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The Weibel instability is investigated theoretically and numerically under three scenarios:
counterstreaming electron beams in background plasma, an electron–positron beam and
an electron–proton beam in background plasma. These models occur widely in laboratory
and astrophysical environments. The Weibel instability growth rates are determined
numerically from the corresponding cold-fluid dispersion relations, which are confirmed
with two-dimensional particle-in-cell simulations. The maximum growth rates for the
counterstreaming beams in background plasma are an order of magnitude smaller than the
maximum growth rates for the beams cases in the same range of density ratios and beam
energies. The maximum growth rate for the electron–positron beam case is shown to be
at most a factor

√
2 greater than the electron–proton beam case with similar dispersion

behaviours. A non-monotonic relation is found between the maximum Weibel instability
growth rates and the electron–positron beam energy, suggesting that increasing beam
energies does not entail an increase in the Weibel instability growth rate.
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1. Introduction

The mechanisms by which high-energy cosmic rays are accelerated is an unresolved
issue which attracts considerable attention. Fermi proposed that the interaction between
particles and magnetic fields in the cosmic environment was responsible for the inverse
power law spectra of the cosmic radiation (Fermi 1949): this is known as Fermi
acceleration. Fermi acceleration is expected in collisionless shocks found in extreme
astrophysical environments (Sagdeev 1966; Tidman 1969) which grow from Weibel
instabilities (Weibel 1959). In the astrophysical context, the only way to probe these
acceleration mechanisms is from telescopic observation of their radiation spectra. With the
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development of high-power lasers (Maine et al. 1988) and advanced diagnostic techniques,
a new field of laboratory astrophysics has been opened up (Remington et al. 1999). This
allows for aspects of these astrophysical environments to be mimicked in a laboratory
setting where the plasmas can be probed directly with diagnostics and compared with
numerical simulations (Dawson 1983). For example, the interaction between intense
relativistic laser light with solid targets can accelerate ions to high energies under various
mechanisms (Passoni, Bertagna & Zani 2010), including shock formation (He et al. 2007).
Furthermore, direct observation of turbulent magnetic fields in hot dense laser target
interactions has been reported (Mondal et al. 2012). The dynamics of plasma beams
have been explored experimentally and with simulations (Hsu et al. 2015; Liu et al.
2017). The interaction between colliding plasma beams shows magnetic compression and
experimental evidence of proton acceleration (Higginson et al. 2019).

Furthermore, the collision of relativistic beams with plasma mimicking the background
interstellar medium near young stellar objects and Herbig–Haro objects has been
investigated (Gregory et al. 2008; Valenzuela et al. 2015). Lepton beams into background
electron–proton plasmas are a promising source of high-energy cosmic rays via
Weibel-induced moving magnetic islands (Cui et al. 2015) and can show preferential
positron acceleration (Dieckmann et al. 2020). The interaction of relativistic plasmas,
electron–proton or leptonic, with background plasma are of great importance in the study
of these extreme astrophysical environments. Understanding the theoretical dispersion
relations of the Weibel instability in these plasmas is crucial.

There has been extensive work in the field of plasma instabilities. Counterstreaming
electron–positron pair two beam plasmas have shown an instability, both Weibel and
two-stream, depending on beam parameters (Bret et al. 2013). Detailed three-dimensional
(3D) particle-in-cell (PIC) simulations have been performed for interpenetrating
electron–positron shells (Fonseca et al. 2003; Silva et al. 2003). However, there
was no inclusion of a background electron–proton plasma in these models and
simulations. Theoretical work using distribution functions and kinetic theory have
been performed on relativistic unmagnetised plasmas (Yoon & Davidson 1987;
Achterberg & Wiersma 2007; Achterberg, Wiersma & Norman 2007; Yoon 2007) which
currently are limited to the simplest cases. Further work is needed in the cold-fluid
formalism to explore the instabilities in background electron–proton plasmas with beam
electron–proton plasma flows and beam lepton pair plasmas (Bret, Gremillet & Dieckmann
2010).

