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ABSTRACT

The evolution of orkital elements of a growing planet
during the accumulation process is considered. The planetary
orbit undergoes perturbations because of random encounters
ard collisions with lodies of its accretion zone and also be-
cause of gravitational interaction with an already formed ma -
ssive planet ("Jupiter"), The mass amd velocity distrilations
of the swarm bodies are assumed to be-given time-dependent
functions. The Fokker ~Planck equation describing the behaviour
of the distrilution function of ortital elements of the grow-
ing planet is worked out and solved. The present mean values
of the eccentricities and inclinations of orbits of the ter-
restrial planets can be explained in the case of their accu-
mulation from a single swarm of bodies with mean mass ~ 107
Mo and with mean eccentricities and inclinmations ~ 0.2,

1. INTRODUCTION

Nearly circular and coplanar orbits of the planets are
one of the main regularities of the Slar system. In Zigl-
ina, Safronov (1976),2iglina (1976), Pechernikova, Vitjazev
(1980),2iglina (1985) the parameters of the planetary orbits
to be expected in the model of accumulation of the planets
from a swarm of s1id bodies have been evaluated. These para-~-
meter s are the "initial conditions" for their further evolu-
tion to the present state. We investigate here the stochastic
behaviour of the planetary orbit at the last stage of accumu-
lation. From analytical evaluations {(Safronov, 1972) and
rumer ical simulations {(Wetherill, 1978) it is known that the
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duration of the late stage of the terrestrial planets forma-
tion is a few tens of millions of years. On the other hard,
the astrophical data restrict the growth time of the gaseous
giant planets g 10 yr (Strom et al., 1989). In the present
paper, besides collisions and encounters with the swarm bod -
ies the secular perturlmtions of an already formed massive
planet are included add itiomally.

2.  THE MODEL

The following model is considered::a growing planet m
undergoes random encounters and collisions (with merging)with
the todies of its feeding zone m' << m and interacts gravita-
tionally with a planet m* >> m, where m* = const. For simp-
licity we suppose that the masses amd velocities of the swarm
lodies are distriluted independently. We assume the Maxwell
velocity distrihation

£, w') = ¢ —-12— y3/2 exp(-3v'2/2jz), @)
273

where v' is velocity relative to the mean velocity of the ko-
dies, which is approximately equal to the circular Keplerian
velocity in the central plane, v, = /.GMO7R, where G is the

gravitational constant, M_ is the Sun mass, R is the distance
from the Sun to the progection of the considered point on
the-:cegtral plane (Fig. 1). The mean square of random velo-

city j© is usually witten in the form
2=, ()
ot

vhere m amd T are the mass and radius of the growing planet,
8 is the Safronov mimber. In this paper, we assume that 6 is
of the order of a fewunits (8 =1 #+ 5)., The mass distrila-
tion is described by some function n(m',t), where nfm',t)dm®
is number of bodies in unit volume with masses in the range
m', m' +dm').

The encounters of the swvarm lodies with the planet are
taken into account according to the two-lody problem when
their mutual distance is < S, where S is usially taken equal
to the lmlf ~thickness of the svarm. The frequencies of en-
counters are collisions are defined as in a "particle -in-a-
box" scheme,i.e. as a product of mumber of ibodies in unit
volume, collision (encounter) cross-section and the relative
velocity. It is also assumed that the planet is growing in
an average manner, i.e., increase of planetary mass during
the time At is equal to its mathematical expectation.
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The orbit of the perturbing planet lies in the central
plane and its eccentricity e* = const. Our consideration
involves only secular perturbations. Let us denote

U, = ecos uw, uy = sin i cos ¢,

u, = e sin  w, u, = sin i sin §,

vhere 0 is the longitude of perihelion,  longitude of the

asrending node, axis x (see Fig. 1) is directed to the peri-
helion of orbit of the planet m*. Then to the first order in
eccentricity and inclinmation the equations for secular vari-
ations read

dul/dt - XUy du3/dt X Uy

G)

- *
duz/dt X Uy x,e*, du4/dt =qUy

’ GM
_ mm*a _ m*a _ (o}
wherexl-_ﬂtlﬁ r X, = 4MQ Bz, n = ;37-2- are the mean

motions of m,a is the semi-major axis of its orbit.

