if p is not 
Fermât and G is 5Vfree with a unique cr-invariant Sylow ç-subgroup for every 
prime q, then G is solvable. 

Finally, in light of Glauberman's characterization of the 54-free simple 
groups as precisely the groups in Goldschmidt's list (Lemma 2.1), it is apparent 
that our assumption that G have a unique cr-invariant Sylow 2-subgroup is 
superfluous. However, it is not clear to the author how the present argument 
might be modified to avoid this hypothesis. 
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