This paper investigates the Weibel instability in three scenarios: counterstreaming
electron beams in background plasma, an electron–positron (lepton) beam in background
plasma and an electron–proton (plasma) beam in background plasma where all plasmas
are cold. The corresponding dispersion relations are derived theoretically in the cold-fluid
formalism and compared with fully relativistic two-dimensional (2D) PIC simulations.
The theoretical dispersion relation for the Weibel instability is first reviewed following
the work in Pegoraro et al. (1996). This dispersion relation is extended to the scenario
of three electron populations in which one cold population is at rest with respect to the
proton frame at the beginning. It is then further extended to the scenario of a lepton
beam incident on a background electron–proton plasma. The lepton beam extension is
adapted to the third scenario of a plasma beam incident on a background electron–proton
plasma. The relation of the Weibel instability growth rate to the number densities of
the plasma species and the beam energies is explored for all cases and compared to
PIC simulations. The maximum Weibel instability growth rates are predicted for a
range of beam energies and plasma species densities using the newly derived dispersion
relations.
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2. Theoretical model
2.1. General dispersion relation

The generalised dispersion relation of the plasma instabilities in counterpropagating
beams in plasma with a general perturbation wavevector is derived in Califano, Pegoraro
& Bulanov (1997). The transverse mode of the perturbation represents the Weibel
instability. However, it is noted that in highly relativistic beams and asymmetric beams
the fastest-growing mode may not be the Weibel instability but the scope of this work is
determining the growth rates of transverse magnetic fields, potentially leading to Fermi
acceleration. Consequently, the reduced transverse dispersion relation for the Weibel
instability for an electron–ion plasma is examined following the work by Pegoraro et al.
(1996) which is easier to deal with analytically.

An initially uniform plasma contains two counterpropagating electron beams with an
immobile neutralising ion background. The electron beams propagate along the x-axis
of the system and have initial unperturbed number densities defined as n0α with α =
1, 2 denoting the electron species. The ion background has density ni = ∑

α n0α which
neutralises the global electron charge of the system. The global net current density is
zero. The initial unperturbed electron beam velocities are defined as v0xα with their
three-momenta given by vα = cpα/(m2c2 + p2

α)
1/2. All variables are assumed to depend

on y and time. From this, the relativistic dynamics of the electrons are described by
the following equations with A the vector potential field defined by the magnetic field
B = ∇ × A:

pxα − e
c

Ax = p0xα, (2.1)

∂pyα

∂t
+ vyα

∂pyα

∂y
= −e

(
Ey − vxα

c
Bz

)
, (2.2)

∂nα

∂t
+ ∂(nαvyα)

∂y
= 0. (2.3)

The electron momenta and densities are coupled with the following Maxwell’s equations
(Griffiths 2013):

∂Ey

∂y
= 4πe

(
ni −

∑
α

nα

)
, (2.4)

∂Bz

∂y
= −4πe

c

∑
α

nαvxα + 1
c

∂Ex

∂t
, (2.5)

1
c

∂Bz

∂t
= Ex

∂y
, (2.6)

− ∂2

∂y2
Ex = −1

c
∂

∂t

(
∂Bz

∂y

)
. (2.7)

Maxwell’s equations and relativistic dynamics equations are linearised using a
plane-wave approximation of the form ∼ exp(−iωt + iky) for the velocities, densities and
fields with ω being the perturbation angular frequency and k the perturbation wavevector.
The applied transverse electric perturbation field is given by E1 = E0 exp(−iωt + iky)x̂.
In this linearisation process, the following operations become ∂/∂t → −iω and ∇ → ikŷ
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for ease. It is found that the first-order components for these variables give the following:

v1yα = e
iωmΓα

(
Ey + k

ω
v0xαEx

)
, (2.8)

v1xα = e
iωmΓ 3

α

Ex, (2.9)

n1α = en0αk
iω2mΓα

(
Ey + k

ω
v0xαEx

)
, (2.10)

Ey = 4πe2

∑
α

n0αv0xα

mΓα

k
ω(

ω2 − 4πe2
∑ n0α

mΓα

)Ex. (2.11)

When the above definitions of the first-order quantities are introduced into (2.7) with the
substitution of (2.5), a sixth-order dispersion relation is found for mode frequency ω and
perturbation wavevector k:

(ω2 − Ω2
a )[ω

4 − ω2(k2c2 + Ω2
b ) − k2c2Ω2

c ] − k2c2Ω4
d = 0, (2.12)

where

Ω2
a = ω2

pe

∑
α

n0α

niΓα

, Ω2
b = ω2

pe

∑
α

n0α

niΓ 3
α

,

Ω2
c = ω2

pe

∑
α

n0αv
2
0xα

niΓαc2
, Ω2

d = ω2
pe

∑
α

n0αv0α

niΓαc
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

with the non-relativistic plasma frequency ωpe ≡ (4πe2ni/m)1/2 and the Lorentz factor
Γα = (1 − v2

0xα/c2)−1/2. The dispersion relation in (2.12) can be solved by a substitution of
variables, u = ω2, reducing the sextic dispersion relation to a cubic equation. This cubic
equation can be solved numerically with numpy.roots function in Python. This function
involves computing the eigenvalues of the companion matrix (Johnson & Horn 1985).