The values Bl and B2 can be expressed in terms of comp-

lete integrals of the first and second kimd (Charlier, 1927).
5 -1

For the Farth-Jupiter system Xy = 3.6.10° Yo, xy = 1.03.
1070 w1,
r 4
m
<3
t
0 -y
A %.
Ve
A
x

Figure l: Geometry of the proklem. The notations are in the
text.
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3. DETERMINATION OF THE DISTRIBUTION FUNCTION OF ORBITAL
ELEMENTS FROM THE FOKKER-PLANCK EQUATION

The random process, in which the elements of orbit of
the groving planet are formed, is defined by us completely,
because the probabilities of encounters and collisions are
determined for given values of orbital elements of the planet.
® it is expected, at least in principle, 'that the distrilu-
tion function of the planetary elements could be fourd depen-
ding on time. In result of encounters amd coll isions, the or-
Fital elements undergo random walks occurring mainly by small
portions. We can suppose in such situation tlat the behav-
iour of the distrilition function is described by diffusion
equation named the Fokker~Planck equation (Chandra sekhar,1%3a)

2
g—£=-z g—(f<ti>)+): 3—2-2 (f<-————(§‘zii>)+
i 9% i auf
2)2 < AuiAuj>
+ I (£ ) 4)
i<y AU X3

where At is the time scale such that the increments of val-
ues u, is small in spite of the large mumber of fluctuations.
In thé prohblem under consideration At >> T, where T is the
period of rotation of the planet around the fun. That is why
we average over the orbit of the planet while finding the

coefficients of the equation, Generally speaking, equation

4) is to be considered for the values Ujreeerlly, Uug =2 si-

multaneously. To simplify the problem we neglect small terms
and put in the coefficients a = constant. It is shown in
Ziglina (1 986) that for the Earth the characteristic change
in semi-major axis is of order 0.1 AU. Note that in Ziglima
(1985), where the perturbations of m* were not considered, the
Fokker -Planck equation was applied to the variables e, i.

3.1 Evaluation of Coefficients of the Fokker -Planck Equation

In order to calculate the coefficients of equation (4),
at first we find the increments Au; (i =1,...,4) due to one
encounter (collision). Then we express the evaluated coeffi-
cients in terms of the increments due to many encounters and
collisions during time At and average over the random varia-.
bles are: m', the mass; v' the random velocity and v true an-
omaly of the planet. The encounter is characterised additio-
nally by the encounter parameter D amd by the angle between
the plane of relative orbit of the body amd the planet amd
the central plane xX. To account for the secular perturlations

140

https://doi.org/10.1017/5025292110006601X Published online by Cambridge University Press


https://doi.org/10.1017/S025292110006601X

by the planet m*, we must add the right parts of the equat-
ions (3) to the values <Au;> /At caused by the encounters
and collisions.

In our calculations, we start with the following formu-
las expressing u. in terms of the coordinates and random ve~-
locity componentsS in the cylindrical coordimate system with
the centre at the &in, z axis perpemdicular to the central
plane and angle ¥ calculated from the same axis as the node

longitude.

u, =v! v, siny + 2v, cosy) + 0 (e? eiz)

1 c R ¥ ! !

u, = vy (w, cos y+ 2v, sin ) + 0(e?, ei?)

2 c R Y v '

_ A -, . .3
uy =V, = v, cos Y + zR sin ¢+ O(ei, i" ),
u, = v;l v, siny- zrL cosy + O (ei, i%y. (5)

We admit that during an encounter the coordinmates of the pl-
anet do not change and its velocity increment is as in the
tw-~body proklem. This approximation is valid when the rela-
tive velocity is not too small. Note that our calculations
are carried out on assumption v << j, where v is ramdom ve-
locity of the planet, as far asm >> m', The results obtai-
ned here agree with this assumption. Calculated in this way
coefficients are as follows:

, 2 m _ .
< m. > ( T n)ui- Bui i=1,2
l =
At
- g_ui 1= 3,4
(6)
< Aui)2> 5 @' m i;_+ 5 cemmti 2 m o p  im1,2
- ‘—'—2— - - = r
2At 1 m v 6 ¢
C
P
5 i= 3,4
< Api Auk_> <(Aui)2> V2
_ dm 3 .1/2  ~2 .
where m = Erli 4( 5 Tt p67, (7)
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n=26mY2% 6% megy ™, ®)

m' is the mean mass of the bodies with the weight function
m'nm',t),p is the spatial density of the lodies in the cen-
tral plane,

( —25 ), (9)
3y o1

Yy = 1,781... is the Baler constant. f = 10 + 4 for the terre-
strial planets at & = 1.

-_§-=2en

In formulas (6), the terms caused by encounter s are
~ Of times larger than one caused by collisions.

