PROBLEM FOR SOLUTION

P. 162. Let G be a finite abelian group, written additively, and S a subset of $G . S$ is said to be a sum-free set in G if $(S+S) \cap S=\phi$. Let $\lambda(G)$ denote the largest possible order of a sum-free set in G.

For which abelian groups G does there exist a sum-free set S such that (i) $|S|=\lambda(G)$
and (ii) $|S+S|=\frac{\lambda(G)[\lambda(G)+1]}{2}$?
A. P. Street, University of Alberta

SOLUTIONS

P. 154. Let n identical weighted coins, each falling heads with probability x, be tossed, and let $p_{i}(x)$ be the probability that exactly i of them fall heads. Evaluate

$$
\begin{array}{rl}
\mathrm{f}_{\mathrm{n}}= & \min \\
0 \leq \mathrm{x} \leq 1 & \mathrm{max} \\
& \\
& \text { W. Moser, McGill University }
\end{array}
$$

Solution by D. Ž. Djoković, University of Waterloo
Let $f_{n}(x)=\max _{i=0,1, \ldots, n} p_{i}(x)$.

Since

$$
p_{i}(x)=\binom{n}{i} x^{i}(1-x)^{n-i}
$$

and

$$
\frac{p_{i}(x)}{p_{i+1}(x)}=\frac{i+1}{n-1} \cdot \frac{1-x}{x} \quad(i=0,1, \ldots, n-1)
$$

we infer that

$$
f_{n}(x)=\binom{n}{i} x^{i}(1-x)^{n-i}, \frac{i}{n+1} \leq x \leq \frac{i+1}{n+1}
$$

for each $i=0,1, \ldots, n$. We see that $f_{n}(x)$ is decreasing in $\left(0, \frac{1}{n+1}\right)$
and increasing in $\left(\frac{n}{n+1}, 1\right)$. In the interval $\left(\frac{i}{n+1}, \frac{i+1}{n+1}\right)(i=1, \ldots, n-1)$ it is increasing for $\frac{i}{n+1}<x<\frac{i}{n}$ and decreasing for $\frac{i}{n}<x<\frac{i+1}{n+1}$.
Therefore

$$
f_{n}=\min _{i=1, \ldots, n} a_{i}
$$

where

$$
a_{i}=f_{n}\left(\frac{i}{n+1}\right)=\binom{n}{i} \frac{i^{i}(n+1-i)^{n-i}}{(n+1)^{n}}
$$

We have

$$
\frac{a_{i}}{a_{i+1}}=\frac{\left(1+\frac{1}{n-i}\right)^{n-i}}{\left(1+\frac{1}{i}\right)^{i}} \quad>1, \quad \text { if } \quad i<\frac{n}{2}
$$

Taking into account the symmetry $\left(a_{i}=a_{n+1-i}\right)$, we get

$$
f_{n}=\left(\sum_{k}^{n}\right) \frac{k^{k}(n+1-k)^{n-k}}{(n+1)^{n}}
$$

where k is the integral part of $\frac{n}{2}$.

Also solved by G. Letac, I. B. MacNeill, K. G. Miller, R.A. Schaufele, and the proposer.
P. 155. If $a_{1}<a_{2}<\ldots<a_{k} \leq n$ is a sequence of positive integers such that $\left[a_{i}, a_{j}\right]>n$ for all $i \neq j$, show that $\sum_{i=1}^{k} \frac{1}{a_{i}}<2$,
($\left[a_{i}, a_{j}\right]$ means "the least common multiple of a_{i} and $a_{j}{ }^{\prime \prime}$).

Anonymous
P. Erd ${ }^{\prime}$ s and A. Makowski have pointed out that this problem was posed for solution in the Amer. Math. Monthly, 56 (1949) p. 637, by Erdös. A solution with a better constant than 2, by R. Lehman appeared ibid., 58 (1951), p 345. Finally, A. Schinzel and G. Szekeres, Acta Sci. Math. (= Acta Szeged) 20 (1959) pp. 221-229, prove that the sum considered is $\leq 31 / 30$ and that this constant is best possible.