Three branches can be observed from the solutions to the dispersion relation, two
oscillatory modes (Im(ω) = 0) and one exponentially growing mode with a non-vanishing
imaginary component (Im(ω) �= 0). The exponentially growing mode is responsible for
the Weibel instability. By defining ω = iγ , the growth rate γ can be calculated from the
exponentially growing mode as a function of the perturbation wavevector k. Curves for
both non-relativistic and relativistic cases of two counterstreaming electron beams with a
neutralising ion background are shown in figure 1, showing the growth rate of the Weibel
instability as a function of k2.

The maximum growth rate is achieved in the short-wavelength limit where k2c2 �
Ω2

a ,Ω
2
b ,Ω

2
c ,Ω

2
d . When this limit is applied to (2.12), equation (2.14) is returned, which

shows no dependence on the wavevector k. In the long-wavelength limit where k2c2 ∼ 0,
the growth rate follows a linear dependence on the perturbation wavevector k given by
(2.15). These limits follow from Pegoraro et al. (1996). The limits are dependent on the
Ω2

i terms found in the dispersion relation (2.12), which are determined by the density and
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FIGURE 1. Instability growth rate for both a non-relativistic and relativistic case. The two beams
have equal number density, i.e. n0,1 = n0,2 = ni/2. In general, all dispersion relations follow the
same pattern where the growth rate reaches a maximum at short perturbation wavelengths.

beam velocity parameters of the system

γ ≈ {[(Ω2
a + Ω2

c )
2 − 4Ω4

d ]1/2 − (Ω2
a − Ω2

c )}1/2/
√

2, (2.14)

γ ≈ kc[(Ω2
a Ω

2
c − Ω4

d )/(Ω
2
a Ω

2
b )]

1/2. (2.15)

The collisional effects between plasma species can be ignored if the electron collision
rate is much smaller than the Weibel instability growth rate. The instability growth rate,
γ , can be determined in units of the plasma frequency, giving γ = γg[ωpe], where γg is the
magnitude of the instability growth rate. Using the formulae for the electron collision rate
and the electron plasma frequency from the NRL formulary (Huba 2013), a condition for
the collisional effects to be ignored can be determined,

ne

T3
e

	
( γg

ln Λ

)2
9.52 × 1018, (2.16)

where ln Λ is the Coulomb logarithm, ne is the electron number density in units of cm−3

and Te is the electron temperature in units of eV. For example, if ln Λ = 10 and electron
density of ne = 1018 cm−3 are assumed whereas the instability growth rate is found to be
γ = 10−1 ωpe, then the electron temperature must be Te � 10.2 eV for collisional effects to
be ignored. Consequently, collisions are neglected in both the derived theoretical models
and PIC simulations. If a low-density plasma is considered, then this model assumption is
valid.

2.2. Three-electron-populations case
Extending from the work in § 2.1, the case of three electron populations with an
immobile proton background is examined and the dispersion relation determined. This
case involves two counterstreaming beams of electrons as previously and an additional
third cold electron population with zero drift velocity with respect to the immobile proton
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(a) (b)

FIGURE 2. Growth rate as a function of the perturbation wavenumber for (a) the
three-electron-populations case, and (b) the lepton-beam case and the plasma-flow case, where
the short- and long-wavelength limits are shown by the red and green dashed lines, respectively.
The three-electron-populations case has a density ratio of nback/2nbeam = 10 and beam Lorentz
factors Γα = 3.57. The lepton-beam and plasma-flow cases have the parameters nj/np = 0.5 and
Γj = 100. The short-wavelength limit of the lepton-beam case is a factor of

√
2 larger than the

same limit in the plasma-flow case.