It can be shown that in every point of the planetary or -
bit the encounters of the planet with the swarm bodies res-
ult in

< MNo> -+
T A\ 10)

Here At << T. According to Chandrasekhar's (1943b) defini-
tion, n is the coefficient of dynamical friction. Correspond -

ingly, the value n—l = is the relaxation time of the

T
rel
planetary velocty. From (7) and (8) it follows that the rel-
axation time of the planet is 6f times less than the charac-
teristic growth time of the planet m/m, i.e. more than an
order.

3.2 The ®lution of the Fokker-Planck Equation

NMw we substitute the coefficients (6) into the equation
(4).Then the distrilation function £ (ul, ...,u4,t) = fl (ul,

u2,t).f2(u3,u4,t), where £, and f, smtisfy the equations

of, 3 3
a—'—': - au_l [fl (—Bul-xluz)] - '3_"1—2_ [fl (-BU.2'b(lul- x2e*)]
22E,p) 22 ()
+ +
2 2 4 1)
aul Buz
of
2_ _ 3 -8 -3 - B4 -
5T = 3u3 [fz( Fus + x1u4)] 8u4 [fz( 5 Uy xlu3)]
226, p/5) 8% (£,p/5)
+ +
3 2 au2
U3 4
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At the initial moment t = 0; Uy = Ujgressrly = u40. S the

initial conditions are:fl (ul,u2,0) = (ul-ulo).G (u2- u20)’
fz(u3,u4,0) = 6(u3-u30).6 (u4 = u40). The solutions can be

easily found because the equations are linear. The complex
eccentricity z = u; + vlu, is a sum of the "forced" eccent-
xlxze* - 3-1 Bx,

3 5 and the "free" eccentric-
B” + x

ity, which moves along the circle with the frequency Xy at
time scales At << Trel® At time t Treal relation “the

ricity a+ /=If =

initial values are "forgotten" and the distrilution of the
components of the free eccentricity tends to the Gaussian
distrihition symmetric relative 0 and with dispersion

t
2 t -f 28 dx
c“ =4/ PeV¥ dy t2)
0
The value [ = ug + /T u, circulates in retrograde direction

with the same frequency. Since sinzi = u§ + ui the inclina-

tion is constant during time interval At << Trel® At time

t >> Trel’ f2 terds to the Gaussian distrilition with dispe-
rsion .
t
=/ Pe y dy a3)
0

3.3 The Distribution Function of e and i
The distributions fe(e,t) and fi(i,t) can be expressed
in terms of the joint distrilations £, (ul,uz,t) and fz(u3,
. e s . L C 2 2
u4,t) since e = /ul +u; and i 3 sin i = Jujt+u, .

€ 2 2 22

fe(e,t) = {-e [fl (ul, Ve -uy .t) + fz(ul,-/e ~u;,t)]

ed u

X i w4)

/ez-‘u]z_
The formula for f£,(i,t) is analogous. The complete express-
ions for £_and f, are rather cumbersome, so we don't cite
them here. The d&pendence of the distrilution functions up-
on the initial values is damped quickly because of the act-
ion of dynamical friction. All distrilutions of eccentricity
at t >> T.e1 @Ppear to be close to the distrilation

143

https://doi.org/10.1017/5025292110006601X Published online by Cambridge University Press


https://doi.org/10.1017/S025292110006601X

2e /a2+ b2

~ 2 2 2
_ 2e _e+a+b
fe(e.t) = — expl ——7——-110( ) ) 5)
c c c
with the root mean square value
< e2 s1/2 /a2+ b2+ c2 (16)

I (z) is the Bassel function of imaginary argument of zero
order., For inclination at t >> ‘Trel all solutions tend to the
Rayleigh distribation izldz

- 2ie
fi(l,t) = :2- 17)

The characteristic width of this curve ~d. With probalbility
0.8 the inclinmation is enclosed in the interval 0.3d < i <
1.5d. The distrihition f (e,t) is shown in Fig. 2a for some
values of parameters.

3.4 The Root Mean Square Values of the Eccentricity and
Inclination

The planet's mass is an increasing function of time t.
Therefore in integrals (12) amd (13), we can pass from the
integration variable t to m. Neglecting in expressions (6)
for B and P quantities resulting from collisions in compari-
son with ones resulting from encounters, we obtain

m
c2 = f lTonm_'"T 1 ch exp - 7 20878 dt)éx,
m_ X
(o}
n 18)
m — - -
d2=f ;— fm'lvczexp(—f OfrldT)dx,
m X
o .
wherem_ is the planet's mass at the initial moment. From
these formulas for t >> 1 , 8 = const., m'/m = const.
rel
follows
2 5 Gm m—,
¢’ = — — (1 +0@Q/ef)),
38T v m
¢ L9)
o
a? = A8 T (1 4 0q/ef))
38t ‘