background. Similarly, the number densities of the three populations must equate the
number density of the proton background and net current density in the system is zero.
What is found is a dispersion relation with the same functional form as the two-beam case
(2.12) with an adjustment to the Ω2

a and Ω2
b terms

Ω2
a = ω2

pe

[∑
α=1,2

(
n0α

niΓα

)
+ n0,3

ni

]
,

Ω2
b = ω2

pe

[∑
α=1,2

(
n0α

niΓ 3
α

)
+ n0,3

ni

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.17)

The population with α = 3 is the cold background electron population and has been
shown explicitly for clarity. These terms therefore depend on the number density of the
cold electron background. Here Ω2

c and Ω2
d remain unaffected by the background electron

population as the drift velocity is v03x = 0 by definition.
The largest difference between the two-beam case and the three-populations case occurs

in the relativistic regime. In the two-beam case, Ω2
a and Ω2

b tend to zero as the Lorentz
factors Γα increase due to electron inertia. For the three-population case, Ω2

a and Ω2
b follow

Ω2
a ≈ Ω2

b → ω2
pe(n0,3/ni) in the relativistic limit, which is significant if the stationary

density is a large fraction of the total electron density.
The perturbation wavelength limits formulae (2.14)–(2.15) were applied to the

three-electron-population case by substituting the new Ω2
a and Ω2

b terms, this is shown in
figure 2(a). A large density ratio of nback/2nbeam = 10 is chosen because there is significant
change to the original two-electron-beam model used to derive the original limits in
Pegoraro et al. (1996). Both the short- and long-wavelength limits still agree with the
new dispersion relation for the three-electron-populations case.

https://doi.org/10.1017/S0022377822000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000253


Weibel instability in beam–plasma interaction configurations 7

There are competing modes for the Weibel instability in the three-electron-population
case due to beam–beam and beam–background interactions. This is determined by
comparing the dispersion relations of the two-beam, one-beam-on-background and
the three-population cases. At high background densities of 2nback/nbeam ≥ 1, the
beam–background interaction dominates leading to the three-electron-population case to
follow the one-beam-on-background case for all k values. Meanwhile, at low background
densities of 2nback/nbeam < 0.01, the beam–beam interaction dominates leading to the
three-electron-population case following the two-beam case for all k values. In the density
regime between those endpoints, the beam–background interaction dominates for k < 1
whereas the beam–beam interaction dominates for k > 1.

In the cold-fluid formalism, the short-wavelength limit, where k → ∞, gives a saturated
maximum instability growth rate (Bret et al. 2010). The short-wavelength limit can be
analysed analytically to retrieve the scaling with beam velocity and density parameters
when working with equal density and speed beams for the three-electron-populations case.
For this case, Ω2

d = 0 and (2.14) reduces to

γ

ωpe
≈ β

√
1

Γb(R + 1)
, (2.18)

where γ is the maximum growth rate, Γb is the beam Lorentz factor, β = v/c and R =
nback/2nbeam. Equation (2.18) can be applied to the low- and high-beam-density regimes to
give

γ

ωpe
≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β

√
1

RΓb
, for R � 1,

β

√
1
Γb

, for R 	 1,

(2.19)

which are comparable to the scalings found in table I in Bret et al. (2010) for electron
beams incident on electron–ion plasmas. Consequently, in the three-electron-populations
case the maximum growth rate is dependent on the beam-to-background-density ratio
and the beam Lorentz factor in the low-beam-density regime. Meanwhile, in the
high-beam-density regime the maximum growth rate decouples from the density ratio and
is wholly dependent on the beam Lorentz factor.

2.3. Lepton beam and plasma beam cases
The lepton beam into a background plasma case is also examined with a similar
linearisation process. The electron–positron beam has both net zero charge density and
zero current density, i.e. ne−,0j = ne+,0j = n0j/2 and ve−,0j = ve+,0j = v0xj and is travelling
in the positive x direction. The background electron–proton plasma has zero net charge
(ne = np) and zero electron drift velocity with the protons being frozen. There is no
restriction between the density of the lepton beam and the density of the background
electron–proton plasma as individually they satisfy the neutrality requirements. When
the linearisation process is applied to Maxwell’s equations and the relativistic dynamics
equations, a comparable dispersion relation to (2.12) is found albeit with a change in the
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Ω2
i terms which are as follows