(¢]
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These relations are approximately valid also for variable
ratiom'/m = Ifm). The relative error is of order 4l m/ 16§

For the Maxwell velocity distrilution of the %rm bod -
ies we £ind

. 2
2. _ 5 42, _ 2
< el>_3__3_ ’ <jit >_§_12.. (20)

v v
c C

Ther efore,neglecting the values of the order 1/‘95, we can re-
wite the relations (19) in the form

2 RNl

(o] = < 2

= <jr2, ML (21)
m

These relations correspond to equipartition of "free"
random energy between the planet and the bodies with mean
mass m'. It can be shown_tat the values (21} are quasi-equ-

cq e s . 2 .2 .
ililr ium meansings of < efree> and <i¢> , where €rrce 1S the

modulus of free eccentricity.

4. CONCLUSION

In the present paper the distrilution function of the
orbital elements Upreeerly amd e,1i have been fourd and their

properties examined. In the course of the calculations, the
expression for the coefficient of dynmamical friction, which
acts on the planet during the accumulation,is found. For co-
ncrete results, we need to define the functions m' (t), ©(t)
ard m(t). These values can ke taken from the other wrks de-
voted to accumulation of the planets. According to Wetherill
(L978,1980),Vitjazev anmd Pechernikova (1 981) at the last sta-
ge of formation of the terrestrial planets € v 1 armd the mean
mass of the swarm bodiesm' ~ 1072 M,. The eccentricities
and inclinations of the planets obtalned in result of mumeri-
cal simulations (Wetherill 1978,1980) are of order of the mo-
dern values., Our work agrees with this resalt. Actually, saub-
stituting the alove mentioned quantities @nd m ~M_) in the
formulas (21) we find ¢ = 0,034, 4 = 0.021. At e* equals to
its maximum value per Jupiter ( ~ 0.06), e = jaz' T b°

= 0,017, e'rms = 0,038, The increase of e orcge to Jupiter

~ms
perturbations is ) {0%. In the case ¢ > e ced Fig. 2b,
= + = ]
curve 2) the value e (emin € ax }/2 = c. According to

Bower and Clemence (L961) the Earth's eccentricity varies
between 0 and 0.067, the inclination varies between 0 and
0.051. c and €, d and T turn out to be comparable. The rms
eccentricity and inclination of the swarm lodies in the Earth
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zone at the last stage of accumulation at € =1+ 3 are
(£.20) < e

% onk
]

-

2.,1/2 _ 5.2 + 0.34, <i'?251/2_0.1 : 0.2

u2lc

{b)

Figure 2: (a) Distrilution of eccentricity Ee for three values
of the forced eccentricity modulus: l-eforceg =0

2-er o = 076 3-ep g™ de. (b) Complex

eccentricity z = u; + YI-u, in these three cases

at eg e < € b = 0. The eccentricity e = |z|.
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At time scale of a fewmillions of years, the secular
variations of elements of planetary orkits are described by
the averaged equations. These variations are quasi-periodic.
From recent studies it is known (Lekar, 1989) that at larger
time scales (for the terrestrial planets ~ 10° yr) the beha-
viour of the planetary orbits is stochastic. lowever, that
does not mean that the orbits had undergone drastic changes
Milani,1989).We suppose that the orbits did not change sig-
nif icantly during the life of the Solar System. Then by an-
alogy with the above example we can assume that the mean val-
ues of eccentricities and inclinations of the planets are
stipulated mainly by the encounters with the bodies during
the accumulation process, i.e. that e v ¢, 1 v d, where

T = (i min lmax )/2. For the terrestiral planets the ratio

of the mean eccentricity to the mean inclimation varies from
1.25 (for Vemus) to 1.42 (for Mars). These gquantities quite
well agree with the ratio ¢/d = 1.6 obtained here. Therefore,
from our point of view,the fact that the eccentricities and
inclinations of the planetary orbits are of the same order is
a consequence of the planetary accumulation from the bodies
with comparable eccentricities and inclinations of orbits. It
is easy to note that the mean (and also the maximum) eccentr -
icities and inclinations of orkits of the terrestrial planets
are in rough random energy equipartition. This can be a res-
ult of a considerable overlapping of the feeling zones of
these planets, which led tg approxmately the same mean mas-
ses of the bodies ( v 107 and mean eccentricities and

Mg)
2 ,1/2

inclinations of their orbits ( <e' 2,172

noo<it ~v 0,2).
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