Ω2
a = ω2

pe

(
n0j

npΓj
+ 1

)
, Ω2

b = ω2
pe

(
n0j

npΓ
3

j

+ 1

)
,

Ω2
c = ω2

pe

n0jv
2
0xj

npΓjc2
, Ω2

d = ω2
pe

n0jv0xj

npΓjc
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.20)

The terms are normalised to the background electron–proton plasma frequency, in this
case ωpe. Similarly to the three-electron-populations case, the Ω2

a and Ω2
b terms have a

component that is unchanged for differing beam velocities due to the electron density in
the background plasma. In the ultrarelativistic limit, Ω2

a ≈ Ω2
b → ω2

pe, which means the
electron inertia becomes wholly dependent on the electron–proton plasma density.

The perturbation wavelength limits formulae (2.14)–(2.15) were applied to the
lepton-beam case by substituting the new Ω2

i terms, which is shown in figure 2(b). A
density ratio of nj/np = 0.5 is chosen so that the beam density is a significant fraction of
the background plasma density, hence the Weibel instability growth rate is appreciable.
A beam Lorentz factor of Γj = 100 is chosen such that model is in the relativistic beam
regime. There is great agreement between the short- and long-wavelength limits with the
dispersion relation for the lepton-beam case.

For a plasma beam incident on a background electron–proton plasma, the derivation of
the dispersion relation follows from the lepton-beam case with the change of positrons
to protons in the beam. This means the positive charges within the beam are now
approximately 1836 times heavier than the electrons although their initial velocities are
equal to maintain current density neutrality. The protons in the flow are not frozen. The
Ω2

i terms derived from the dispersion relation are as follows:

Ω2
a = ω2

e

(
n0j

2npΓj
+ 1

)
+ ω2

p
n0j

2npΓj
, Ω2

b = ω2
e

(
n0j

2npΓ
3

j

+ 1

)
+ ω2

p
n0j

2npΓ
3

j

,

Ω2
c = n0jv

2
0xj

2npΓjc2
(ω2

e + ω2
p), Ω2

d = n0jv0xj

2npΓjc
(ω2

e + ω2
p),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.21)

with non-relativistic electron and proton plasma frequencies given by ω2
e = (4πe2np)/me

and ω2
p = (4πe2np)/mp, respectively. With respect to the lepton beam Ω2

i terms, the
plasma-flow terms show a factor of 1/2 wherever the density ratio n0j/np is found and
there is a small addition to all terms due to the perturbation of the protons in the beam
(ω2

e/ω
2
p ≈ 1836). The overall behaviour of the dispersion is comparable to the lepton-beam

case with the difference in the short-wavelength limit growth rate shown in figure 2(b).
The lepton-beam case shows a factor

√
2 increase in the short-wavelength limit growth

rate compared with the plasma beam case in the relativistic or low n0j/np density ratio
regimes with the same beam Lorentz factors. This is due to the maximum instability
growth rate being a function of the density ratio n0j/np as seen in table I of Bret et al.
(2010) in the low-beam-density regime. Therefore, the inherent doubling of the density
ratio when comparing the lepton-beam case to the plasma-flow case leads to the

√
2 factor

in maximum growth rate.
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3. Comparisons with PIC simulations
3.1. PIC simulations and growth rates

The PIC simulations are performed using the open-source code Smilei (Derouillat et al.
2018). The simulation box is set with 20λk in both the x and y directions where λk
is the wavelength of the applied electric perturbation field given by λk = 2π/k. The
perturbation wavevector k is normalised to the reference frequency ωr/c where in
the counterstreaming-beam cases, ωr is given by the plasma frequency of all electron
populations ω2

pe = 4πne,totale2/me. In the beam cases, ωr is given by the background
electron plasma frequency ω2

pe = 4πnpe2/me. The grid spacing d for both directions is
λk/8 for most of the simulations and the timestep is half the grid spacing, 
t = 0.5 ∗ d/c.
The grid spacing d = λk/16 is sometimes used to determine the growth rate at low values
of k where the timestep becomes too large to resolve the linear regime. The number of
particles per cell for both electrons and protons is 256. The boundary conditions for both
fields and particles are periodic. Perturbations are applied via a transverse electric field
Ey of sinusoidal form with wavelength λk and an amplitude of 0.001 mecωpe/e in plasma
units. With the parameters defined as such, the timestep and grid spacing are different for
each perturbation wavevector k and this is taken into account when the diagnostics are
analysed.

The computational Weibel instability growth rates are determined from the
electromagnetic energy density diagnostics of the PIC simulations. In CGS units,
the electromagnetic energy density is u = (1/8π)(E2 + B2), using the Bz component for
the Weibel instability and the introduction of the plane wave perturbation, the following
equation can be found

log(u) = 2γ t + log
(

B0

8π

)
, (3.1)

where u is the electromagnetic energy density given by Bz, γ is the Weibel instability
growth rate, t is time and B0 is the amplitude of the plane wave perturbation derived from
Faraday’s law (2.6) on the applied perturbative electric field. The gradient of a linear fit to
a log plot of u gives m = 2γ , which is used to determine the growth rates of the Weibel
instability from the PIC simulations at different values of k. These PIC determined growth
rates are compared with the growth rates determined from the derived dispersion relations
to check the accuracy of the models.

3.2. PIC simulations for the three-electron-populations case
In these simulations, the two counterstreaming electron beams are initialised with equal
density and magnitude in momentum for the sake of simplicity. In the first set of
simulations, the ratio of the counterstreaming beam densities and the background electron
population is fixed with nback/2nbeam = 0.5. The Lorentz factor for the counterstreaming
beams is varied to see its effect on the Weibel instability growth rate. The comparisons
between the linear dispersion theory and PIC code determined growth rates are shown in
figure 3 along with the maximum growth rate scaling from (2.18). It should be noted that in
the non-relativistic regime, the electrostatic field also grows via an instability. The growth
rates for both the transverse Weibel instability and the longitudinal electric field instability
were found to be similar thereby the majority electromagnetic energy comes from both the
transverse magnetic and longitudinal electrostatic fields.

Focussing on the Weibel instability growth rate, it shows a strong linear dependence
with k in the long-wavelength limit, which contrasts with the original two population
case in the relativistic regime seen in figure 1. The introduction of the background
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FIGURE 3. Instability growth rates for the three-electron-populations case with differing
Lorentz factors. The ratio between the added beam densities and the background density
is nback/2nbeam = 0.5. The beam Lorentz factors are determined from the rest frame of the
immobile protons and the crosses are the growth rates in the PIC simulations. The dotted lines
give the short-wavelength limit from (2.18).

electron plasma with a comparable density to the beams, which affects the Ω2
a and

Ω2
b terms, causes the strong linear dependence to remain in this limit. This is due

to competing instabilities for the beam–beam interaction and the beam–background
interaction. It is found qualitatively that the beam–beam Weibel instability dominates
at high k values and low background plasma densities, whereas the beam–background
Weibel instability dominates at low k values and high background plasma densities.
For nback/2nbeam = 0.5 found in figure 3, the beam–background interaction dominates,
which produces the strong linear dependence for lower values of k. Overall the dispersion
relation for this case is slightly overestimating the growth rates determined from the PIC
simulations.

The ratio between the counterstreaming beam density and the cold electron background
density is changed to see how this would affect the growth rate of the Weibel
instability while maintaining the beam Lorentz factor constant. The results from the PIC
simulations and comparison with the linear dispersion theory are shown in figure 4 for a
non-relativistic and relativistic case. When the background electron population density is
small, the functional dependence between the growth rate and k shows similar behaviour in
the long-wavelength limit as it approximates the relativistic two-counterstreaming-beams
case seen in figure 1. This behaviour vanishes when the density of the background electron
population is comparable to the beam densities. Again, the dispersion relation is slightly
overestimating the PIC determined growth rates.

An example of the transverse magnetic field Bz progression for the three-electron-
populations case is shown in figure 5. At the earlier stages of the PIC simulation,
filamentation occurs which causes the bands seen in the first figure. As the magnetic
field saturates, the turbulent phase begins causing the filaments to break up. This is more
evident in the lepton-beam case.
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(a) (b)

FIGURE 4. Instability growth rates for (a) a non-relativistic case of |v0x| = 0.1c and (b) a
relativistic case of |v0x| = 0.96c with density variations defined by the ratio nback/2nbeam. For
the relativistic case, as the density ratio is increased, the growth rate of the instability decreases.
In the non-relativistic case, no difference is observed for the density ratios used in the PIC
simulations.

(a) (b)

FIGURE 5. Snapshots of Bz magnetic field from PIC simulations for the three-population-case
at (a) t = 235.6 ω−1

pe and (b) t = 4712.4 ω−1
pe . The beam Lorentz factor is Γ = 2, wavevector

k = 0.2 and density ratio nback/2nbeam = 0.5. All quantities are in plasma units.

3.3. PIC simulations for lepton and plasma beams into background electron–proton
plasma

The effect of the Lorentz factor on the Weibel instability growth rate is explored by
fixing a beam-to-background density ratio and varying the Lorentz factor. The comparison
between the PIC growth rates and the dispersion relations are shown in figure 6(a). The
functional dependence between the growth rate and k in the long-wavelength limit follows
from the non-relativistic two-counterstreaming-beams case even with high beam Lorentz
factors. This shows that the behaviour in the relativistic two-counterstreaming-beams
case in the long-wavelength limit is unique amongst all the models explored here. The
short-wavelength limit shows inverse proportionality to the square root of the beam
Lorentz factor as expected from a cold fluid approximation.
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(a) (b)

FIGURE 6. Instability growth rates compared with PIC simulations for the lepton-beam case
and plasma-flow case. (a) Relation between the growth rates and the beam Lorentz factor.
The ratio between the beam density and the background density is fixed at nj/np = 0.5. The
maximum instability growth rate is inversely proportional to

√
Γj. (b) Relation between the

growth rates and the density ratio. The beam Lorentz factor is fixed at Γj = 35.36. The crosses
show the PIC determined growth rates for the lepton-beam case and the circles represent the PIC
determined growth rates for the plasma beam case.

Conversely, the beam Lorentz factor is fixed (Γj = 35.36) and the density ratios
are varied for both cases. The growth rates from the PIC simulations and the linear
dispersion relation are compared in figure 6(b). Regardless of the density ratio between
the beam and the background plasma, the growth rate shows the linear dependence in
the long-wavelength limit and the maximum growth rate in the short-wavelength limit.
Furthermore, the maximum growth rate is proportional to

√
nj/np The dispersion relation

shows good agreement with the PIC determined growth rates.
From the above, the linear dispersion relation is accurate in determining growth rates

for a lepton beam inbound on a background electron–proton plasma and a plasma beam on
a background electron–proton plasma. Furthermore, the lepton-beam case shows greater
Weibel instability growth rates compared with the plasma beam case by a factor of

√
2

in most cases as can be seen in figure 2(b). This is explained by the doubling of the
beam-to-background-density ratio between the lepton-beam and electron–proton-beam
cases seen in (2.20) and (2.21). The numerical methods used to determine the dispersion
relation can be extended to predict Weibel instability growth rates.

An example of the transverse magnetic field Bz progression in time for the
lepton-beam case is shown in figure 7. At the earlier stages of the PIC simulation,
the filamentation occurs and grows exponentially as seen in figure 7(a) as with the
three-electron-populations case. As the magnetic field saturates, the turbulent phase is
shown clearly where islands of magnetic field intensity are found in figure 7(b).

3.4. Discussion about the maximum growth rates
Now that the numerical method of determining the modes from the dispersion relation
of the Weibel instability has been validated by PIC simulations, it can be used to make
some predictions on three-electron-populations and lepton-beam systems. It is shown that
the growth rate of the Weibel instability reaches the maximum at the short wavelength
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(a) (b)

FIGURE 7. Snapshots of Bz magnetic field from PIC simulations for the lepton-beam case at (a)
t = 314.16 ω−1

pe and (b) 1413.72 ω−1
pe . The beam Lorentz factor is Γ = 2, wavevector k = 0.2 and

density ratio nj/np = 0.5. All quantities are in plasma units.

(a) (b)

FIGURE 8. Maximum instability growth rate for (a) the three-electron-populations case and(b)
the lepton-beam case for various beam Lorentz factors and beam density ratios. The colour bar
shows the maximum achievable growth rate with these parameters. The lepton-beam case growth
rates show an overall scale of a factor of 10 greater than the three-electron-populations case.

limit, which is common to all cases of the dispersion relation. Using this fact, an iterative
algorithm is used to find the maximum growth rate for a given beam Lorentz factor and
density ratio by scanning logarithmically spaced perturbation wavevectors k. A colour map
for the three-electron-populations system is shown in figure 8(a), where this maximum
growth rate is explored. As the counterstreaming beam density increases, the maximum
growth rate increases as intuitively expected. However, as the beam Lorentz factor is
increased, a non-monotonic behaviour can be seen. The growth rate peaks at Γ ≈ 2 for a
high beam density and then decreases as the Lorentz factor is increased.

A similar analysis is carried out for the lepton-beam case. The maximum growth
rate is explored in the beam Lorentz factor and density ratio space and the colourmap
is shown in figure 8(b). The two cases have comparable outcomes. In general, the
lepton-beam case shows higher growth rates in the Weibel instability compared with
the three-electron-populations case. The highest growth rate achieved is around beam
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FIGURE 9. Non-monotonic behaviour of the maximum Weibel instability growth rate at a
density ratio of nj/np = 103. The PIC simulations were performed with perturbation wavevector
k = 100 to ensure the short-wavelength limit is valid. The dispersion relation for the lepton-beam
case is slightly overestimating the maximum growth rates compared with those observed in the
PIC simulations.

Lorentz factor Γ ≈ 10 with the beam density at 104 times higher than the background
electron–proton plasma.

The non-monotonic relation between the maximum growth rate and the beam Lorentz
factor is explored further. A density ratio of nj/np = 1 × 103 is fixed and the beam Lorentz
factors scanned with a perturbation wavevector of k = 100. This ensures the parameters
were in the short-wavelength limit so that the maximum growth rate is returned from PIC
simulations (see (2.14) and figure 2). The comparison between the PIC determined growth
rates and the theoretical dispersion relation are shown in figure 9. The non-monotonic
behaviour is clearly present in the dispersion relation and the PIC simulations, with a
systematic overestimation by the dispersion relation. Qualitatively, this shows that the
Lorentz factor needs to be optimised for a given beam to background plasma density
ratio to achieve the highest growth rate possible. In general, this maximum growth rate
is achieved at higher beam Lorentz factors as the beam to background plasma density
ratio increases as seen in figure 8(b). It should be noted that the plasma-flow case has a
comparable relation between the maximum growth rate and the system parameters albeit
with a 1/

√
2 reduction in maximum growth rate in the relativistic or low-density regimes

as explained in § 2.3, which is not shown in this figure.

4. Summary and discussion

A theoretical model has been developed for the Weibel instability in three systems,
one with two counterpropagating electron beams in background electron–proton plasma,
another with a lepton beam propagating in background electron–proton plasma and the
final system for a plasma beam propagating in background electron–proton plasma. The
dispersion relations have been derived and found to match PIC simulations with good
accuracy. There is a general small systematic overestimation of the Weibel instability
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growth rate from the dispersion relations. Moreover, non-monotonic behaviour has been
found in both the theoretical dispersion relations and PIC simulations.

The frozen proton/ion background is a useful approximation for determining the linear
dispersion relation, but on longer time scales this breaks down and the approximation is
no longer true when the instability develops into the nonlinear stage. Coupled with this
is the exclusion of any potential ion acceleration mechanisms induced by the possible
development of turbulent fields via the Weibel instability. Longitudinal electrostatic fields
can compete with the growth of the Weibel instability in certain regimes (Califano et al.
1997; Silva et al. 2002; Shaisultanov, Lyubarsky & Eichler 2011), but have they largely
been ignored in this study as the transverse dispersion equations can still accurately
describe the growth rates of the Weibel instability. In the leptonic-beam case, it has been
shown that there is a preferential positron acceleration through a quasi-stationary electric
field and that ion motion could be included in this effect for longer time scales (Dieckmann
et al. 2020). Further studies are needed with the inclusion of the free motion of the ion
background with a focus on the nonlinear stages while looking at the relation between
the beam and background densities. The turbulent properties of the long-time-scale
Weibel-induced magnetic fields also need to be explored.

Furthermore, Smilei works in dimensionless units with relative quantities. If collisions
are included, then a reference plasma frequency must be set thereby setting a reference
plasma density. Hence, the models explored in this paper are valid if a low-density plasma
is studied as collisions between plasma species will be negligible in that case as minimum
electron temperature will be low, as seen in (2.16). However, the relatively cold background
electrons and proton/ions compared with the hot beams will have a strong collisional effect
when the reference plasma density is set high. Exploring the interplay of temperature and
plasma density on the collisional effect on the models is warranted.
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